Finite size Emptiness Formation Probability for the XXZ

spin chain at A = —1/2

Luigi Cantini
LPTM, Université de Cergy-Pontoise (France)

Introductory Workshop: Lattice Models and Combinatorics
MSRI Berkeley, January 16-20, 2012

Based on arXiv:1110.2404

Cantini (LPTM Cergy-Pontoise) EFPat A = —1/2 MSRI, January 2012



@ Introduction

o Definition of the XXZ spin chain
o Combinatorics at A = —%, Spin and Link-Pattern basis
e Emptiness Formation Probability (EFP): statement of the result

@ How to tackle the computation of the EFP

o Integrability of the XXZ spin chain, inhomogenous version, exchange (qKZ)
equations

o Definition of an inhomogeneous version of the EFP and its characterising
properties

o Determinantal expression of the inhomogenous EFP

e t-specialization and a NICE determiantal evaluation

@ Conclusion and perspectives
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XXZ spin chain

Hamiltonian of the XXZ spin chain [Heisenberg '29, Bethe '31, ...]

N
1 L o o gl
Hn(A) = 5 E olo 4 O'}’,U)',J'_l + Aclott A= ,%
i—1

This hamiltonian acts on a space Hy = (C2)®"N and models a chain of spins with
a nearest neighbor magnetic interaction.

The operators o/, acts locally on the i-th component of the tensor product Hy

O—L;l@...@]@ o, 1® -1
~
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XXZ spin chain
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XXZ spin chain
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Physicist are usually interested in:
@ Ground state and more generally spectrum and eigenvectors;

@ Observables: correlation functions at zero or finite temperature,
entanglement entropy, etc.
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XXZ spin chain

1 0 o 1 o —i
2= 1o —1 | 7|1 o0 7| o |

Physicist are usually interested in:
@ Ground state and more generally spectrum and eigenvectors;

@ Observables: correlation functions at zero or finite temperature,
entanglement entropy, etc.

Thanks to the Integrability of the XXZ spin chain several quantities can be
computed analytically in the thermodynamic limit n — oc.
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XXZ spin chain at A = —3

At the value of the inhomogeneity parameter A = f% and for certain boundary

conditions, the ground state energy is particularly simple [Razumov, Stroganov

'00]
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XXZ spin chain at

At the value of the inhomogeneity parameter A = f% and for certain boundary

conditions, the ground state energy is particularly simple [Razumov, Stroganov
'00]

@ N odd and Periodic boundary conditions: of,; = of

- Two-fold degenerate ground states \Uﬁﬁnﬂ,
. F_ _3N

- Ene_rgy. E=—-°,

- Rational-valued components.
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XXZ spin chain at

At the value of the inhomogeneity parameter A = f% and for certain boundary

conditions, the ground state energy is particularly simple [Razumov, Stroganov

'00]
@ N odd and Periodic boundary conditions: of,; = of

- Two-fold degenerate ground states \Uﬁﬁnﬂ,
- Energy: E = —%,

- Rational-valued components.
@ N even and Twisted periodic boundary conditions: o ; = of and

+ 4= _+ + _ _x :
Ongy = €73 oy, (where 0% = 0% + +ioY)
- A single ground state V§,_,,,
. F_ 3N
- Energy: E = —°7,
- Complex valued components.
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XXZ spin chain at A = —3, combinatorics

Some exact result at finite size [Razumov, Stroganov; Batchelor, de Gier,
Nienhius]: normalize the smallest component Wy...4).; =1
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XXZ spin chain at A = —3, combinatorics

Some exact result at finite size [Razumov, Stroganov; Batchelor, de Gier,
Nienhius]: normalize the smallest component Wy...4).; =1

e Odd size (N=2n+1)
o Largest Component WY . (2n+1) = A,

o Sum of Components ", Wi (2n + 1) = (3)"/2\/Anr(2n + 1)
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XXZ spin chain at A = —3, combinatorics

Some exact result at finite size [Razumov, Stroganov; Batchelor, de Gier,
Nienhius]: normalize the smallest component Wy...4).; =1

e Odd size (N=2n+1)

o Largest Component WY . (2n+1) = A,

o Sum of Components ", Wi (2n + 1) = (3)"/2\/Anr(2n + 1)
@ Even size (N = 2n)

n—1
o Largest Component W . (2n) = (\%) Ant(2n)

o Sum of Components 3, W,(2n) = (3)"/?A,
Where:

