Finite size Emptiness Formation Probability for the XXZ spin chain at $\Delta=-1/2$

Luigi Cantini

LPTM, Université de Cergy-Pontoise (France)

Introductory Workshop: Lattice Models and Combinatorics MSRI Berkeley, January 16-20, 2012

Based on arXiv:1110.2404

Outline

Introduction

- Definition of the XXZ spin chain
- Combinatorics at $\Delta = -\frac{1}{2}$, Spin and Link-Pattern basis
- Emptiness Formation Probability (EFP): statement of the result
- How to tackle the computation of the EFP
 - Integrability of the XXZ spin chain, inhomogenous version, exchange (qKZ) equations
 - Definition of an *inhomogeneous version* of the EFP and its characterising properties
 - Determinantal expression of the inhomogenous EFP
 - t-specialization and a NICE determiantal evaluation
- Conclusion and perspectives

< □ > < 同 > < 回 >

XXZ spin chain

Hamiltonian of the XXZ spin chain [Heisenberg '29, Bethe '31, ...]

$$H_N(\Delta) = -\frac{1}{2} \sum_{i=1}^N \sigma_x^i \sigma_x^{i+1} + \sigma_y^i \sigma_y^{i+1} + \Delta \sigma_z^i \sigma_z^{i+1} \quad \Delta = -\frac{q+q^{-1}}{2}$$

This hamiltonian acts on a space $\mathcal{H}_N = (\mathbb{C}^2)^{\otimes N}$ and models a chain of spins with a nearest neighbor magnetic interaction.

The operators σ^i_{ν} acts locally on the *i*-th component of the tensor product \mathcal{H}_N

$$\sigma_{\nu}^{i} = \mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes \underbrace{\sigma_{\nu}}_{i} \mathbf{1} \otimes \cdots \otimes \mathbf{1}$$

< D > < P > < P > < P >

XXZ spin chain

$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}.$$

$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}.$$

Physicist are usually interested in:

- Ground state and more generally spectrum and eigenvectors;
- Observables: correlation functions at zero or finite temperature, entanglement entropy, etc.

< □ > < 🗇 >

$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}.$$

Physicist are usually interested in:

- Ground state and more generally spectrum and eigenvectors;
- Observables: correlation functions at zero or finite temperature, entanglement entropy, etc.

Thanks to the Integrability of the XXZ spin chain several quantities can be computed analytically in the thermodynamic limit $n \to \infty$.

Image: A mathematical states and a mathem

At the value of the inhomogeneity parameter $\Delta = -\frac{1}{2}$ and for certain boundary conditions, the ground state energy is particularly simple [Razumov, Stroganov '00]

< 口 > < 同 >

At the value of the inhomogeneity parameter $\Delta = -\frac{1}{2}$ and for certain boundary conditions, the ground state energy is particularly simple [Razumov, Stroganov '00]

- *N* odd and Periodic boundary conditions: $\sigma_{N+1}^{\alpha} = \sigma_1^{\alpha}$
 - Two-fold degenerate ground states $\Psi^{\pm}_{N=2n+1}$,
 - Energy: $E = -\frac{3N}{4}$,
 - Rational-valued components.

Image: A matched block

At the value of the inhomogeneity parameter $\Delta = -\frac{1}{2}$ and for certain boundary conditions, the ground state energy is particularly simple [Razumov, Stroganov '00]

- *N* odd and Periodic boundary conditions: $\sigma_{N+1}^{\alpha} = \sigma_1^{\alpha}$
 - Two-fold degenerate ground states $\Psi_{N=2n+1}^{\pm}$,
 - Energy: $E = -\frac{3N}{4}$,
 - Rational-valued components.
- *N* even and Twisted periodic boundary conditions: $\sigma_{N+1}^z = \sigma_1^z$ and

$$\sigma_{N+1}^{\pm} = e^{\pm i \frac{2\pi}{3}} \sigma_{N+1}^{\pm}$$
 (where $\sigma^{\pm} = \sigma^{x} + \pm i \sigma^{y}$)

- A single ground state $\Psi_{N=2n}^{e}$,
- Energy: $E = -\frac{3N}{4}$,
- Complex valued components.

< □ > < 同 > < 回 >

XXZ spin chain at $\Delta = -\frac{1}{2}$, combinatorics

Some exact result at finite size [Razumov, Stroganov; Batchelor, de Gier, Nienhius]: normalize the smallest component $\Psi_{\uparrow\cdots\uparrow\downarrow\cdot\downarrow} = 1$

< 口 > < 同 >

XXZ spin chain at $\Delta = -\frac{1}{2}$, combinatorics

Some exact result at finite size [Razumov, Stroganov; Batchelor, de Gier, Nienhius]: normalize the smallest component $\Psi_{\uparrow \dots \uparrow \downarrow \cdot \downarrow} = 1$

- Odd size (*N* = 2*n* + 1)
 - Largest Component $\Psi^+_{\uparrow\downarrow\cdots\downarrow\uparrow}(2n+1)=A_n$
 - Sum of Components $\sum_{I} \Psi_{I}^{\pm}(2n+1) = (3)^{n/2} \sqrt{A_{HT}(2n+1)}$

Image: A matched block

XXZ spin chain at $\Delta = -\frac{1}{2}$, combinatorics

Some exact result at finite size [Razumov, Stroganov; Batchelor, de Gier, Nienhius]: normalize the smallest component $\Psi_{\uparrow \dots \uparrow \downarrow \cdot \downarrow} = 1$

- Odd size (*N* = 2*n* + 1)
 - Largest Component $\Psi^+_{\uparrow\downarrow\cdots\downarrow\uparrow}(2n+1)=A_n$
 - Sum of Components $\sum_{l} \Psi_{l}^{\pm}(2n+1) = (3)^{n/2} \sqrt{A_{HT}(2n+1)}$
- Even size (N = 2n)
 - Largest Component $\Psi^+_{\uparrow\downarrow\cdots\uparrow\downarrow}(2n) = \left(\frac{2}{\sqrt{3}}\right)^{n-1} \sqrt{A_{HT}(2n)}$
 - Sum of Components $\sum_{I} \Psi_{I}(2n) = (3)^{n/2} A_{n}$

Where:

- $A_n = \#$ of $n \times n$ Alternating Sign Matrices
- $A_{HT}(N) = \#$ of $N \times N$ Half-Turn Symmetric Alternating Sign Matrices

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Defining the Temperley-Lieb generators

$$e_{i} = \frac{1}{2} (\sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \Delta \sigma_{i}^{z} \sigma_{i+1}^{z} - \frac{1}{2} (q - q^{-1}) (\sigma_{i}^{z} - \sigma_{i+1}^{z}) + \frac{1}{2})$$

The hamiltonian can be written as

$$H_N(\Delta) = -\sum_{i=1}^N \left(e_i + \frac{1}{2}\right)$$

The e_i satisfy the relations

$$e_i^2 = -2\Delta e_i$$

 $e_i e_{i\pm 1} e_i = e_i$
 $[e_i, e_j] = 0$ for $|i - j| \ge 2$

The Temperley-Lieb algebra has a nice graphical representation

Each closed loop has a weight -2Δ .

< □ > < 同 >

The Temperley-Lieb algebra has a nice graphical representation

Each closed loop has a weight -2Δ .

