
Exatly solvable modelsof self-avoiding walks

Mireille Bousquet-MélouCNRS, LaBRI, Bordeaux, Frane

http://www.labri.fr/∼bousquet



Self-avoiding walks (SAW):Some preditions
• The number of n-step SAW behaves asymptotially as follows:

c(n) ∼ (κ) 2.64n n11/32
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• The number of n-step SAW behaves asymptotially as follows:

c(n) ∼ (κ) 2.64n n11/32

• The end-to-end distane is on average
E(Dn) ∼ n3/4 (vs. n1/2 for a simple random walk)[Flory 49, Nienhuis 82℄



Exatly solvable models

⇒ Design simpler lasses of SAW, that should be natural, as general aspossible... but still tratable
• solve better and better approximations of real SAW
• develop new tehniques in exat enumeration



1. A toy model: Partially direted walks

De�nition: A walk is partially direted if it avoids (at least) one of the 4 stepsN, S, E, W.Example: A NEW-walk is partially direted

The self-avoidane ondition is loal.Let a(n) be the number of n-step NEW-walks.
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• Generating funtion:

A(t) :=
∑

n≥0

a(n)tn = 1+ 2
t

1− t
+ tA(t) + 2A(t)

t2

1− t

A(t) =
1+ t

1− 2t− t2
⇒ a(n) ∼ (1 +

√
2)n ∼ (2.41...)n



Generating funtionsLet A be a set of disrete objets equipped with a size:

size : A → N

a 7→ |a|

Assume that there is a �nite number of objets of size n, for all n. Denote thisnumber by a(n).The generating funtion of the objets of A, ounted by their size, is

A(t) :=
∑

n≥0

a(n)tn

=
∑

a∈A
t|a|.

Notation: [tn]A(t) := a(n)



Combinatorial onstrutions and operations on series: A ditionary

Constrution Numbers Generating funtionUnion A = B ∪ C a(n) = b(n) + c(n) A(t) = B(t) + C(t)

Produt A = B × C a(n) = A(t) = B(t) · C(t)

|(β, γ)| = |β|+ |γ| b(0)c(n) + · · ·+ b(n)c(0)

Sequene A = Seq(B) A(t) = 1
1−B(t)

A = {ǫ} ∪ B ∪ (B × B) ∪ · · ·



What to do with a generating funtion?

• Extrat the nth oe�ient a(n) (when nie...)
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What to do with a generating funtion?

• Extrat the nth oe�ient a(n) (when nie...)

• The asymptoti behaviour of a(n) an often be derived from the singularbehaviour of A(t) (seen as a funtion of a omplex variable) in the neighborhoodof its dominant singularities.Example: lim sup a(n)1/n = µ ⇐⇒ A(t) has radius 1/µTransfer theorems: under ertain hypotheses, if A(t) has a unique dominantsingularity at 1/µ,

A(t) ∼ 1

(1− µt)1+α
=⇒ a(n) ∼ 1

Γ(α+1)
µnnαAnalyti ombinatoris [Flajolet-Sedgewik 09℄Example: A(t) = 1+t

1−2t−t2

has a simple pole (α = 0) at tc =
√
2− 1

=⇒ a(n) ∼ κ(
√
2+ 1)nn0



Multivariate generating funtions

• Enumeration aording to the size (main parameter) and another parameter:

A(t, x) =
∑

a∈A
t|a|xp(a)

• Then

[tn]
∂A

∂x
(t, x)

∣

∣

∣

∣

x=1
=

∑

a:|a|=n

p(a),so that

⇒
[tn]∂A∂xA(t,1)

[tn]A(t,1)
= E(p(an))is the average value of p(an), when an is taken uniformly at random amongobjets of size n.



Example: the number of North steps in a partially direted walk

• The bivariate generating funtion is
0

500
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500 1000

A(t, x) =
∑

ω
t|ω|xN(ω) =

1+ t

1− t− tx(1 + t)

• The derivative, taken at x = 1, is
∂A

∂x
(t, x)

∣

∣

∣

∣

x=1
=

t(1 + t)2

(1− t− t(1 + t))2
.

• The number Nn of North steps satis�es
E(Nn) ∼ κn,for some κ > 0.In partiular, the end-to-end distane grows linearly with n.



More solvable modelsprudent[Turban-Debierre 86℄[Préa 97℄[Santra-Seitz-Klein 01℄[Duhi 05℄[Dethridge-Guttmann-Jensen 07℄[mbm 08℄[Shwerdtfeger 10℄
weakly direted

[Beaton-Flajolet-Guttmann 11℄direted partially direted
2.41n2n

2.48n (onj.)

2.54n[Baher-mbm 11℄...



