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Self-avoiding walks (SAW):
Some predictions

e The number of n-step SAW behaves asymptotically as follows:
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e The number of n-step SAW behaves asymptotically as follows:
c(n) ~ (k) 2.64" n11/32
e [ he end-to-end distance is on average

E(Dy) ~ n3/4 (vs. nl/2 for a simple random walk)

[Flory 49, Nienhuis 82]



Exactly solvable models

= Design simpler classes of SAW, that should be natural, as general as
possible... but still tractable

e SOlve better and better approximations of real SAW

e develop new techniques in exact enumeration



1. A toy model: Partially directed walks

Definition: A walk is partially directed if it avoids (at least) one of the 4 steps
N, S, E, W.

Example: A NEW-walk is partially directed

-
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The self-avoidance condition is local.

Let a(n) be the number of n-step NEW-walks.
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e Recursive description of NEW-walks:

a(0) = 1
n—2

a(n) = 24a(n—1)+2)» a(k) forn>1
k=0
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e Recursive description of NEW-walks:

a(0) = 1
n—2
aln) = 24+a(n—1)+2 Z a(k) forn>1
k=0
e Generating function:
4 2

n>0



A toy model: Partially directed walks

e Recursive description of NEW-walks:

a(0) = 1
a(n) = 2+4a(n—1) —I—QniQa(k) for m > 1
e Generating function: v
A(t) = ngo a(n)t" =1 + zlL_t F LA + 2A(t)1t—it
1+t

A(t) = =  a(n) ~ (1 +V2)"~ (2.41..)"

1 — 2t —t2



Generating functions

Let A be a set of discrete objects equipped with a size:

size: A — N
a — |a

Assume that there is a finite number of objects of size n, for all n. Denote this
number by a(n).

The generating function of the objects of A, counted by their size, is

A() = D> a(n)t"

n>0

— Z ¢lal

acA

Notation: [t"]A(t) := a(n)



Combinatorial constructions and operations on series: A dictionary

Construction

Numbers

Generating function

a(n) =b(n) 4+ c(n)

A(t) = B(t) + C(t)

Union A=BUC
Product A=BxC
(B, = 18] + |7

a(n) =

b(0)c(n) + -+ 4 b(n)c(0)

A(t) = B(t) - C(t)

Sequence A = Seq(B)

A={efuBU(BxB)U---




What to do with a generating function?

e Extract the nth coefficient a(n) (when nice...)
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What to do with a generating function?
e Extract the nth coefficient a(n) (when nice...)

e The asymptotic behaviour of a(n) can often be derived from the singular
behaviour of A(t) (seen as a function of a complex variable) in the neighborhood
of its dominant singularities.

Example: limsupa(n)l/™ = p <= A(t) has radius 1/u

Transfer theorems: under certain hypotheses, if A(t) has a unique dominant
singularity at 1/pu,

1 n, «

r(a+ 1"

A(t) ~ = a(n) ~

(1 —pt)lta
Analytic combinatorics [Flajolet-Sedgewick 09]



What to do with a generating function?
e Extract the nth coefficient a(n) (when nice...)

e The asymptotic behaviour of a(n) can often be derived from the singular
behaviour of A(t) (seen as a function of a complex variable) in the neighborhood
of its dominant singularities.

Example: limsupa(n)l/™ = p <= A(t) has radius 1/u

Transfer theorems: under certain hypotheses, if A(t) has a unique dominant
singularity at 1/pu,

1

A(t) ~ == ~ n®
W~ ayira = Y r
Analytic combinatorics [Flajolet-Sedgewick 09]
Example: A(t) = _ 1+t has a simple pole (a« =0) at t.=+v2 -1

1—2t—t2

— a(n) ~ k(v/2 4+ 1)"n0



Multivariate generating functions

e Enumeration according to the size (main parameter) and another parameter:

At,z) = Y tlalgrle)

ac A
e [ hen
] 5, (2| = a%:np(a),
so that
[t"1%2 AL, 1)
[tn]A(t, 1) ]E(p(an))

is the average value of p(an), when ay is taken uniformly at random among
objects of size n.



Example: the number of North steps in a partially directed walk

e [ he bivariate generating function is

14t
1—¢t—tx(l+1)

A(t,x) = Zt|w|xN(w) =

e [ he derivative, taken at x =1, is

_ t(1 4+ t)2

8A(t )
or =1 T A —t—t(Q+1)2

e T he number N,, of North steps satisfies

E(Np) ~ kn,

for some k > 0.

In particular, the end-to-end distance grows linearly with n.
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More solvable models

prudent

2.48™ (conj.)

Turban-Debierre 86] tl—rl |

[Préa 97]
[Santra-Seitz-Klein 01]
. . . [Duchi 05]
directed — . partially directed [Dethridge-Guttmann-Jensen 07]
[mbm 08]
2" 2.41" [Schwerdtfeger 10]
[Beaton-Flajolet-Guttmann 11]

— _—

weakly directed
2.54"

[Bacher-mbm 11]




2. Weakly directed walks

(Joint work with Axel Bacher)



Bridges

e A walk with vertices vg,...,v;,...,vn iS a bridge if the ordinates of its vertices
satisfy yo < y; < yn for 1 <i < n.

—

e [ here are many bridges:

/
b(n) ~ :ugm'dgen’y

where

Hbridge — HSAW



Irreducible bridges

Def. A bridge is irreducible if it is not the concatenation of two bridges.

Observation: A bridge is a sequence of irreducible bridges




Weakly directed bridges

Definition: a bridge is weakly directed if each of its irreducible bridges avoids
at least one of the steps N, S, E, W.

This means that each irreducible bridge is a NES- or a NWS-walk.