The graphical presentation suggests a natural representation on a vector space whose basis are labeled by *link patterns*

< □ > < 同 >

The ground state equation becomes the equation at the core of the Razumov–Stroganov correspondence [See Sportiello's talk]

$$\sum_{i=1}^{N}\left(e_{i}-1
ight)\Psi=0$$

Theorem [L.C, A. Sportiello]

The components of $\boldsymbol{\Psi}$ enumerate FPL on certain domains, refined by their link pattern.

A quite non trivial correlation function, whose exact finite size expression has been conjectured by Razumov and Stroganov, is the Emptiness Formation Probability (EFP), namely the probability that the spins between two given position along the chain are all pointing in the up (down) direction

< □ > < 同 >

• EFP has emerged quite naturally in the course of studies of the quantum integrability of the XXZ spin chain [Bogoliubov, Izergin, Korepin].

< 口 > < 同 >

- EFP has emerged quite naturally in the course of studies of the quantum integrability of the XXZ spin chain [Bogoliubov, Izergin, Korepin].
- $\bullet\,$ Multiple integral representation for $\Delta>-1$ [Jimbo & coll., Maillet & coll.]

< 口 > < 同 >

- EFP has emerged quite naturally in the course of studies of the quantum integrability of the XXZ spin chain [Bogoliubov, Izergin, Korepin].
- $\bullet\,$ Multiple integral representation for $\Delta>-1$ [Jimbo & coll., Maillet & coll.]
- Asymptotics: Gaussian decay [Conjectured by Korepin et al.]

$$E(k) \sim k^{-\gamma} C^{-k^2}$$

Confirmed for

•
$$\Delta = 0$$
: $\gamma = \frac{1}{4}$, $C = \sqrt{2}$ [Shiroishi et al.]
• $\Delta = -\frac{1}{2}$: $\gamma = \frac{5}{36}$, $C = \frac{8}{3\sqrt{3}}$ [Kitanine et al.]

< □ > < 同 >

The formal definition of the EFP for $\mu=\{\pm,e\}$ is

$$E_{N}^{\mu}(k) = \frac{\left((\Psi_{N}^{\mu})^{*}, \prod_{i=1}^{k} p_{i}^{+} \cdot \Psi_{N}^{\mu}\right)}{\left((\Psi_{N}^{\mu})^{*}, \Psi_{N}^{\mu}\right)}, \quad p_{i}^{+} = \frac{\sigma_{i}^{z} + \mathbf{1}}{2}$$

Image: Image:

The formal definition of the EFP for $\mu=\{\pm,e\}$ is

$$E_{N}^{\mu}(k) = \frac{\left((\Psi_{N}^{\mu})^{*}, \prod_{i=1}^{k} p_{i}^{+} \cdot \Psi_{N}^{\mu}\right)}{\left((\Psi_{N}^{\mu})^{*}, \Psi_{N}^{\mu}\right)}, \quad p_{i}^{+} = \frac{\sigma_{i}^{z} + \mathbf{1}}{2}$$

Since in the even size case the ground state is complex valued we can define also a "Pseudo" (unphysical) EFP

$$E_{2n}^{\tilde{e}}(k) = \frac{\left(\Psi_{2n}^{e}, \prod_{i=1}^{k} p_{i}^{+} \cdot \Psi_{2n}^{e}\right)}{\left(\Psi_{2n}^{e}, \Psi_{2n}^{e}\right)}.$$

EFP at $\Delta = -1/2$

< □ > < 同 >

The formal definition of the EFP for $\mu=\{\pm,e\}$ is

$$E_{N}^{\mu}(k) = \frac{\left((\Psi_{N}^{\mu})^{*}, \prod_{i=1}^{k} p_{i}^{+} \cdot \Psi_{N}^{\mu}\right)}{\left((\Psi_{N}^{\mu})^{*}, \Psi_{N}^{\mu}\right)}, \quad p_{i}^{+} = \frac{\sigma_{i}^{z} + \mathbf{1}}{2}$$

Since in the even size case the ground state is complex valued we can define also a "Pseudo" (unphysical) EFP

$$E_{2n}^{\tilde{e}}(k) = \frac{\left(\Psi_{2n}^{e}, \prod_{i=1}^{k} p_{i}^{+} \cdot \Psi_{2n}^{e}\right)}{\left(\Psi_{2n}^{e}, \Psi_{2n}^{e}\right)}.$$

• They have an analytical, "factorized" form!

< 口 > < 同 >

The formal definition of the EFP for $\mu = \{\pm, e\}$ is

$$E_{N}^{\mu}(k) = \frac{\left((\Psi_{N}^{\mu})^{*}, \prod_{i=1}^{k} p_{i}^{+} \cdot \Psi_{N}^{\mu}\right)}{\left((\Psi_{N}^{\mu})^{*}, \Psi_{N}^{\mu}\right)}, \quad p_{i}^{+} = \frac{\sigma_{i}^{z} + \mathbf{1}}{2}$$

Since in the even size case the ground state is complex valued we can define also a "Pseudo" (unphysical) EFP

$$E_{2n}^{\tilde{e}}(k) = \frac{\left(\Psi_{2n}^{e}, \prod_{i=1}^{k} p_{i}^{+} \cdot \Psi_{2n}^{e}\right)}{\left(\Psi_{2n}^{e}, \Psi_{2n}^{e}\right)}.$$

- They have an analytical, "factorized" form!
- The Pseudo EFP is given by a ratio of enumerations of Cyclically Symmetric Self Complementary Plane Partion with a star shaped hole

< □ > < 同 > < 回 >

Theorem[L.C., conjectured by Razumov, Stroganov '00]

$$\frac{E_{2n+1}^{-}(k-1)}{E_{2n+1}^{-}(k)} = \frac{(2k-2)!(2k-1)!(2n+k)!(n-k)!}{(k-1)!(3k-2)!(2n-k+1)!(n+k-1)!}$$

$$\frac{E_{2n+1}^{+}(k-1)}{E_{2n+1}^{+}(k)} = \frac{(2k-2)!(2k-1)!(2n+k)!(n-k+1)!}{(k-1)!(3k-2)!(2n-k+1)!(n+k)!}$$

$$\frac{E_{2n}^{e}(k-1)}{E_{2n}^{e}(k)} = \frac{(2k-2)!(2k-1)!(2n+k-1)!(n-k)!}{(k-1)!(3k-2)!(2n-k)!(n+k-1)!}$$

$$\frac{E_{2n}^{e}(k-1)}{E_{2n}^{e}(k)} = -q\frac{(2k-2)!(2k-1)!(2n+k-1)!(n-k)!}{(k-1)!(3k-3)!(3k-1)(2n-k)!(n+k-1)!}$$

Image: Image:

Cyclically Symm. Self Compl. Plane Partitions

Proposition

$$\frac{E_{2n}^{\tilde{e}}(k-1)}{E_{2n}^{\tilde{e}}(k)} = -q \frac{CSSC(2n,k-1)}{CSSC(2n,k)}$$

CSSC(2n, k) = # of lozange tilings of a regular hexagon of side length 2n, which are invariant under a rotation of $\pi/3$ and have a star shaped frozen region of length k, (CSSC(2n) := CSSC(2n, 0) = CSSC(2n, 1))

< □ > < 🗇 >

Cyclically Symm. Self Compl. Plane Partitions

The proof of the proposition is a simple application of a nice result of Ciucu ['97] about enumerations of dimer coverings of planar graphs with vertical symmetry.

