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Model and motivations



Planar maps

Def. A planar map is a way of forming the sphere by gluing polygons.
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Embedded connected planar graph
considered up to homeomorphism.
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Planar maps

Def. A planar map is a way of forming the sphere by gluing polygons.

Def. A triangulation is a planar map made of triangles.

Def. A map is rooted if an edge is chosen and oriented.



Percolation

Site percolation: vertices are black with probability p,
white with probability 1− p.
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Site percolation: vertices are black with probability p,
white with probability 1− p.

The gasket is the black cluster containing the root-vertex.

The clusters are the connected components.



Percolation

The clusters are the monochromatic connected components.

Bond percolation: edges are open with probability p,
closed with probability 1− p.

The gasket is the open cluster containing the root-vertex.



Boltzmann model

Model: pick a rooted triangulation + site percolation with probability
proportional to

z#edgesp#black vertices(1− p)#white vertices.

edge activity percolation probability
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Thm [Tutte 62]: The number Tn of rooted triangulations with n
edges satisfies
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hence the model is admissible for edge activity z in [0, z0].



Boltzmann model

Model: pick a rooted triangulation + site percolation with probability
proportional to

z#edgesp#black vertices(1− p)#white vertices.

Thm [Tutte 62]: The number Tn of rooted triangulations with n
edges satisfies

Tn ∼ c n−5/2z−n0 , where z0 = 432−1/6,

hence the model is admissible for edge activity z in [0, z0].

Remark: The distribution of the size of the random triangulation T
has light tail (exponential decay) if z < z0,

heavy tail (polynomial decay) if z = z0.

From now on, we fix the edge activity to be z0.



Motivations

regular triangulation random triangulation

Phase transition?

Critical probability:
pc = inf{p, Pp(infinite black cluster) > 0}

Critical probability ?
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• Transition for size of gasket: heavy-tailed / light-tailed at p = pc.



Motivations
Motivation 1. Study the phase transition:
• Transition for size of gasket: heavy-tailed / light-tailed at p = pc.

random infinite
triangulation (UIPT)

Related results. Percolation has been studied on (loopless) infinite
triangulations (UIPT) [Angel,Schramm 04, Angel 03, Angel,Curien 12].

In that context, pc = 1/2 for site perco, and pc = 1/4 for bond perco.
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Motivations
Motivation 1. Study the phase transition:
• Transition for size of gasket: heavy-tailed / light-tailed at p = pc.

Related results.
• The tail of the distribution of the degree of faces has been predicted
using the KPZ conjecture.
• The tail of the distribution of the degree of faces for the gasket
of “a rigid” O(n) model on quadrangulations has been identified in
[Borot, Bouttier, Guitter 12].

• Show that interfaces are long (heavy-tailed) only at p = pc.
Study the degree of random faces of the gasket.



Motivations
Motivation 1. Study the phase transition:
• Transition for size of gasket: heavy-tailed / light-tailed at p = pc.

Motivation 2. Show that the gasket of critical percolation satisfy
the asumptions of [Le Gall, Miermont 11] for convergence (as random
metric space) toward the stable map.

• Show that interfaces are long (heavy-tailed) only at p = pc.
Study the degree of random faces of the gasket.



Analytic combinatorics



Counting problem.

Tail of the distribution of the length of an interface?
=⇒ Study the total weight of maps rooted on interface of size n.



Counting problem.

Tail of the distribution of the length of an interface?
=⇒ Study the total weight of maps rooted on interface of size n.

Triangulation of outer degree j

Weight z
#edges
0 p#outer vertices

Triangulation of outer degree i

Weight z
#edges
0 (1−p)#outer vertices

Necklace:
(i+ j

i

)



Results.

Theorem:
• The total weight Wn of triangulations with outer degree n with
black outer vertices satisfies:

Wn ∼


c(p)n−3/2K(p)n if p < 1/2,
c(p)n−5/3K(p)n if p = 1/2,
c(p)n−5/2K(p)n if p > 1/2.

where 1/K(p) is the largest root of
(18px3−9x3+5x3

√
3+6x2

√
3−48

√
3x+32

√
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√
3x−2

√
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Theorem:
• The total weight Wn of triangulations with outer degree n with
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Wn ∼


c(p)n−3/2K(p)n if p < 1/2,
c(p)n−5/3K(p)n if p = 1/2,
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• The probability that the black-white interface started at the root-
edge of a random percolated triangulation has length n decreases
polynomially in n−10/3 if p = 1/2, and exponentially if p 6= 1/2.



Recursive decomposition of triangulations

= ?

Triangulation with boundary

Generating function: G(x, z) =
∑
T x

#outer degree z#edges
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Recursive decomposition of triangulations

Generating function: G(x, z) =
∑
T x

#outer degree z#edges

= + +

G(x, z) = 1 + x2z G(x, z)×G(x, z) +
z

x
(G(x, z)−1− x[x1]G(x, z))



Recursive decomposition of triangulations

Generating function: G(x, z) =
∑
T x

#outer degree z#edges

Problem: this kind of functional equation does not directly give
counting results.