@ A, = # of n x n Alternating Sign Matrices
o Aut(N) = # of N x N Half-Turn Symmetric Alternating Sign Matrices
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XXZ spin chain in the Loop Basis

Defining the Temperley-Lieb generators

1 L 1
€ (a of1 + ool + Dofofy, — 2(q q )0} _0i+1)+§)

The hamiltonian can be written as

The ¢; satisfy the relations
e,-2 = —2Ae,-

€i€i+1€6 = €

lei, ] =0 for |i—j|>2
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XXZ spin chain in the Link Pattern Basis

The Temperley-Lieb algebra has a nice graphical representation

= el B ]
iit1

/ /

2o - E

A M

Each closed loop has a weight —2A.
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XXZ spin chain in the Link Pattern Basis

The Temperley-Lieb algebra has a nice graphical representation

= el B ]
iit1

/ /

2o - E

A M

Each closed loop has a weight —2A.
The graphical presentation suggests a natural representation on a vector space
whose basis are labeled by /ink patterns
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XXZ spin chain in the Link Pattern Basis
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XXZ spin chain in the Link Pattern Basis

The ground state equation becomes the equation at the core of the
Razumov-Stroganov correspondence [See Sportiello’s talk]

N
d (e-1)w=0

i=1

Theorem [L.C, A. Sportiello]
The components of W enumerate FPL on certain domains, refined by their link

pattern.

/2 MSRI, January 2012 9 / 39
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Emptiness Formation Probability (EFP)

A quite non trivial correlation function, whose exact finite size expression has been
conjectured by Razumov and Stroganov, is the Emptiness Formation Probability
(EFP), namely the probability that the spins between two given position along the
chain are all pointing in the up (down) direction
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Emptiness Formation Probability (EFP)

@ EFP has emerged quite naturally in the course of studies of the quantum
integrability of the XXZ spin chain [Bogoliubov, Izergin, Korepin].
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Emptiness Formation Probability (EFP)

@ EFP has emerged quite naturally in the course of studies of the quantum
integrability of the XXZ spin chain [Bogoliubov, Izergin, Korepin].

e Multiple integral representation for A > —1 [Jimbo & coll., Maillet & coll.]
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Emptiness Formation Probability (EFP)

@ EFP has emerged quite naturally in the course of studies of the quantum
integrability of the XXZ spin chain [Bogoliubov, Izergin, Korepin].

e Multiple integral representation for A > —1 [Jimbo & coll., Maillet & coll.]
o Asymptotics: Gaussian decay [Conjectured by Korepin et al.]

E(k) ~ k7 C¥
Confirmed for
e A=0v=1C=V2 [Shiroishi et al]

e A=-1iy=2 C= \/5 [Kitanine et al ]
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Emptiness Formation Probability (EFP)

The formal definition of the EFP for = {+£,e} is

((\Ul/(/)*’ Hf'(:l pi Wﬁ,) L oi+1

S (7R R
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Emptiness Formation Probability (EFP)

The formal definition of the EFP for = {+£,e} is

((\Ul/(/)*’ Hf'(:l pi Wﬁ,) L oi+1

Bl =m0 P

Since in the even size case the ground state is complex valued we can define also
a “Pseudo” (unphysical) EFP

(w5, T P - 5,)

0=, v
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Emptiness Formation Probability (EFP)

The formal definition of the EFP for = {+£,e} is

((\Ul/(/)*’ Hf'(:l pi Wﬁ,) L oi+1

R (7 R R

Since in the even size case the ground state is complex valued we can define also
a “Pseudo” (unphysical) EFP

(w5, T P - 5,)

0=, v

@ They have an analytical, “factorized” form!
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Emptiness Formation Probability (EFP)

The formal definition of the EFP for = {+£,e} is

O | LY ) B
I pi
(V). v7) 2

g -

Since in the even size case the ground state is complex valued we can define also
a “Pseudo” (unphysical) EFP

(w5, T P - 5,)

0=, v

@ They have an analytical, “factorized” form!