Cyclically Symm. Self Compl. Plane Partitions

Using the Lindström-Gessel-Viennot theorem one finds

$$CSSC(2n,k) = \det[Q_{i+k,j+k}]_{1 \le i,j \le n-k}$$

with

$$Q_{i,j} = \binom{i+j-2}{2j-i-2} + \frac{1}{2}\binom{i+j-2}{2j-i-1}$$

and then open "Advanced Determinant Calculus", Theorem 40

$$CSSC(2n,k) = \prod_{j=1}^{n-k} \frac{(j-1)!(j+2k-1)!((3j+3k-2)!)^2}{(2j+k-1)!(2j+k-2)!(2j+3k-1)!(2j+3k-2)!}$$

< 口 > < 同 >

Some partial results

• Asymptotics $N \to \infty$ [Maillet et al. '02]

$$\lim_{N\to\infty} E_N(k) = \left(\frac{\sqrt{3}}{2}\right)^{3k^2} \prod_{j=1}^k \frac{\Gamma(j-1/3)\Gamma(j+1/3)}{\Gamma(j-1/2)\Gamma(j+1/2)}.$$

< □ > < 🗗 >

• Asymptotics $N \to \infty$ [Maillet et al. '02]

$$\lim_{N\to\infty} E_N(k) = \left(\frac{\sqrt{3}}{2}\right)^{3k^2} \prod_{j=1}^k \frac{\Gamma(j-1/3)\Gamma(j+1/3)}{\Gamma(j-1/2)\Gamma(j+1/2)}.$$

• Norm [Di Francesco et al. '06]

$$E_{2n+1}^{\pm}(n) = A_{HT}(2n+1)^{-1} = \prod_{j=1}^{n} \frac{(2j-1)!^2(2j)!^2}{(j-1)!j!(3j-1)!(3j)!}$$
$$E_{2n}^{\tilde{e}}(n) = (-q)^n A_n^{-2} = (-q)^n CSSC(2n)^{-1}$$

< □ > < 同 >

R-matrix: $\mathbb{C}^2\otimes\mathbb{C}^2\to\mathbb{C}^2\otimes\mathbb{C}^2$

$$R_{i,j}(z) = \begin{pmatrix} \uparrow_i, \uparrow_j & \uparrow_i, \downarrow_j & \downarrow_i, \uparrow_j & \downarrow_i, \downarrow_j \\ a(z) & 0 & 0 & 0 \\ 0 & b(z) & c_1(z) & 0 \\ 0 & c_0(z) & b(z) & 0 \\ 0 & 0 & 0 & a(z) \end{pmatrix} \begin{pmatrix} \uparrow_i, \uparrow_j \\ \uparrow_i, \downarrow_j \\ \downarrow_i, \uparrow_j \\ \downarrow_i, \downarrow_j \end{pmatrix}$$

with

$$a(z) = rac{qz-q^{-1}}{q-q^{-1}z}, \quad b(x) = rac{z-1}{q-q^{-1}z}, \quad c_i(z) = rac{(q-q^{-1})z^i}{q-q^{-1}z}$$

The R-matrix encodes the Boltzmann weights of the configurations of the Six-Vertex model

*ロト *母ト *臣

Twist matrix

$$\Omega(\phi)=\left(egin{array}{cc} e^{i\phi} & 0 \ 0 & e^{-i\phi} \end{array}
ight)$$

R- Ω commutation

$$[R_{i,j}(x),\Omega_i(\phi)\otimes\Omega_j(\phi)]=0$$

Twist matrix

$$\Omega(\phi) = \left(egin{array}{cc} e^{i\phi} & 0 \ 0 & e^{-i\phi} \end{array}
ight)$$

R- Ω commutation

$$[R_{i,j}(x),\Omega_i(\phi)\otimes\Omega_j(\phi)]=0$$

Yang-Baxter equation

$$R_{i,j}(z_i/z_j)R_{i,k}(z_i/z_k)R_{j,k}(z_j/z_k) = R_{j,k}(z_j/z_k)R_{i,k}(z_i/z_k)R_{i,j}(z_i/z_j)$$

A B >
 A
 B >
 A
 A
 B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

.⊒ . ►

Twist matrix

$$\Omega(\phi) = \left(egin{array}{cc} e^{i\phi} & 0 \ 0 & e^{-i\phi} \end{array}
ight)$$

R- Ω commutation

$$[R_{i,j}(x),\Omega_i(\phi)\otimes\Omega_j(\phi)]=0$$

Yang-Baxter equation

$$R_{i,j}(z_i/z_j)R_{i,k}(z_i/z_k)R_{j,k}(z_j/z_k) = R_{j,k}(z_j/z_k)R_{i,k}(z_i/z_k)R_{i,j}(z_i/z_j)$$

Transfer matrix

$$T_{N}(y|\mathbf{z}_{\{1,...,N\}},\phi) = \operatorname{tr}_{0}\left[R_{0,1}(y/z_{1})R_{0,2}(y/z_{2})\ldots R_{0,N}(y/z_{N})\Omega_{0}(\phi)\right]$$

A B >
 A
 B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thanks to YBE and R- Ω commutation, the transfer matrices with different "y" commute

$$[T_N(y|\mathbf{z}_{\{1,...,N\}},\phi), T_N(y'|\mathbf{z}_{\{1,...,N\}},\phi)] = 0$$

・ロト ・日下・ ・日下
Integrability

Thanks to YBE and $R\text{-}\Omega$ commutation, the transfer matrices with different "y" commute

$$[T_N(y|\mathbf{z}_{\{1,...,N\}},\phi), T_N(y'|\mathbf{z}_{\{1,...,N\}},\phi)] = 0$$

The hamiltonian of the XXZ spin chain is the logarithmic derivative of the transfer matrix at $z_i = 1$

$$\frac{1}{T_N(1|\mathbf{1},\phi)} \frac{dT_N(y|\mathbf{1},\phi)}{dy} \bigg|_{y=1} = -\frac{1}{q-q^{-1}} \left(H_N(\Delta) - \frac{3N}{2} \Delta \right).$$

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Integrability

Thanks to YBE and R- Ω commutation, the transfer matrices with different "y" commute

$$[T_N(y|\mathbf{z}_{\{1,...,N\}},\phi), T_N(y'|\mathbf{z}_{\{1,...,N\}},\phi)] = 0$$

The hamiltonian of the XXZ spin chain is the logarithmic derivative of the transfer matrix at $z_i = 1$

$$\left. rac{1}{T_{\mathcal{N}}(1|\mathbf{1},\phi)} rac{dT_{\mathcal{N}}(y|\mathbf{1},\phi)}{dy}
ight|_{y=1} = -rac{1}{q-q^{-1}} \left(H_{\mathcal{N}}(\Delta) - rac{3N}{2}\Delta
ight).$$

Crucial observation [Razumov, Stroganov, Zinn-Justin]

Consider the ground state with spectral parameters has a very simple eigenvalue $\lambda(y|\mathbf{z}_{\{1,...,N\}}) = \prod_{i=1}^{N} (a(y/z_i) + b(y/z_i))$

$$\Psi^{\mu}_{N}
ightarrow \Psi^{\mu}_{N}(\mathsf{z}), \qquad \mathcal{T}_{N}(y|\mathsf{z}_{\{1,...,N\}},\phi)\Psi^{\mu}_{N}(\mathsf{z}) = \lambda(y)\Psi^{\mu}_{N}(\mathsf{z})$$

< ロ > < 同 > < 回 > <

q-Knizhnik-Zamolodchikov (qKZ) equations

[Razumov, Stroganov & Zinn-Justin '07] From the previous observations and the YBE it follows that

• The ground state is polynomial in the spectral parameters.