Solution: use quadratic method to obtain an algebraic equation.

G(x, z) = 1 + x2z G(x, z)2 +
z

x
(G(x, z)−1− x[x1]G(x, z))



Quadratic method - version Bousquet-Mélou, Jehanne 06.

Input: Functional equation P (G(x, z), G1(z), x, z) = 0.

Output: Algebraic equation Q(G1(z), z) = 0

Quadratic method



Quadratic method - version Bousquet-Mélou, Jehanne 06.

Input: Functional equation P (G(x, z), G1(z), x, z) = 0.

Output: Algebraic equation Q(G1(z), z) = 0

Theorem: Under mild hypotheseses, there exists a series X ≡ X(z)
such that P ′1(G(X(z), z), G1(z), X(z), z) = 0. Thus, P (G(X(z), z), G1(z), X(z), z) = 0

P ′1(G(X(z), z), G1(z), X(z), z) = 0
P ′3(G(X(z), z), G1(z), X(z), z) = 0.

Hence polynomial elimination of X(z) and G(X(z), z) gives:



Counting triangulations

Generating function: G(x) ≡ G(x, z) =
∑
T

x#outer degree z#edges

- Recursive decomposition -

Functional equation: G(x) = 1 + x2z G(x)2 +
z

x
(G(x)−1− xG1)



Counting triangulations

Generating function: G(x) ≡ G(x, z) =
∑
T

x#outer degree z#edges

- Recursive decomposition -

Functional equation: G(x) = 1 + x2z G(x)2 +
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Counting triangulations

Generating function: G(x) ≡ G(x, z) =
∑
T

x#outer degree z#edges

- Recursive decomposition -

Functional equation: G(x) = 1 + x2z G(x)2 +
z

x
(G(x)−1− xG1)

- Quadratic method -
Algebraic equation:

64z5G1
3 − 96z4G1

2 + zG1
2 + 30z3G1 −G1 − 27z5 + z2 = 0

- Analytic combinatorics -
Asymptotic result:
The number Tn = [zn+2]G1(z) of triangulations with n edges satisfies:

Tn ∼ c n−5/2 z−n0 , where z0 = 432−1/6.
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Counting triangulations with weight p per external vertex

G(x) =
∑
T

p#outer verticesx#outer degree z#edges

= + +

G(x) = p+ x2z G(x)2 +
z

px
(G̃(x)−xpG1) +

z

x
(G(x)−G̃(x))

where G1 = [x]G(x)/p and G(x) =
p

1− G̃(x)/p
.

+



Counting triangulations with weight p per external vertex

G(x) =
∑
T

p#outer verticesx#outer degree z#edges

= + +

G(x) = p+ x2z G(x)2 +
z

px
(G̃(x)−xpG1) +

z

x
(G(x)−G̃(x))

where G1 = [x]G(x)/p and G(x) =
p

1− G̃(x)/p
.

+

Moreover,
64z5G1

3 − 96z4G1
2 + zG1

2 + 30z3G1 −G1 − 27z5 + z2 = 0

⇒ Algebraic equation: P (G(x), p, x, z) = 0.



Counting triangulations with weight p per external vertex

Algebraic equation: P0(H(p, x), p, x) = 0.

H(p, x) = G(p, x, z0) =
∑
T

p#outer verticesx#outer degree z
#edges
0

- Analytic combinatorics -
Theorem: The total weight Wn = [xn]H(p, x) of triangulations with
outer degree n with black outer vertices satisfies:
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c(p)n−3/2K(p)n if p < 1/2,
c(p)n−5/3K(p)n if p = 1/2,
c(p)n−5/2K(p)n if p > 1/2.

where 1/K(p) is the largest root of
(18px3−9x3+5x3

√
3+6x2

√
3−48

√
3x+32

√
3)(2px− x+

√
3x−2

√
3).



Counting triangulations with weight p per external vertex

Algebraic equation: P0(H(p, x), p, x) = 0.

H(p, x) = G(p, x, z0) =
∑
T

p#outer verticesx#outer degree z
#edges
0

- Analytic combinatorics -
Theorem: The total weight Wn = [xn]H(p, x) of triangulations with
outer degree n with black outer vertices satisfies:

Wn ∼

{
c(p)n−3/2K(p)n if p < 1/2,
c(p)n−5/3K(p)n if p = 1/2,
c(p)n−5/2K(p)n if p > 1/2.

where 1/K(p) is the largest root of
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√
3+6x2

√
3−48

√
3x+32

√
3)(2px− x+

√
3x−2

√
3).