@ The Pseudo EFP is given by a ratio of enumerations of Cyclically Symmetric
Self Complementary Plane Partion with a star shaped hole

Cantini (LPTM Cergy-Pontoise) EFPat A = —1/2 MSRI, January 2012 12 /39



Emptiness Formation Probability (EFP)

Theorem[L.C., conjectured by Razumov, Stroganov '00]

Eypir(k=1)  (2k—2)1(2k —1)1(2n + k)!(n — k)!
Epnii(k)  (k—=1)I(3k—2)!(2n— k+1){(n+ k —1)!

Eypii(k—1)  (2k —2)1(2k — 1)!(2n + k)!(n — k + 1)!
Ef (k) (k—=1)1(3k —2)!1(2n — k + 1)!(n + k)!

Es,(k—1)  (2k —2)!I(2k — 1)1(2n + k — 1)!(n — K)!
Es. (k)  (k—1)!(3k—2)!1(2n— k)!(n+ k — 1)!

ES(k—1) (2k — 2)1(2k — 1)1(2n + k — 1)1(n — k)!
EE(K)  T(k—1)I(3k—3)I(3k —1)(2n — K)I(n+ k — 1)!

Cantini (LPTM Cergy-Pontoise) EFPat A = —1/2 MSRI, January 2012



Cyclically Symm. Self Compl. Plane Partitions

Proposition

EE (k —1) CSSC(2n, k — 1)

EE(k) 1 CSSC(2n,k)

CSSC(2n, k) = # of lozange tilings of a regular hexagon of side length 2n, which
are invariant under a rotation of 7/3 and have a star shaped frozen region of
length k, (CSSC(2n) := CSSC(2n,0) = CS5C(2n,1))

2n

VAVANMNANANAN

.«.’».‘:o*... 7

\NANNNA/
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Cyclically Symm. Self Compl. Plane Partitions

The proof of the proposition is a simple application of a nice result of Ciucu ['97]
about enumerations of dimer coverings of planar graphs with vertical symmetry.

ENANENININ
AVAVAVAVAVAVAN
NVAVAVAVASSS

AVAVASAVATAN
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Cyclically Symm. Self Compl. Plane Partitions

Using the Lindstrom-Gessel-Viennot theorem one finds

CSSC(2n, k) = det[ Qi jrki<ij<n—k

i+j—2 1/i+j-2
Qij= .J. + = .J.
2j—i—2 2\2j—i—1

and then open “Advanced Determinant Calculus”, Theorem 40

with

B (= DI( + 2k — 1)I((3) + 3k — 2)1)2
€55¢(2m k) *H (2 + k= 1)I(2j + k—2)I(2) + 3k — 1)I(2j + 3k — 2)!
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Some partial results

@ Asymptotics N — oo [Maillet et al. '02]

lim En(k) = <\/§> H r(G—1/3)r(+1/3)

SUN 2 rG—1/2rG+1/2)
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Some partial results

@ Asymptotics N — oo [Maillet et al. '02]

| (3 (G —1/3)r(+1/3)
Iinoo En(k) = <2> H rG—1/2)r(j +1/2)°

@ Norm [Di Francesco et al. '06]

: (2j — 1)12(2j)12
+ J J
Eansa(n) = Anr(2n+1)7 JHI(J—l )1(3) — 1)I(3))!

E3n(n) = (—q)" A% = (—q)"CSSC(2n) ™"
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Integrability

R-matrix: C?> ® C? — C? @ C?
Tiy Tj Tiy Lj Li, 15 Liy L)

a(z) 0 0 0 Ti 1
R 0 b(z) al(z) O Tis dj
Rij(z) = 0 a(z) b(z) 0 Lis 1
0 0 0 az) ) 1.y
with ) ( 1 )
gz —q~ z—1 qg—q )z
@) q—qtz’ (9 g—q iz © (2) q—qlz

The R-matrix encodes

the Boltzmann weights , } ; T ) 5 T 5 li ) , $ ;
of the configurations of ¥
a b =)

the Six-Vertex model
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Integrability

Twist matrix .
e' 0
Q(¢) = < 0 o—i® )

[Rij(x), Qi(¢) @ Qi(¢)] =0

R-Q2 commutation
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Integrability