- B
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= Count NES- (irreducible) bridges



Enumeration of NES-bridges

Proposition

e T he generating function of NES-bridges of height k+1 is

k+1
B(k—l—l)(t) — Zb%k—l—l)tn _ t + |
n Gk(t)
where G_1 =1, Go=1—-t, and for £ > O,

Gry1= (1 —t+t°+ )G}, — t°Gp_1.




Enumeration of NES-bridges

Proposition

e The generating function of NES-bridges of height k41 is i |

tk+1

BE+D () — D — P
B=2 Gr (D)

where G_1 =1, Go=1—-t, and for £ > O,

Gry1= (1 —t+t°+ )G}, — t°Gp_1.

e T he generating function of NES-excursions of height at most k is

EF)(4) = % (Gé_l — 1) .
k

Excursion: yo =0 =1y, and y; > 0 for 1 <i <n. 4



Enumeration of NES-bridges

(\/\/ N\J\/\/ Last return to height O
m M M First return to height 0

e Bridges of height k + 1:
Bk+1) — yg(k) 4 p(k)2 p(k)
e Excursions of height at most k&
ER) =1 4t5W 442 (B*-D — 1) 443 (01 — 1) p¥)

e Initial conditions: E(-1 =1, B(1) =¢/(1 —¢).



Enumeration of NES-bridges

Proposition

e The generating function of NES-bridges of height k41 is i |

tk+1

BE+D () — D — P
B=2 Gr (D)

where G_1 =1, Go=1—-t, and for £ > O,

Gry1= (1 —t+t°+ )G}, — t°Gp_1.

e T he generating function of NES-excursions of height at most k is

EF)(4) = % (Gé_l — 1) .
k

Excursion: yo =0 =1y, and y; > 0 for 1 <i <n. 4



Enumeration of weakly directed bridges

e GF of NES-bridges:
th+1
B(t)= ) ——
k>0 G



Enumeration of weakly directed bridges

e GF of NES-bridges:
th+1
B(t) = —_—
k>0 G,

e GF of irreducible NES-bridges:

(1) _ BQ@)
1—1(t) = 1) = 14+ B(t)

B(t) =



Enumeration of weakly directed bridges

e GF of NES-bridges:

k41
B(t) = —_—
k>0 G
e GF of irreducible NES-bridges:
I(t B(t
B(t) = (t) = I(t) = ()
1—1(¢) 1+ B(t)

e GF of weakly directed bridges (sequences of irreducible NES- or NWS-
bridges):

W) — 1 B 1
IO -0 1 (2 )

with G_1 =1, Go=1—-t, and for k> 0,

Gry1= (1 —t+t°>+ )G} — t°Gp_1.

[Bacher-mbm 10]



Nature of the generating function

B(t) = e W(t) = .
t ¢
’ 2B(t
k>0 1= (1+£§<3f) —t)

with G_1 =1, Go=1—t, and for k > 0,

Gry1= (1 —t+t°+ )G} — t°Gj_1.

The zeroes of G (here, k = 20):

—V2-1




Nature of the generating function

(t) = e W(t) = .
B(t t
’ 2B(t
k>0 1“(L+é&)_t>

e The series B(t) and W (t) are meromorphic in C\ £, where £ consists of the
two real intervals [-v/2 — 1, —1] and [v/2 — 1, 1], and of the curve

1 — 22 —223

1422 }
This curve is a natural boundary of B and W. These series thus have infinitely
many singularities.

EOZ{:I:—I—iy::EZO, y2=




The number of irreducible bridges

e In the disk {|z| < v/2 — 1}, the series W(t) has a unique pole at p ~ 0.39,
which is simple.

e The number w(n) of weakly directed bridges of length n satisfies

w(n) ~ p",

with u ~ 2.5447 (the current record).

e T he generating function of weakly directed bridges, counted by the length
and the number of irreducible bridges, is

1

1o (2550 )

e The number N,, of irreducible bridges in a random weakly directed bridge of
length n satisfies

W(t,x) =

E(Nn) ~ KT,

where k ~ 0.318. In particular, the average end-to-end distance, being bounded
from below by E(Ny), grows linearly with n.



A random weakly directed bridge of size 1009

SHE




What's next?

e Prudent walks: A functional equation, and a conjecture for the growth con-
stant (~ 2.48)

e Axel Bacher's walks: A very strange functional equation — The growth
constant seems a bit above that of weakly directed walk (2.549)

e Pascal Préa’s k-fractal walks: hope for a sub-linear end-to-end distance

e A mixture of prudent and weakly directed walks: walks formed of a sequence
of prudent irreducible bridges




3. Prudent self-avoiding walks

Self-directed walks [Turban-Debierre 86]
Exterior walks [Préa 97]

Outwardly directed SAW [Santra-Seitz-Klein 01]
Prudent walks [Duchi 05], [Dethridge, Guttmann, Jensen 07], [mbm 08]



Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.
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Prudent self-avoiding walks

A step never points towards a vertex that has been visited before.



Enumeration of prudent walks

e An equation with 3 catalytic variables:
vowt(1 — t2)
1 _
(u — tv) (v — tu)
with T (u,v) = tvT (u, tu,v).

T (v, w) B tuT(u, w)

u — tu v — tu

) T(u,v,w) =14+T(w,u) +T(w,v) —tv

e Conjecture:

pa(n) ~ kg p"
where p ~ 2.48 satisfies pu3 —2p2 — 24 +2 = 0.

e Random prudent walks: recursive generation, 195 steps (sic! O(n*) numbers)

A N i =]

—50]
40 T 20 “io [—40
—60
[ 10 l-s0
701