< □ > < 同 >

q-Knizhnik-Zamolodchikov (qKZ) equations

[Razumov, Stroganov & Zinn-Justin '07] From the previous observations and the YBE it follows that

- The ground state is polynomial in the spectral parameters.
- The ground state satisfies a specialization $q = e^{2\pi i/3}$ of the $U_q(\hat{sl}_2)$ qKZ equations

$$\check{R}_{i,i+1}(z_{i+1}/z_i)\Psi_N^{\mu}(\ldots,z_i,z_{i+1},\ldots) = \Psi_N^{\mu}(\ldots,z_{i+1},z_i,\ldots)$$

$$\sigma\Psi_N^{\mu}(z_1,z_2,\ldots,z_{N-1},z_N) = D\Psi_N^{\mu}(z_2,\ldots,z_{N-1},z_N,sz_1).$$

With

$$\begin{split} \sigma(\mathbf{v}_1 \otimes \mathbf{v}_2 \otimes \cdots \otimes \mathbf{v}_{N-1} \otimes \mathbf{v}_N) &= \mathbf{v}_2 \otimes \cdots \otimes \mathbf{v}_{N-1} \otimes \mathbf{v}_N \otimes \mathbf{v}_1 \\ \check{R}_{i,i+1}(z) &= P_{i,i+1}R_{i,i+1}(z) \qquad P_{i,j}(\mathbf{e}_i^{\mu} \otimes \mathbf{e}_j^{\nu}) = \mathbf{e}_i^{\nu} \otimes \mathbf{e}_j^{\mu}, \\ \mathbf{s} &= \mathbf{q}^6, \qquad D = \mathbf{q}^{3N} \mathbf{q}^{3(\mathbf{s}_N^z + 1)/2}. \end{split}$$

< □ > < ^[] >

Main Idea: Inhomogenous EFP

Using the solution of the $U_q(\hat{sl}_2)$ qKZ equations at level 1.

we define an inhomogenous version of the EFP

$$\mathcal{E}_{N}^{\mu}(k;\mathbf{y}_{\{1,\ldots,2k\}};\mathbf{z}_{\{1,\ldots,N-k\}}) \sim \\ \frac{\left(\mathcal{P}_{N,k}(\mathbf{z})(\Psi_{N}^{\mu}(q^{-6}\mathbf{y}_{\{k+1,\ldots,2k\}};\mathbf{z}))^{*},\prod_{i=1}^{k}p_{i}^{+}\Psi_{N}^{\mu}(\mathbf{y}_{\{1,\ldots,k\}};\mathbf{z})\right)}{\prod_{1 < i < i < k}(qy_{i}-q^{-1}y_{i})(qy_{i+k}-q^{-1}y_{i+k})}$$

with
$$\mathcal{P}_{N,k}(\mathbf{z}) = \prod_{i=k+1}^{N} (z_i p_i^+ + p_i^-).$$

and of the Pseudo EFP

$$\mathcal{E}_{N}^{\tilde{\mathbf{e}}}(k;\mathbf{y}_{\{1,...,2k\}};\mathbf{z}_{\{1,...,N-k\}}) \sim \\ \frac{\Psi_{N}^{\mu}(k;q^{-6}\mathbf{y}_{\{k+1,...,2k\}}^{-1};\mathbf{z}^{-1}),\prod_{i=1}^{k}p_{i}^{+}\Psi_{N}^{\mu}(k;\mathbf{y}_{\{1,...,k\}};\mathbf{z}))}{\prod_{1 \le i \le j \le k}(qy_{i}-q^{-1}y_{j})(qy_{i+k}-q^{-1}y_{j+k})}$$

< □ > < 同 > < 回 >

Main Idea: Inhomogenous EFP

Using the solution of the $U_q(\hat{sl}_2)$ qKZ equations at level 1.

we define an inhomogenous version of the EFP

$$\mathcal{E}_{N}^{\mu}(k;\mathbf{y}_{\{1,...,2k\}};\mathbf{z}_{\{1,...,N-k\}}) \sim \\ (\mathcal{P}_{N,k}(\mathbf{z})(\Psi_{N}^{\mu}(q^{-6}\mathbf{y}_{\{k+1,...,2k\}};\mathbf{z}))^{*},\prod_{i=1}^{k}\rho_{i}^{+}\Psi_{N}^{\mu}(\mathbf{y}_{\{1,...,k\}};\mathbf{z}))$$

$$\prod_{1 < i < j < k} (qy_i - q^{-1}y_j)(qy_{i+k} - q^{-1}y_{j+k})$$

with
$$\mathcal{P}_{N,k}(\mathbf{z}) = \prod_{i=k+1}^{N} (z_i p_i^+ + p_i^-).$$

and of the Pseudo EFP

$$\mathcal{E}_{N}^{\tilde{\mathsf{e}}}(k;\mathbf{y}_{\{1,\ldots,2k\}};\mathbf{z}_{\{1,\ldots,N-k\}}) \sim$$

$$\frac{\left(\Psi_{N}^{\mu}(k;q^{-6}\mathbf{y}_{\{k+1,\ldots,2k\}}^{-1};\mathbf{z}^{-1}),\prod_{i=1}^{k}p_{i}^{+}\Psi_{N}^{\mu}(k;\mathbf{y}_{\{1,\ldots,k\}};\mathbf{z})\right)}{\prod_{1\leq i< j\leq k}(qy_{i}-q^{-1}y_{j})(qy_{i+k}-q^{-1}y_{j+k})}$$

We shall compute these and then take the specialization $z_i = y_j = 1$.

(日)

1 Symmetries under $z_i \leftrightarrow z_j$, $y_i \leftrightarrow y_j$.

(1)

- 1 Symmetries under $z_i \leftrightarrow z_j$, $y_i \leftrightarrow y_j$.
- 2 Specialization $z_i = 0$ or $z_i \rightarrow \infty$

$$\begin{split} \lim_{z_{2n+1}\to\infty} z_{2n+1}^{-2n} \mathcal{E}_{2n+1}^{-}(k;\mathbf{y};\mathbf{z}) &\sim \mathcal{E}_{2n}^{e}(k;\mathbf{y};\mathbf{z}\setminus z_{2n+1})\\ \mathcal{E}_{2n+2}^{e}(k;\mathbf{y};\mathbf{z})|_{z_{2n+2}=0} &\sim \mathcal{E}_{2n+1}^{+}(k;\mathbf{y};\mathbf{z}\setminus z_{2n+2}) \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ >

- 1 Symmetries under $z_i \leftrightarrow z_j$, $y_i \leftrightarrow y_j$.
- 2 Specialization $z_i = 0$ or $z_i \rightarrow \infty$

$$\lim_{z_{2n+1}\to\infty} z_{2n+1}^{-2n} \mathcal{E}_{2n+1}^{-}(k; \mathbf{y}; \mathbf{z}) \sim \mathcal{E}_{2n}^{e}(k; \mathbf{y}; \mathbf{z} \setminus z_{2n+1})$$
$$\mathcal{E}_{2n+2}^{e}(k; \mathbf{y}; \mathbf{z})|_{z_{2n+2}=0} \sim \mathcal{E}_{2n+1}^{+}(k; \mathbf{y}; \mathbf{z} \setminus z_{2n+2})$$

3 Recursion relation for $z_j = q^{\pm 2} z_i$

$$\frac{\mathcal{E}_{N}^{\mu}(k;\mathbf{y};\mathbf{z})|_{z_{j}=q^{2}z_{i}}}{\mathcal{E}_{N-2}^{\mu}(k;\mathbf{y};\mathbf{z}\setminus\{z_{i},z_{j}\})} \sim z_{i} \prod_{\ell=1}^{2k} \frac{qy_{\ell}-q^{-1}z_{i}}{q-q^{-1}} \prod_{\substack{1 \leq \ell \leq N-k \\ \ell \neq i,j}} \frac{(qz_{\ell}-q^{-1}z_{i})(q^{3}z_{i}-q^{-1}z_{\ell})}{-(q-q^{-1})^{2}}$$

< □ > < 同 > < 回 >

- 1 Symmetries under $z_i \leftrightarrow z_j$, $y_i \leftrightarrow y_j$.
- 2 Specialization $z_i = 0$ or $z_i \rightarrow \infty$

$$\lim_{z_{2n+1}\to\infty} z_{2n+1}^{-2n} \mathcal{E}_{2n+1}^{-}(k; \mathbf{y}; \mathbf{z}) \sim \mathcal{E}_{2n}^{e}(k; \mathbf{y}; \mathbf{z} \setminus z_{2n+1})$$
$$\mathcal{E}_{2n+2}^{e}(k; \mathbf{y}; \mathbf{z})|_{z_{2n+2}=0} \sim \mathcal{E}_{2n+1}^{+}(k; \mathbf{y}; \mathbf{z} \setminus z_{2n+2})$$

3 Recursion relation for $z_j = q^{\pm 2} z_i$

$$\frac{\mathcal{E}_{2n}^{\tilde{c}}(k;\mathbf{y};\mathbf{z})|_{z_{j}=q^{2}z_{i}}}{\mathcal{E}_{2n-2}^{\tilde{c}}(k;\mathbf{y};\mathbf{z}\setminus\{z_{i},z_{j}\})} \sim \prod_{\substack{\ell=1\\\ell\neq i,j}}^{2k} \frac{qy_{\ell}-q^{-1}z_{i}}{q-q^{-1}} \prod_{\substack{1\leq \ell\leq 2n-k\\\ell\neq i,j}} \frac{(qz_{\ell}-q^{-1}z_{i})(q^{3}z_{i}-q^{-1}z_{\ell})}{-(q-q^{-1})^{2}}$$

< □ > < 同 >

4 Degree in $z_i = \text{less than } 2n \pm 1$.

Image: A mathematical states and a mathem

- 4 Degree in $z_i = \text{less than } 2n \pm 1$.
- 5 Factorized cases

$$\mathcal{E}_{2k}^{e/\tilde{e}}(k;\mathbf{y};\mathbf{z}) = \prod_{1 \le i < j \le k} \frac{(qz_i - q^{-1}z_j)(qz_j - q^{-1}z_i)}{(q - q^{-1})^2}$$
$$\mathcal{E}_{2k+1}^+(k+1;\mathbf{y};\mathbf{z}) = \prod_{1 \le i < j \le k} \frac{(qz_i - q^{-1}z_j)(qz_j - q^{-1}z_i)}{(q - q^{-1})^2} \prod_{i=1}^k z_i^2$$
$$\mathcal{E}_{2k+1}^-(k;\mathbf{y};\mathbf{z}) = \prod_{1 \le i < j \le k+1} \frac{(qz_i - q^{-1}z_j)(qz_j - q^{-1}z_i)}{(q - q^{-1})^2}.$$

These properties completely determine $\mathcal{E}_{N}^{\mu}(k; \mathbf{y}; \mathbf{z})$ and $\mathcal{E}_{2n}^{\tilde{e}}(k; \mathbf{y}; \mathbf{z})!$

< □ > < 同 >

Let us concentrate on $\mathcal{E}_{N}^{\tilde{e}}(k;\mathbf{y};\mathbf{z})$. For $q=e^{2\pi i/3}$ the recursion becomes

$$\frac{\mathcal{E}_{2n}^{\tilde{e}}(k;\mathbf{y};\mathbf{z})|_{z_j=q^2z_i}}{\mathcal{E}_{2n-2}^{\tilde{e}}(k;\mathbf{y};\mathbf{z}\setminus\{z_i,z_j\})}\sim \left(\prod_{\substack{1\leq \ell\leq 2n-k\\\ell\neq i,j}}\frac{qz_\ell-q^{-1}z_i}{q-q^{-1}}\right)^2$$

This is the square of the recursion relation satisfied by the Schur polynomial $S_{\lambda(2n,0)}(\mathbf{z})$ corresponding to the Young Tableau

$$\lambda(m,r) = \{\lfloor \frac{r}{2} \rfloor, \lfloor \frac{r+1}{2} \rfloor, \dots, \lfloor \frac{r+i-1}{2} \rfloor, \dots, \lfloor \frac{r+m-1}{2} \rfloor\}$$

< □ > < 🗇 >

For generic k the product $S_{\lambda(2n,0)}(\mathbf{z}, \mathbf{y}_I)S_{\lambda(2n,0)}(\mathbf{z}, \mathbf{y}_{I^c})$ satisfies the recursion relation but: it has the "wrong" initial conditons and moreover the degree and symmetries in y are wrong.

< 口 > < 同 >

For generic k the product $S_{\lambda(2n,0)}(\mathbf{z}, \mathbf{y}_I)S_{\lambda(2n,0)}(\mathbf{z}, \mathbf{y}_{I^c})$ satisfies the recursion relation but: it has the "wrong" initial conditons and moreover the degree and symmetries in y are wrong.

Is it possible to take linear combination of $S_{\lambda(2n,0)}(\mathbf{z},\mathbf{y}_I)S_{\lambda(2n,0)}(\mathbf{z},\mathbf{y}_{I^c})$ for different I such that one has the right initial conditions?