Twist matrix "
e 0
Q(¢) = < 0 e—iqﬁ >

[Rij(x), Qi(¢) @ Qi(¢)] =0

R-Q2 commutation

Yang-Baxter equation

Rij(zi/z))Rik(zi/ 2k)Ri k(2 / 2k) = Rjk(zj/ 2) Rik(2i/ 2k ) Ri j(zi/ 7})
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Integrability

Twist matrix "
e 0
Q(¢) = < 0 e—iqﬁ >

[Rij(x), Qi(¢) @ Qi(¢)] =0

R-Q2 commutation

Yang-Baxter equation

Rij(zi/z))Rik(zi/ 2k)Ri k(2 / 2k) = Rjk(zj/ 2) Rik(2i/ 2k ) Ri j(zi/ 7})

Transfer matrix

Tn(ylzg,.. nys @) = tro [Ro1(y/z1)Ro2(y/22) - . - Ron(y/zn)Q0(0)]
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Integrability

Thanks to YBE and R-Q2 commutation, the transfer matrices with different “y”
commute

[Tn(ylzga,.. vy 0)s Tn(Y 24, n3, @) = O
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Integrability

Thanks to YBE and R-Q2 commutation, the transfer matrices with different “y”
commute

[Tn(ylzga,.. vy 0)s Tn(Y 24, n3, @) = O

The hamiltonian of the XXZ spin chain is the logarithmic derivative of the transfer
matrix at z; = 1

1 (HN(A) - 32NA> .

- 9-q
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Integrability

Thanks to YBE and R-Q2 commutation, the transfer matrices with different “y”
commute

[TN(y|Z{17...,N}7 ¢)a TN(y/|Z{17...,N}7 ¢)] =0

The hamiltonian of the XXZ spin chain is the logarithmic derivative of the transfer
matrix at z; = 1

1 (HN(A) - 32NA> .

- 9-q

Crucial observation [Razumov, Stroganov, Zinn-Justin]

Consider the ground state with spectral parameters has a very simple eigenvalue
N
Aylzq,...vy) = [1izi(aly/zi) + b(y/z))

vl — Vii(2), Tn(ylzg,... vy @)V (Z) = My Vi (2)
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gq—Knizhnik—Zamolodchikov (qKZ) equations

[Razumov, Stroganov & Zinn-Justin '07]
From the previous observations and the YBE it follows that

@ The ground state is polynomial in the spectral parameters.
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gq—Knizhnik—Zamolodchikov (qKZ) equations

[Razumov, Stroganov & Zinn-Justin '07]
From the previous observations and the YBE it follows that

@ The ground state is polynomial in the spectral parameters.

o The ground state satisfies a specialization g = €2™/3 of the U,(sh) qKZ
equations

I\,?/’;+1(Zi+1/2,')\|/%(. s Ziy Zigly - - ) = \Ulltl( ey Zi+19Zjy - - )

oW (21,22, ..., 2n—1,2n) = DV (2, . . ., Zn—1, 2N, S21).

With
(RO QVN_1Q W)=V ® - QVW_1QVy®Wv

Rii+1(2) = Piis1Rii41(2) Pijlef @ ¢f) = e @ ¢,

s=¢°, D = g3V 3Git1)/2,
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Main Idea: Inhomogenous EFP

Using the solution of the U,(sh) qKZ equations at level 1.

we define an inhomogenous version of the EFP

5ﬁ(k; Y{1,...,2k}s Z{1,...,N—k}) ~

(PN,k(Z)(‘VZ(q_GY{kH ,,,,, 21y3i2)) " TT PPV (v, k};z))
H1§i<j§k(q}’i_q_lyj)(q}’i+k—q_1yj+k)

with Prk(z) = [T 1 (2P + p7).

and of the Pseudo EFP

5/%/(/‘; Y{1,...,2k}s Z{l,.“,ka}) RS

[Li<ici<i(ayi—a=ty))(ayisk—a = yjk)
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Main Idea: Inhomogenous EFP

Using the solution of the U,(sh) qKZ equations at level 1.

we define an inhomogenous version of the EFP
5ﬁ(k; Y{1,...,2k}s Z{1,...,N—k}) ~

(PN,k(Z)(“’Z(q_e'Y{kH ,,,,, 21y3i2)) " TT PPV (v, k}FZ))
[Li<ici<i(ayi—a=1yi)(aYik—a~1yjsk)

with P () = [T (20 + 7).
and of the Pseudo EFP
5/%/(/‘; Y{1,...,2k}s Z{l,.“,ka}) RS

