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Self-avoiding walks (SAW):Some predi
tions
• The number of n-step SAW behaves asymptoti
ally as follows:

c(n) ∼ (κ) 2.64n n11/32
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• The number of n-step SAW behaves asymptoti
ally as follows:

c(n) ∼ (κ) 2.64n n11/32

• The end-to-end distan
e is on average
E(Dn) ∼ n3/4 (vs. n1/2 for a simple random walk)[Flory 49, Nienhuis 82℄



Exa
tly solvable models

⇒ Design simpler 
lasses of SAW, that should be natural, as general aspossible... but still tra
table
• solve better and better approximations of real SAW
• develop new te
hniques in exa
t enumeration



1. A toy model: Partially dire
ted walks

De�nition: A walk is partially dire
ted if it avoids (at least) one of the 4 stepsN, S, E, W.Example: A NEW-walk is partially dire
ted

The self-avoidan
e 
ondition is lo
al.Let a(n) be the number of n-step NEW-walks.
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ursive des
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a(0) = 1

a(n) = 2+ a(n− 1) + 2
n−2
∑

k=0

a(k) for n ≥ 1

• Generating fun
tion:

A(t) :=
∑

n≥0

a(n)tn = 1+ 2
t

1− t
+ tA(t) + 2A(t)

t2

1− t

A(t) =
1+ t

1− 2t− t2
⇒ a(n) ∼ (1 +

√
2)n ∼ (2.41...)n



Generating fun
tionsLet A be a set of dis
rete obje
ts equipped with a size:

size : A → N

a 7→ |a|

Assume that there is a �nite number of obje
ts of size n, for all n. Denote thisnumber by a(n).The generating fun
tion of the obje
ts of A, 
ounted by their size, is

A(t) :=
∑

n≥0

a(n)tn

=
∑

a∈A
t|a|.

Notation: [tn]A(t) := a(n)



Combinatorial 
onstru
tions and operations on series: A di
tionary

Constru
tion Numbers Generating fun
tionUnion A = B ∪ C a(n) = b(n) + c(n) A(t) = B(t) + C(t)

Produ
t A = B × C a(n) = A(t) = B(t) · C(t)

|(β, γ)| = |β|+ |γ| b(0)c(n) + · · ·+ b(n)c(0)

Sequen
e A = Seq(B) A(t) = 1
1−B(t)

A = {ǫ} ∪ B ∪ (B × B) ∪ · · ·
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t the nth 
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What to do with a generating fun
tion?

• Extra
t the nth 
oe�
ient a(n) (when ni
e...)

• The asymptoti
 behaviour of a(n) 
an often be derived from the singularbehaviour of A(t) (seen as a fun
tion of a 
omplex variable) in the neighborhoodof its dominant singularities.Example: lim sup a(n)1/n = µ ⇐⇒ A(t) has radius 1/µTransfer theorems: under 
ertain hypotheses, if A(t) has a unique dominantsingularity at 1/µ,

A(t) ∼ 1

(1− µt)1+α
=⇒ a(n) ∼ 1

Γ(α+1)
µnnαAnalyti
 
ombinatori
s [Flajolet-Sedgewi
k 09℄Example: A(t) = 1+t

1−2t−t2

has a simple pole (α = 0) at tc =
√
2− 1

=⇒ a(n) ∼ κ(
√
2+ 1)nn0



Multivariate generating fun
tions

• Enumeration a

ording to the size (main parameter) and another parameter:

A(t, x) =
∑

a∈A
t|a|xp(a)

• Then

[tn]
∂A

∂x
(t, x)

∣

∣

∣

∣

x=1
=

∑

a:|a|=n

p(a),so that

⇒
[tn]∂A∂xA(t,1)

[tn]A(t,1)
= E(p(an))is the average value of p(an), when an is taken uniformly at random amongobje
ts of size n.



Example: the number of North steps in a partially dire
ted walk

• The bivariate generating fun
tion is
0

500
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500 1000

A(t, x) =
∑

ω
t|ω|xN(ω) =

1+ t

1− t− tx(1 + t)

• The derivative, taken at x = 1, is
∂A

∂x
(t, x)

∣

∣

∣

∣

x=1
=

t(1 + t)2

(1− t− t(1 + t))2
.

• The number Nn of North steps satis�es
E(Nn) ∼ κn,for some κ > 0.In parti
ular, the end-to-end distan
e grows linearly with n.



More solvable modelsprudent[Turban-Debierre 86℄[Préa 97℄[Santra-Seitz-Klein 01℄[Du
hi 05℄[Dethridge-Guttmann-Jensen 07℄[mbm 08℄[S
hwerdtfeger 10℄
weakly dire
ted

[Beaton-Flajolet-Guttmann 11℄dire
ted partially dire
ted
2.41n2n

2.48n (
onj.)

2.54n[Ba
her-mbm 11℄...