2. Weakly direted walks

(joint work with Axel Baher)



Bridges

• A walk with verties v0, . . . , vi, . . . , vn is a bridge if the ordinates of its vertiessatisfy y0 ≤ yi < yn for 1 ≤ i ≤ n.
• There are many bridges:

b(n) ∼ µnbridgen
γ′where

µbridge = µSAW



Irreduible bridges

Def. A bridge is irreduible if it is not the onatenation of two bridges.Observation: A bridge is a sequene of irreduible bridges



Weakly direted bridges

De�nition: a bridge is weakly direted if eah of its irreduible bridges avoidsat least one of the steps N, S, E, W.This means that eah irreduible bridge is a NES- or a NWS-walk.

vn

v0

⇒ Count NES- (irreduible) bridges



Enumeration of NES-bridges

Proposition
• The generating funtion of NES-bridges of height k+1 is

B(k+1)(t) =
∑

n
b
(k+1)
n tn =

tk+1

Gk(t)
,where G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.
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b
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• The generating funtion of NES-exursions of height at most k is

E(k)(t) =
1

t

(

Gk−1

Gk
− 1

)

.

Exursion: y0 = 0 = yn and yi ≥ 0 for 1 ≤ i ≤ n.



Enumeration of NES-bridges

Last return to height 0

First return to height 0

• Bridges of height k +1:
B(k+1) = tB(k) + E(k)t2B(k)

• Exursions of height at most k

E(k) = 1+ tE(k) + t2
(

E(k−1) − 1
)

+ t3
(

E(k−1) − 1
)

E(k)

• Initial onditions: E(−1) = 1, B(1) = t/(1− t).
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Enumeration of weakly direted bridges

• GF of NES-bridges:
B(t) =

∑

k≥0

tk+1

Gk

• GF of irreduible NES-bridges:
B(t) =

I(t)

1− I(t)
⇒ I(t) =

B(t)

1 +B(t)

• GF of weakly direted bridges (sequenes of irreduible NES- or NWS-bridges):

W (t) =
1

1− (2I(t)− t)
=

1

1−
(

2B(t)
1+B(t)

− t
)

with G−1 = 1, G0 = 1− t, and for k ≥ 0,
Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.[Baher-mbm 10℄



Nature of the generating funtion

B(t) =
∑

k≥0

tk+1

Gk
, W (t) =

1

1−
(

2B(t)
1+B(t)

− t
)with G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.

The zeroes of Gk (here, k = 20):
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Nature of the generating funtion

B(t) =
∑

k≥0

tk+1

Gk
, W (t) =

1

1−
(

2B(t)
1+B(t)

− t
)

• The series B(t) and W (t) are meromorphi in C \ E, where E onsists of thetwo real intervals [−
√
2− 1,−1] and [

√
2− 1,1], and of the urve

E0 =

{

x+ iy : x ≥ 0, y2 =
1− x2 − 2x3

1+ 2 x

}

.This urve is a natural boundary of B and W . These series thus have in�nitelymany singularities.
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The number of irreduible bridges

• In the disk {|z| <
√
2 − 1}, the series W (t) has a unique pole at ρ ≃ 0.39,whih is simple.

• The number w(n) of weakly direted bridges of length n satis�es

w(n) ∼ µn,with µ ≃ 2.5447 (the urrent reord).
• The generating funtion of weakly direted bridges, ounted by the lengthand the number of irreduible bridges, is

W (t, x) =
1

1− x
(

2B(t)
1+B(t)

− t
)

• The number Nn of irreduible bridges in a random weakly direted bridge oflength n satis�es

E(Nn) ∼ κn,where κ ≃ 0.318. In partiular, the average end-to-end distane, being boundedfrom below by E(Nn), grows linearly with n.



A random weakly direted bridge of size 1009



What's next?

• Prudent walks: A funtional equation, and a onjeture for the growth on-stant (∼ 2.48)
• Axel Baher's walks: A very strange funtional equation � The growthonstant seems a bit above that of weakly direted walk (2.549)

• Pasal Préa's k-fratal walks: hope for a sub-linear end-to-end distane

• A mixture of prudent and weakly direted walks: walks formed of a sequeneof prudent irreduible bridges



3. Prudent self-avoiding walks

Self-direted walks [Turban-Debierre 86℄Exterior walks [Préa 97℄Outwardly direted SAW [Santra-Seitz-Klein 01℄Prudent walks [Duhi 05℄, [Dethridge, Guttmann, Jensen 07℄, [mbm 08℄



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.
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Prudent self-avoiding walks
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Enumeration of prudent walks

• An equation with 3 atalyti variables:

(

1− uvwt(1− t2)

(u− tv)(v − tu)

)

T(u, v, w) = 1+ T (w, u)+ T (w, v)− tv
T (v, w)

u− tv
− tu

T (u,w)

v − tuwith T (u, v) = tvT(u, tu, v).
• Conjeture:

p4(n) ∼ κ4 µ
nwhere µ ≃ 2.48 satis�es µ3 − 2µ2 − 2µ+2 = 0.

• Random prudent walks: reursive generation, 195 steps (si! O(n4) numbers)
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