ITi<icj<x(avi—a=ty)(ayick—a~1yj+k)

We shall compute these and then take the specialization z; = y; = 1.
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Properties of £)(k;y; z) and of &5, (k;y; z)

1 Symmetries under z; < zj, y; < y;.
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Properties of £)(k;y; z) and of &5, (k;y; z)

1 Symmetries under z; < zj, y; < y;.

2 Specialization z; =0 or z; — o0

im 2 (ki yiz) ~ E(kiyiz\ 22ni)

52en+2(k; y: Z)|Zzn+2:0 ~ 5;1+1(k; Y;z\ 22n42)

Cantini (LPTM Cergy-Pontoise) EFPat A = —1/2 MSRI, January 2012



Properties of £)(k;y; z) and of &5, (k;y; z)

1 Symmetries under z; < zj, y; < y;.

2 Specialization z; =0 or z; — o0

im 2 (ki yiz) ~ E(kiyiz\ 22ni)

52en+2(k; y: Z)|Zzn+2:0 ~ 5;1+1(k; Y;z\ 22n42)

3 Recursion relation for z; = g*2z;

gll\l/(k; y: Z)|Zj:q22i

En_o(kiyiz\{zi, z})
2k _ _ _
aye — q 12; (qu —q 12;)(6132; —q 12@)
“ qg—q1 I —(g—g71)2
=1 1<0<N—k

ean
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Properties of £)(k;y; z) and of &5, (k;y; z)

1 Symmetries under z; < zj, y; < y;.

2 Specialization z; = 0 or z; — o0

Jim 2 (ki yi2) ~ E (ki yiz\ 2onia)

v + v
526n+2(k' y: Z)|Zzn+2:0 ~ g2n+l(k' ;2\ Z2n42)
3 Recursion relation for z; = g*2z

g2én(k; y: Z)|Zj=q22;

En_a(kiyiz\ {2, 2})
2k _ _ _
II Qe —q 'z I (gzc — q7'z)(q*z — g 'z)
_ A1 _ _ ~—1)2
= 9749 1<0<2n—k Ch

LA£inj
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Properties of &) (k;y;z) and of 8,%,(/(; y; 2)

4 Degree in z; = less than 2n £+ 1.
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Properties of &) (k;y;z) and of 8,%,(/(; y; 2)

4 Degree in z; = less than 2n £+ 1.
5 Factorized cases

el ki) = ] (gzi — q_lzj)(cjzlj - 9 'z)
<iSi<k (g—q71)

k
(921 — a7 'z)(9z — 9 'z)
Senlk+Lyiz) = ] T I12

— -1)2
1<i<j<k (997" i=1
. (92 — 9 *z)(9z — g 'z)
Eppi(kiyiz) = H (q—q1)2 ‘
1<i<j<k+1

These properties completely determine £ (k;y;z) and &5,(k;y; z)!

Cantini (LPTM Cergy-Pontoise) EFPat A = —1/2 MSRI, January 2012
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Combinatorial point g = €2™/3, k =0

Let us concentrate on Eﬁ,(k; y;z). For g = €2™/3 the recursion becomes

2

52én(k; y: z)|2j:q22; N H qzy — qilz,'
Esna(kiyiz\ {2, z})

g1
1<t<2n—k 979
LFij
This is the square of the recursion relation satisfied by the Schur polynomial
Sa(2n,0)(2) corresponding to the Young Tableau

r r+1 r+i—1 r+m-—1

)‘(mvr):{L J7|_ JaaLiJaatij}
2 2 2 2
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Combinatorial point g = e?™/3, generic k

For generic k the product Sx(2n,0)(2, ¥1)Sx(2n,0)(2, ¥i<) satisfies the recursion
relation but: it has the “wrong” initial conditons and moreover the degree and
symmetries in y are wrong.

Cantini (LPTM Cergy-Pontoise) EFPat A = —1/2

MSRI, January 2012 27 / 39



27i/3

Combinatorial point g = e

, generic k

For generic k the product Sx(2n,0)(2, ¥1)Sx(2n,0)(2, ¥i<) satisfies the recursion
relation but: it has the “wrong” initial conditons and moreover the degree and
symmetries in y are wrong.