2. Weakly dire
ted walks

(joint work with Axel Ba
her)



Bridges

• A walk with verti
es v0, . . . , vi, . . . , vn is a bridge if the ordinates of its verti
essatisfy y0 ≤ yi < yn for 1 ≤ i ≤ n.
• There are many bridges:

b(n) ∼ µnbridgen
γ′where

µbridge = µSAW



Irredu
ible bridges

Def. A bridge is irredu
ible if it is not the 
on
atenation of two bridges.Observation: A bridge is a sequen
e of irredu
ible bridges



Weakly dire
ted bridges

De�nition: a bridge is weakly dire
ted if ea
h of its irredu
ible bridges avoidsat least one of the steps N, S, E, W.This means that ea
h irredu
ible bridge is a NES- or a NWS-walk.

vn

v0

⇒ Count NES- (irredu
ible) bridges



Enumeration of NES-bridges

Proposition
• The generating fun
tion of NES-bridges of height k+1 is

B(k+1)(t) =
∑

n
b
(k+1)
n tn =

tk+1

Gk(t)
,where G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.
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Proposition
• The generating fun
tion of NES-bridges of height k+1 is

B(k+1)(t) =
∑

n
b
(k+1)
n tn =

tk+1

Gk(t)
,where G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.

• The generating fun
tion of NES-ex
ursions of height at most k is

E(k)(t) =
1

t

(

Gk−1

Gk
− 1

)

.

Ex
ursion: y0 = 0 = yn and yi ≥ 0 for 1 ≤ i ≤ n.



Enumeration of NES-bridges

Last return to height 0

First return to height 0

• Bridges of height k +1:
B(k+1) = tB(k) + E(k)t2B(k)

• Ex
ursions of height at most k

E(k) = 1+ tE(k) + t2
(

E(k−1) − 1
)

+ t3
(

E(k−1) − 1
)

E(k)

• Initial 
onditions: E(−1) = 1, B(1) = t/(1− t).
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Enumeration of weakly dire
ted bridges

• GF of NES-bridges:
B(t) =

∑

k≥0

tk+1

Gk

• GF of irredu
ible NES-bridges:
B(t) =

I(t)

1− I(t)
⇒ I(t) =

B(t)

1 +B(t)

• GF of weakly dire
ted bridges (sequen
es of irredu
ible NES- or NWS-bridges):

W (t) =
1

1− (2I(t)− t)
=

1

1−
(

2B(t)
1+B(t)

− t
)

with G−1 = 1, G0 = 1− t, and for k ≥ 0,
Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.[Ba
her-mbm 10℄



Nature of the generating fun
tion

B(t) =
∑

k≥0

tk+1

Gk
, W (t) =

1

1−
(

2B(t)
1+B(t)

− t
)with G−1 = 1, G0 = 1− t, and for k ≥ 0,

Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.

The zeroes of Gk (here, k = 20):
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Nature of the generating fun
tion

B(t) =
∑

k≥0

tk+1

Gk
, W (t) =

1

1−
(

2B(t)
1+B(t)

− t
)

• The series B(t) and W (t) are meromorphi
 in C \ E, where E 
onsists of thetwo real intervals [−
√
2− 1,−1] and [

√
2− 1,1], and of the 
urve

E0 =

{

x+ iy : x ≥ 0, y2 =
1− x2 − 2x3

1+ 2 x

}

.This 
urve is a natural boundary of B and W . These series thus have in�nitelymany singularities.
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The number of irredu
ible bridges

• In the disk {|z| <
√
2 − 1}, the series W (t) has a unique pole at ρ ≃ 0.39,whi
h is simple.

• The number w(n) of weakly dire
ted bridges of length n satis�es

w(n) ∼ µn,with µ ≃ 2.5447 (the 
urrent re
ord).
• The generating fun
tion of weakly dire
ted bridges, 
ounted by the lengthand the number of irredu
ible bridges, is

W (t, x) =
1

1− x
(

2B(t)
1+B(t)

− t
)

• The number Nn of irredu
ible bridges in a random weakly dire
ted bridge oflength n satis�es

E(Nn) ∼ κn,where κ ≃ 0.318. In parti
ular, the average end-to-end distan
e, being boundedfrom below by E(Nn), grows linearly with n.



A random weakly dire
ted bridge of size 1009



What's next?

• Prudent walks: A fun
tional equation, and a 
onje
ture for the growth 
on-stant (∼ 2.48)
• Axel Ba
her's walks: A very strange fun
tional equation � The growth
onstant seems a bit above that of weakly dire
ted walk (2.549)

• Pas
al Préa's k-fra
tal walks: hope for a sub-linear end-to-end distan
e

• A mixture of prudent and weakly dire
ted walks: walks formed of a sequen
eof prudent irredu
ible bridges



3. Prudent self-avoiding walks

Self-dire
ted walks [Turban-Debierre 86℄Exterior walks [Préa 97℄Outwardly dire
ted SAW [Santra-Seitz-Klein 01℄Prudent walks [Du
hi 05℄, [Dethridge, Guttmann, Jensen 07℄, [mbm 08℄
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Enumeration of prudent walks

• An equation with 3 
atalyti
 variables:

(

1− uvwt(1− t2)

(u− tv)(v − tu)

)

T(u, v, w) = 1+ T (w, u)+ T (w, v)− tv
T (v, w)

u− tv
− tu

T (u,w)

v − tuwith T (u, v) = tvT(u, tu, v).
• Conje
ture:

p4(n) ∼ κ4 µ
nwhere µ ≃ 2.48 satis�es µ3 − 2µ2 − 2µ+2 = 0.

• Random prudent walks: re
ursive generation, 195 steps (si
! O(n4) numbers)
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