Combinatorial point $q = e^{2\pi i/3}$, generic k

Let $\tilde{\rho},\tilde{\sigma}$ be strictly increasing infinite sequences of nonnegative integers. Introduce the following matrices

$$\mathcal{M}^{(\tilde{\rho},\tilde{\sigma})}(r,s;\mathbf{y};\mathbf{z}) = \begin{pmatrix} z_1^{\tilde{\rho}_1} & z_1^{\tilde{\rho}_2} & \dots & z_1^{\tilde{\rho}_{r+s}} & 0 & 0 & \dots & 0 \\ z_2^{\tilde{\rho}_1} & z_2^{\tilde{\rho}_2} & \dots & z_2^{\tilde{\rho}_{r+s}} & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ z_r^{\tilde{\rho}_1} & z_r^{\tilde{\rho}_2} & \dots & z_r^{\tilde{\rho}_{r+s}} & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & z_1^{\tilde{\sigma}_1} & z_1^{\tilde{\sigma}_2} & \dots & z_1^{\tilde{\sigma}_{r+s}} \\ 0 & 0 & \dots & 0 & z_2^{\tilde{\sigma}_1} & z_2^{\tilde{\sigma}_2} & \dots & z_1^{\tilde{\sigma}_{r+s}} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & z_r^{\sigma_1} & z_r^{\sigma_2} & \dots & z_r^{\sigma_{r+s}} \\ y_1^{\tilde{\rho}_1} & y_1^{\tilde{\rho}_2} & \dots & y_1^{\tilde{\rho}_{r+s}} & y_1^{\tilde{\sigma}_1} & y_1^{\tilde{\sigma}_2} & \dots & y_1^{\tilde{\sigma}_{r+s}} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ y_2^{\tilde{\rho}_1} & y_1^{\tilde{\rho}_2} & \dots & y_2^{\tilde{\rho}_{r+s}} & y_1^{\tilde{\sigma}_1} & y_2^{\tilde{\sigma}_2} & \dots & y_2^{\tilde{\sigma}_{r+s}} \end{pmatrix}$$

< □ > < ^[] >

Define the following polynomials

$$\mathcal{S}^{(\tilde{\rho},\tilde{\sigma})}(\mathbf{r},\mathbf{s};\mathbf{y};\mathbf{z}) = \frac{\det \mathcal{M}^{(\tilde{\rho},\tilde{\sigma})}(\mathbf{r},\mathbf{s};\mathbf{y};\mathbf{z})}{\prod_{1 \leq i < j \leq r} (z_i - z_j)^2 \prod_{1 \leq i < j \leq 2s} (y_i - y_j) \prod_{\substack{1 \leq i \leq r \\ 1 \leq j \leq 2s}} (z_i - y_j)}.$$

Using the Laplace expansion along the first r + s columns we can write $S^{(\tilde{\rho},\tilde{\sigma})}(r,s;\mathbf{y};\mathbf{z})$ as a bilinear in Schur polynomials

$$\mathcal{S}^{(\tilde{
ho},\tilde{\sigma})}(r,s;\mathbf{y};\mathbf{z}) =$$

$$\sum_{\substack{I \subset \{1,\ldots,2s\} \\ |I|=s}} (-1)^{\epsilon(I)} \frac{\prod_{i < j \in I}(y_i - y_j) \prod_{i < j \in I^c}(y_i - y_j)}{\prod_{1 \le i < j \le 2s}(y_i - y_j)} S_{\rho(r+s)}(\mathbf{z}, \mathbf{y}_I) S_{\sigma(r+s)}(\mathbf{z}, \mathbf{y}_{I^c}),$$

< 口 > < 同 >

Combinatorial point $q = e^{2\pi i/3}$

Now let us introduce the following family of integer sequences

$$\tilde{\lambda}_{i}(r) = \lfloor \frac{3i-3+r}{2} \rfloor, \qquad \begin{array}{l} \tilde{\lambda}(0) = \{0,1,3,4,6,7,\dots\} \\ \tilde{\lambda}(1) = \{0,2,3,5,6,8,\dots\} \\ \tilde{\lambda}(2) = \{1,2,4,5,7,8,\dots\} \end{array}$$

Theorem [L.C.]

$$\begin{split} \mathcal{E}_{2n+1}^{-}(k;\mathbf{y};\mathbf{z}) &\sim \mathcal{S}^{(\tilde{\lambda}(0),\tilde{\lambda}(1))}(2n+1-k,k;\mathbf{y};\mathbf{z}) \\ \mathcal{E}_{2n+1}^{+}(k;\mathbf{y};\mathbf{z}) &\sim \mathcal{S}^{(\tilde{\lambda}(1),\tilde{\lambda}(2))}(2n+1-k,k;\mathbf{y};\mathbf{z}) \\ \mathcal{E}_{2n}^{e}(k;\mathbf{y};\mathbf{z}) &\sim \mathcal{S}^{(\tilde{\lambda}(0),\tilde{\lambda}(1))}(2n-k,k;\mathbf{y};\mathbf{z}) \\ \mathcal{E}_{2n}^{\tilde{e}}(k;\mathbf{y};\mathbf{z}) &\sim \mathcal{S}^{(\tilde{\lambda}(0),\tilde{\lambda}(2))}(2n-k,k;\mathbf{y};\mathbf{z}) \end{split}$$

Image: Image:

Setting

$$\mathbf{z} = \{z_1 = t^0, z_2 = t^1, \dots, z_{N-k} = t^{N-k-1}\}$$

and

$$\mathbf{y} = \{y_1 = t^{N-k}, \dots, y_{2k} = t^{N+k-1}\}$$

the functions $\mathcal{E}_{N}^{\mu}(k; \mathbf{y}; \mathbf{z})$ and $\mathcal{E}_{2n}^{\tilde{e}}(k; \mathbf{y}; \mathbf{z})$, as rational functions of t, have simple factors.

Let us look at an example

Image: Image:

	$\mathcal{M}^{(ilde{\lambda}(0), ilde{\lambda}(1))}(3,2; extbf{z}(t);t^3 extbf{y}(t)) =$												
1	$t^{0\cdot 0}$	$t^{1\cdot 0}$	$t^{3\cdot 0}$	$t^{4\cdot 0}$	$t^{6\cdot 0}$	0	0	0	0	0)		
	$t^{0\cdot 1}$	$t^{1\cdot 1}$	$t^{3\cdot 1}$	$t^{4\cdot 1}$	$t^{6 \cdot 1}$	0	0	0	0	0			
	$t^{0\cdot 2}$	$t^{1\cdot 2}$	$t^{3\cdot 2}$	$t^{4\cdot 2}$	$t^{6\cdot 2}$	0	0	0	0	0			
	0	0	0	0	0	$t^{0\cdot 0}$	$t^{2 \cdot 0}$	$t^{3\cdot 0}$	$t^{5 \cdot 0}$	$t^{6 \cdot 0}$			
	0	0	0	0	0	$t^{0\cdot 1}$	$t^{2 \cdot 1}$	$t^{3\cdot 1}$	$t^{5\cdot 1}$	$t^{6 \cdot 1}$			
	0	0	0	0	0	$t^{0\cdot 2}$	$t^{2\cdot 2}$	$t^{3\cdot 2}$	$t^{5\cdot 2}$	$t^{6\cdot 2}$			
	$t^{0\cdot 3}$	$t^{1\cdot 3}$	$t^{3\cdot 3}$	$t^{4\cdot 3}$	$t^{6\cdot 3}$	$t^{0\cdot 3}$	$t^{2\cdot 3}$	$t^{3\cdot 3}$	$t^{5\cdot 3}$	$t^{6\cdot 3}$			
	$t^{0\cdot 4}$	$t^{1\cdot 4}$	$t^{3\cdot 4}$	$t^{4\cdot 4}$	$t^{6\cdot 4}$	$t^{0\cdot 4}$	$t^{2\cdot 4}$	$t^{3\cdot 4}$	$t^{5\cdot 4}$	$t^{6\cdot 4}$			
	$t^{0\cdot 5}$	$t^{1\cdot 5}$	$t^{3\cdot 5}$	$t^{4\cdot 5}$	$t^{6\cdot 5}$	$t^{0\cdot 5}$	$t^{2\cdot 5}$	$t^{3\cdot 5}$	$t^{5\cdot 5}$	$t^{6\cdot 5}$			
ĺ	$t^{0\cdot 6}$	$t^{1\cdot 6}$	$t^{3\cdot 6}$	$t^{4\cdot 6}$	$t^{6\cdot 6}$	$t^{0\cdot 6}$	$t^{2\cdot 6}$	$t^{3\cdot 6}$	$t^{5\cdot 6}$	$t^{6\cdot 6}$	Ϊ		