Is it possible to take linear combination of Sy(2.0)(2, ¥1)Sx(2n,0)(2, ¥i<) for different
| such that one has the right initial conditions? J

Cantini (LPTM Cergy-Pontoise) EFPat A = —1/2 MSRI, January 2012 RS



2ri/3  generic k

Combinatorial point g = e

Let §, 6 be strictly increasing infinite sequences of nonnegative integers. Introduce
the following matrices

Zt o2 ..ozt 0 0 ... 0
22p1 252 zg’“ 0 o ... 0
zh oz o0 0 ... 0
0 0o ... 0 /b ozr o
5.5 L o o1 o) Gris
M@ )(r, s;y;z) = 0 0 0 z3' z3 z;
0 0 0 <z z% Fodan
p1 P2 Pr+ &1 &2 Gry
o o o-onSonon n
p1 P2 Pris 51 G2 Cris
Yas Yas Yas Yas Yas Yas
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Combinatorial point g = e7//3

Define the following polynomials

1_-[1<I<j<r(z’ z)? H1</<,<2s()’1 }’J)H1<:<r(z/ )"

S(ﬁ," (r S Y; Z) det M(P%)(r s;y:2)
1<j<2s

Using the Laplace expansion along the first r + s columns we can write
S(p"’)(r,s;y;z) as a bilinear in Schur polynomials

SB3)(r,s;y;2) =

e(/) H,<,e/(}’l =) H,<Je/C(y1 }’J)S

z,y1)S z
ZIC{llll,;fs}( 1) | BT (7)) p(r+s)( 2 Y1) a(r+s)( yYie),
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Combinatorial point g = e7//3

Now let us introduce the following family of integer sequences

20) = {0,1,3,4,6,7,...
Su(r) = L3173+rJ 1) ={0,2,3,5,6,8, ...
’ A(2) ={1,2,4,5,7,8,...

Theorem [L.C ]

Exmia(kiyiz) ~ SEOAD (20 1 — k kiyi2)

yz
yz

Efi(kiyiz) ~ SCWACD (20 11 — k, k;y; 2)

&5, (kiyiz) ~ SAOA (2n — K, k;y; 2)

&8 (kiy;z) ~ SA@OAD (2 — k, k;y; 2)
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t— specialization

Setting

0 1 N—k—1
Z:{let,ZQZt,...,ZN,k:t }

and

y={n=tN" Ly =tV

the functions Sf\‘,(k;y;z) and 5§n(k;y;z), as rational functions of t, have simple
factors.
Let us look at an example
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t— specialization

(
tO-O tl-O t3<0 t4-0 t6-0 0 0 0 0 0
tO-l tl-l t3<1 t4-1 t6-1 0 0 0 0 0
t0-2 t1-2 t3-2 t4-2 t6-2 0 0 0 0 0

t0-3 t1-3 t3<3 t4-3 t6-3 t0<3 t2-3 t3-3 t5-3 t6-3
t0-4 t1-4 t3~4 t44 t6-4 t0~4 t.2-4 t3-4 124 t6-4
t0-5 t1»5 t3~5 t4-5 t6-5 t0-5 t2-5 t3-5 t5»5 t6-5
t0~6 t1~6 t3~6 t4‘6 t6~6 t0~6 t2‘6 t3~6 t5~6 t6‘6
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t— specialization

MAOAN(3,2: 2(¢); Py (1)) =
vf 10 vy 40 vé) 0 0 0 0 0
V11 il vi 1 vél 0 0 0 0 0
v12 12 vz 42 v32 0 0 0 0 0
0 0 0 0 0 v 20 2 0 8
0 0 0 0 0 vl1 21 va 31 v31
0 0 0 0 0 v12 %2 \/22 32 v32
V13 tl3 v23 43 v33 v13 23 \/23 >3 v33
vf 4 v:f 44 vé1 vf 24 \/24 o4 v§
I I B Y Y SR e
I = BV RV Y L I G
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t— specialization

(
00 50 30 (\a) 0 o 0 0 0 0
0

01 gl 31 (Mgt 8 0 0 0 0
02 22 32 ()2 52 0 0 0 0 0
0 0 0 0 0 00 50 30 (N3,)0 60
0 0 0 0 0 01 a1 31 (Aa)! 81
0 0 0 0 0 92 22 32 (Na)? 152
t0-3 313 t3-3 ()\31)3 t6-3 tO 3 323 t3~3 ()\32)3 t6<3
104 54 34 (/\31)4 64 (04 54 434 ()\32)4 £6-4
t0-5 315 t3-5 (/\31)5 t6-5 t0~5 325 t3»5 ()\32)5 t6~5
t0-6 816 t3-6 (/\91)6 t6~6 tO 6 a26 t3~6 ()\82)6 t6~6

A=t a =t a = t2
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A NICE determinantal evaluation

We are lead to consider the determinaint of a matrix of the form

0 0 b
D§£! Z(v) Déﬁzr H»s(al)\) 0 0
L,r, . N
G (i A, a1, a5) = 0 0 DO (v DO . (=X |.
(L+r (&+r O+4r O+r
D () Dih(@X) D) DY (aX)

where v ={vi,..., v}, A\ = {ai,ai\, ..., a; A" 571} and the blocks consist of
the following rectangular matrices

vi doo
j+1 j+1 j+1
DY), (v) = 1 o
v{+m71 Vé'+m71 Vé+m71
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A NICE determinantal evaluation

We have the following determinantal evaluation

Propositio C]

det G4 (v; X, a1, ap) = H (vi —vj) H H — N 7lag)det GO(N, 2y, a),
1<i,j<e a=1,2 1<i<e
1<j<r+s
with
det GOI(N; ar; @) = (alaz) 1‘[ (N7lay — A 7tap) D),
1<i,j<s
and .
r r+s . . .
DN = (—1)S(r+s)>\s(() (%) H1<I<j<r()\j Y 1)H1§i<j§r+25(>\j TN
[Ticijcs (M=t = AT
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t— specialization

&5 (kit) — MOO@OAD 2n — ke ki 2(t); y(t)) = G RR ({3 6,8, 1)

£8 (kit) — MA@A (20 — kK 2(t) y(t)) = G RR ({3721, 3 1, 12)
8271“(1(; t) — M(i(o),i(l))(2n +1—k, kiz(t);y(t)) = g(n+1,n7k,k)({t3i73}; t37 ¢, t2) .
Ehalkity = MOOAD (20 41— kK z(t);y(2) = G LR {2Y, 83,1, 1)

Using the above proposition we can write the t-evaluation of the inhomogenous
EFP in terms of the usual t-numbers and t-factorial

[ = %‘11 and  [n],! = H[i]t.

t
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t— specialization: result

£ (k—1:t) [2n+k—1]![n— k]a![2k — 1];2![2k — 2] !
g (kit)  [2n— K [n+ k — 1]k — 1]![3k — 2];!

EE (k—1;1) [2n+ k — 1]¢![n — K] ![2k — 1]![2k — 2] 2!
(—q)€% (kit) ~ [2n— KJe![n + k — ][k — 1]+![3k — 3]1[3k — 1]
Eania(k=1it)  [2n+ Kldl[n — K]e![2k — 1]![2k — 2!

S a(kit) | n—k+1d[n+ k- 1p![k — 1] '3k — 2]

Efa(k=1t)  [2n4 K] ![n— k + 1]s![2k — 1]s1[2k — 2] 3!
&halkit)  R2n—k+ 1[0+ kle![k — 1]s![3k — 2];!

k—1
3
The coefficients in front are of the form t? <[3]t) p— 1.
t—
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What if g is generic?

We have found a multiresidua formula
‘%Lnfe(,t)(ki yiz) ~
T w0 [ (we — )
7{%} o 2mi T (we = gzi)(we — q712:)

where e(£) = +1,¢(e) = ¢(&) =0,

n—k(wW)

and

Knw) =] (wi—w)*(qwi — q 'w)(qw; — g~ 'w)).
1<i<j<N

Cantini (LPTM Cergy-Pontoise) EFPat A = —1/2 MSRI, January 2012 37 /39



o Consider other correlation functions.
@ Other boundary conditions (e.g. open chain with diagonal K— matrices)

e Higher spins or also Ugq(sly) spin chain.
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Thank you!
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