・ロト ・日下・ ・日下

	$\mathcal{M}^{(ilde{\lambda}(0), ilde{\lambda}(1))}(3,2; extbf{z}(t);t^3 extbf{y}(t)) =$										
(v_1^0)	$t^{1\cdot 0}$	v_2^0	$t^{4\cdot 0}$	v_{3}^{0}	0	0	0	0	0 \		
$v_1^{\overline{1}}$	$t^{1\cdot 1}$	$v_2^{\overline{1}}$	$t^{4\cdot 1}$	v_3^1	0	0	0	0	0		
v_1^1 v_1^2	$t^{1\cdot 2}$	$v_2^0 \\ v_2^1 \\ v_2^2 \\ v_2^2$	$t^{4\cdot 2}$	v_3^2	0	0	0	0	0		
0	0	0	0	V_{3}^{0} V_{3}^{1} V_{3}^{2} V_{3}^{2} 0	v_1^0	$\begin{array}{c} 0 \\ t^{2 \cdot 0} \end{array}$	v_2^0	0 $t^{5\cdot 0}$	v_3^0		
0	0	0	0	0	$v_1^{\hat{1}}$	$t^{2\cdot 1}$	$v_2^{\overline{1}}$	$t^{5\cdot 1}$	v_3^1		
0	0	0	$0 t^{4\cdot 3}$		v_1^2	$t^{2\cdot 2}$	v_2^2	$t^{5\cdot 2}$	v_3^2		
v_1^3	$t^{1\cdot 3}$	v_2^3		v_3^3	$v_1^{\bar{3}}$	t ^{2·3} t ^{2·4}	$v_2^{\overline{3}}$	$t^{5\cdot 3}$	v_3^3		
$v_1^{\overline{4}}$	$t^{1\cdot 4}$	v_2^4	$t^{4\cdot 4}$	v_3^4	$v_1^{\overline{4}}$	$t^{2\cdot 4}$	v_2^4	$t^{5\cdot 4}$	v_3^4		
v ₁ ⁵	$t^{1\cdot 5}$	v_2^{5}	$t^{4\cdot 5}$	v_3^5	$v_{1}^{\bar{5}}$	$t^{2\cdot 5}$	v_{2}^{5}	$t^{5\cdot 5}$	v_3^5		
$\begin{pmatrix} v_1^3 \\ v_1^4 \\ v_1^5 \\ v_1^6 \\ v_1^6 \end{pmatrix}$	$t^{1\cdot 6}$	$\begin{array}{c} 0 \\ v_2^3 \\ v_2^4 \\ v_2^5 \\ v_2^6 \\ v_2^6 \end{array}$	$t^{4\cdot 6}$	0 V ³ V ³	$ \begin{array}{c} v_1^0 \\ v_1^1 \\ v_1^2 \\ v_1^3 \\ v_1^4 \\ v_1^5 \\ v_1^6 \\ v_1^6 \end{array} $	$t^{2\cdot 6}$	02122232425262 V2V2232425262	$t^{5\cdot 6}$	0 V3 ¹ V3 V3 ² V3 V3 V3 V3 V3 V3 V3 V3 V3 V3 V3		
$v_1 = 1, v_2 = t^3, v_3 = t^3.$											

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三回 - のQで

	$\mathcal{M}^{(ilde{\lambda}(0), ilde{\lambda}(1))}(3,2; extbf{z}(t);t^3 extbf{y}(t)) =$												
	$(t^{0.0})$	a_{1}^{0}	$t^{3\cdot 0}$	$(\lambda a_1)^0$	$t^{6\cdot 0}$	0	0	0	0	0 \			
	$t^{0\cdot 1}$	a_1^{1}	$t^{3\cdot 1}$	$(\lambda a_1)^1$	$t^{6\cdot 1}$	0	0	0	0	0			
	$t^{0\cdot 2}$	a_1^2	$t^{3\cdot 2}$	$(\lambda a_1)^2$	$t^{6\cdot 2}$	0	0	0	0	0			
	0	0	0	0	0	$t^{0\cdot 0}$	<mark>a</mark> 2 ⁰	$t^{3\cdot 0}$	$(\lambda a_2)^0$	$t^{6 \cdot 0}$			
	0	0	0	0	0	$t^{0\cdot 1}$	a_2^1	$t^{3\cdot 1}$	$(\lambda a_2)^1$	$t^{6 \cdot 1}$			
	0	0	0	0	0	$t^{0\cdot 2}$	a_2^2	$t^{3\cdot 2}$	$(\lambda a_2)^2$	$t^{6\cdot 2}$			
	$t^{0\cdot 3}$	a_1^{3}	$t^{3\cdot 3}$	$(\lambda a_1)^3$	$t^{6\cdot 3}$	$t^{0\cdot 3}$	a_2^3	$t^{3\cdot 3}$	$(\lambda a_2)^3$	t ^{6.3}			
	$t^{0\cdot 4}$	a_1^4	$t^{3\cdot 4}$	$(\lambda a_1)^4$	$t^{6\cdot 4}$	$t^{0\cdot 4}$	a_2^4	$t^{3\cdot 4}$	$(\lambda a_2)^4$	t ^{6.4}			
	$t^{0\cdot 5}$	a 1 ⁵	$t^{3\cdot 5}$	$(\lambda a_1)^5$	$t^{6\cdot 5}$	$t^{0\cdot 5}$	a_{2}^{5}	$t^{3\cdot 5}$	(λ <mark>a</mark> 2) ⁵	t ^{6.5}			
	$\int t^{0.6}$	a 1 ⁶	$t^{3\cdot 6}$	$(\lambda a_1)^6$	$t^{6\cdot 6}$	$t^{0\cdot 6}$	<mark>a</mark> 2 ⁶	$t^{3\cdot 6}$	$(\lambda a_2)^6$	$t^{6\cdot 6}$)			
$\lambda = t^3, \mathbf{a_1} = t, \mathbf{a_2} = t^2.$													

æ

We are lead to consider the determinaint of a matrix of the form

$$\mathcal{G}^{(\ell,r,s)}(\mathbf{v};\lambda,a_1,a_2) = \begin{pmatrix} D^{(0)}_{\ell+r;\ell}(\mathbf{v}) & D^{(0)}_{\ell+r;r+s}(a_1\vec{\lambda}) & \mathbf{0} & \mathbf{0} \\ \\ \mathbf{0} & \mathbf{0} & D^{(0)}_{\ell+r;\ell}(\mathbf{v}) & D^{(0)}_{\ell+r;r+s}(a_2\vec{\lambda}) \\ \\ D^{(\ell+r)}_{2s;\ell}(\mathbf{v}) & D^{(\ell+r)}_{2s;r+s}(a_1\vec{\lambda}) & D^{(\ell+r)}_{2s;\ell}(\mathbf{v}) & D^{(\ell+r)}_{2s;r+s}(a_2\vec{\lambda}) \end{pmatrix},$$

where $\mathbf{v} = \{v_1, \ldots, v_\ell\}$, $a_i \vec{\lambda} = \{a_i, a_i \lambda, \ldots, a_i \lambda^{r+s-1}\}$ and the blocks consist of the following rectangular matrices

$$D_{m;\ell}^{(j)}(\mathbf{v}) = \begin{pmatrix} v_1^j & v_2^j & \dots & v_{\ell}^j \\ v_1^{j+1} & v_2^{j+1} & \dots & v_{\ell}^{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ v_1^{j+m-1} & v_2^{j+m-1} & \dots & v_{\ell}^{j+m-1} \end{pmatrix}.$$

< □ > < 🗇 >

We have the following determinantal evaluation

Proposition [L.C.]

$$\det \mathcal{G}^{(\ell,r,s)}(\mathbf{v};\lambda,a_1,a_2) = \prod_{1 \le i,j \le \ell} (v_i - v_j)^2 \prod_{\alpha=1,2} \prod_{\substack{1 \le i \le \ell \\ 1 \le j \le r+s}} (v_i - \lambda^{j-1} a_\alpha) \det \mathcal{G}^{(0,r,s)}(\lambda,a_1,a_2),$$

with

$$\det \mathcal{G}^{(0,r,s)}(\lambda; \mathbf{a}_1; \mathbf{a}_2) = (\mathbf{a}_1 \mathbf{a}_2)^{\binom{r+s}{2}} \prod_{1 \le i,j \le s} (\lambda^{j-1} \mathbf{a}_1 - \lambda^{i-1} \mathbf{a}_2) \mathcal{D}^{(r,s)}(\lambda)$$

and

$$\mathcal{D}^{(r,s)}(\lambda) = \frac{(-1)^{s(r+s)}\lambda^{s\left(\binom{r}{2} - \binom{r+s}{2}\right)} \prod_{1 \le i < j \le r} (\lambda^{j-1} - \lambda^{i-1}) \prod_{1 \le i < j \le r+2s} (\lambda^{j-1} - \lambda^{i-1})}{\prod_{1 \le i, j \le s} (\lambda^{j+s-1} - \lambda^{i-1})}.$$

Image: Image:

$$\begin{split} \mathcal{E}^{\mathfrak{e}}_{2n}(k;t) &\to \qquad \mathcal{M}^{(\bar{\lambda}(0),\,\bar{\lambda}(1))}(2n-k,k;\mathbf{z}(t);\mathbf{y}(t)) = \mathcal{G}^{(n,n-k,k)}(\{t^{3i-3}\};t^{3},t,t^{2}) \\ \mathcal{E}^{\bar{a}}_{2n}(k;t) &\to \qquad \mathcal{M}^{(\bar{\lambda}(0),\,\bar{\lambda}(2))}(2n-k,k;\mathbf{z}(t);\mathbf{y}(t)) = \mathcal{G}^{(n,n-k,k)}(\{t^{3i-3}\};t^{3},1,t^{2}) \\ \mathcal{E}^{-}_{2n+1}(k;t) &\to \qquad \mathcal{M}^{(\bar{\lambda}(0),\,\bar{\lambda}(1))}(2n+1-k,k;\mathbf{z}(t);\mathbf{y}(t)) = \mathcal{G}^{(n,n-k,k)}(\{t^{3i-3}\};t^{3},t,t^{2}) \\ \mathcal{E}^{+}_{2n+1}(k;t) &\to \qquad \mathcal{M}^{(\bar{\lambda}(1),\,\bar{\lambda}(2))}(2n+1-k,k;\mathbf{z}(t);\mathbf{y}(t)) = \mathcal{G}^{(n,n-k+1,k)}(\{t^{3i-2}\};t^{3},1,t) \end{split}$$

Using the above proposition we can write the t-evaluation of the inhomogenous EFP in terms of the usual t-numbers and t-factorial

$$[i]_t = \frac{t^i - 1}{t - 1}$$
 and $[n]_t! = \prod_{i=1}^n [i]_t.$

(日)

t- specialization: result

$$\frac{\mathcal{E}_{2n}^{e}(k-1;t)}{\mathcal{E}_{2n}^{e}(k;t)} \sim \frac{[2n+k-1]_{t}![n-k]_{t^{3}}![2k-1]_{t^{3}}![2k-2]_{t^{3}}!}{[2n-k]_{t}![n+k-1]_{t^{3}}![k-1]_{t^{3}}![3k-2]_{t}!}$$

$$\frac{\mathcal{E}_{2n}^{e}(k-1;t)}{(-q)\mathcal{E}_{2n}^{e}(k;t)} \sim \frac{[2n+k-1]_{t}![n-k]_{t^{3}}![2k-1]_{t^{3}}![2k-2]_{t^{3}}!}{[2n-k]_{t}![n+k-1]_{t^{3}}![k-1]_{t^{3}}![3k-3]_{t}![3k-1]_{t}}$$

$$\frac{\mathcal{E}_{2n+1}^{-}(k-1;t)}{\mathcal{E}_{2n+1}^{-}(k;t)} \sim \frac{[2n+k]_{t}![n-k]_{t^{3}}![2k-1]_{t^{3}}![2k-2]_{t^{3}}!}{[2n-k+1]_{t}![n+k-1]_{t^{3}}![k-1]_{t^{3}}![3k-2]_{t}!}$$

$$\frac{\mathcal{E}_{2n+1}^{+}(k-1;t)}{\mathcal{E}_{2n+1}^{+}(k;t)} \sim \frac{[2n+k]_{t}![n-k+1]_{t^{3}}![2k-1]_{t^{3}}![2k-2]_{t^{3}}!}{[2n-k+1]_{t}![n+k-1]_{t^{3}}![2k-1]_{t^{3}}![2k-2]_{t^{3}}!}$$

The coefficients in front are of the form
$$t^{\beta}\left(rac{[3]_t}{3}
ight)^{k-1} \xrightarrow[t \to 1]{t \to 1} 1.$$

(4日)

What if q is generic?

We have found a multiresidua formula

$$\mathcal{E}^{\mu}_{2n-\epsilon(\mu)}(k;\mathbf{y};\mathbf{z}) \sim \ \oint_{\{qz_i\}} \prod_{\ell=1}^{n-k} rac{dw_\ell w^{lpha(\mu)} \prod_{j=1}^{2k} (w_\ell - y_j)}{2\pi i \prod_{i=1}^{2n-k-\epsilon(\mu)} (w_\ell - qz_i) (w_\ell - q^{-1}z_i)} \mathcal{K}_{n-k}(\mathbf{w})$$

where $\epsilon(\pm)=\pm 1, \epsilon(e)=\epsilon(\widetilde{e})=$ 0,

$$\alpha(+) = \alpha(e) = 0, \quad \alpha(\tilde{e}) = 1, \quad \alpha(-) = 2$$

and

$$\mathcal{K}_N(\mathbf{w}) = \prod_{1 \leq i < j \leq N} (w_i - w_j)^2 (qw_i - q^{-1}w_j)(qw_j - q^{-1}w_i).$$

< □ > < / >

- Consider other correlation functions.
- Other boundary conditions (e.g. open chain with diagonal K- matrices)
- Higher spins or also $U_q(sl_N)$ spin chain.

Image: Image:

Thank you!

(4日)