H(x)

x

p < 1/2

H(x)

x

p = 1/2

H(x)

x

p > 1/2



Integrating the Necklace

Lemma. Total weight of necklace + black component is

Qn :=
∑
k≥0

(
n

k

)
Wk.

Moreover if Wn∼c(p)na(p)K(p)n then Qn∼ c̃(p)na(p)
(

1

1−K(p)

)n

Length n.

Proof: Express Nn as a residue and compute by method of Hankel
contour. �



Integrating the Necklace

Lemma. Total weight of necklace + black component is

Qn :=
∑
k≥0

(
n

k

)
Wk.

Moreover if Wn∼c(p)na(p)K(p)n then Qn∼ c̃(p)na(p)
(

1

1−K(p)

)n

Corollary: The weight for interface of white length n is

∼ ĉ(p) na(p)+a(1−p)
(

K(p)
1−K(p)

)n
where 1/K(p) is the largest root of

(18px3−9x3+5x3
√
3+6x2

√
3−48

√
3x+32

√
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√
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√
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⇒polynomially in n−10/3 if p = 1/2, and exponentially if p 6= 1/2.



Average size on each side of loops

Theorem: The mean number of edges on the black side of an interface
of length n is of order

n if p < 1/2,
n4/3 if p = 1/2,
n2 if p < 1/2.



Bond percolation

The counting problem for bond percolation.



Bond percolation

The counting problem for bond percolation.

Outer edges are open.Edges incident to
outer vertices are closed.



Bond percolation

The counting problem for bond percolation.

Theorem. Let pc =
2
√
3−1
11 ≈ 2.22.

• The total weight Wn, Ŵn of triangulations with outer degree n with
outer edges open (resp. with edges incident to outer vertices closed)
satisfies:
Wn ∼ c(p)n−3/2K(p)n and Ŵn ∼ ĉ(p)n−5/2 K̂(p)n if p < pc,

Wn ∼ c(p)n−5/3K(p)n and Ŵn ∼ ĉ(p)n−5/3 K̂(p)n if p = pc,

Wn ∼ c(p)n−5/2K(p)n and Ŵn ∼ ĉ(p)n−3/2 K̂(p)n if p > pc.



Bond percolation

The counting problem for bond percolation.

• The mean size of the two sides of an interface conditioned to have
size n are of order

Closed side Open side
n n2 if p < pc
n4/3 n4/3 if p = pc
n2 n if p < pc

• The probability that the bond-percolation interface started at the
root-edge of a random percolated triangulation has length n decreases
polynomially in n−10/3 if p = 1/2, and exponentially if p 6= 1/2.

Theorem. Let pc =
2
√
3−1
11 ≈ 2.22.



The random gasket



What do we know about the gasket?
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Lemma. The probability that the degree of a random face of the
gasket has degree n is of order n−10/3 at criticality, and has an
exponential tail otherwise.



What do we know about the gasket?

Lemma. The probability that the degree of a random face of the
gasket has degree n is of order n−10/3 at criticality, and has an
exponential tail otherwise.

Proof. Let F= face at the right of a uniformly random edge in gasket.

P(deg(F ) = n) = P(deg(F0) = n) =
In
Z
,

where In is the total weight of percolated triangulations rooted on an
interface of length n.



The gasket as a Boltzmann map
Def. Given weights q = (qn)n>0, we call q-Boltzmann map a map

chosen with probability proportional to
∏

f face

qdeg(f).



The gasket as a Boltzmann map
Def. Given weights q = (qn)n>0, we call q-Boltzmann map a map

chosen with probability proportional to
∏

f face

qdeg(f).

Total weight of necklace of outside length n
+ inside with white outer vertices.

Remark. Boltzmann distribution on triangulations+percolations gives
a gasket which is a q-Boltzmann map, where

qn = pn/2−1(z
3/2
0 δn,3 +Qn(p)).



Bijection with trees [Bouttier, Di Francesco, Guitter 04]
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vertices white vertices
faces black vertices

rooted pointed map plane tree + labels



Bijection with trees [Bouttier, Di Francesco, Guitter 04]

1

2
1

2 3

4

2

3

4

3

vertices white vertices
faces black vertices

rooted pointed map plane tree + labels

q-Boltzmann map q-Galton-Watson tree

+ gray vertices

P◦(i•) = (1− 1/R)i/R

P•(i◦, j•) =
(
2i+j+1
i+1,i,j

)
q2i+j+2R

iSj

P•(i◦, j•) =
(
2i+j
i,i,j

)
q2i+j+1R

iSj

where R,S defined in terms of q.



Criticality of the gasket

Def: We say that a weight sequence (qn) is critical if the correspond-
ing Galton Watson tree is critical
(that is, the matrix of reproduction-means has spectral radius 1).



Criticality of the gasket

Def: We say that a weight sequence (qn) is critical if the correspond-
ing Galton Watson tree is critical
(that is, the matrix of reproduction-means has spectral radius 1).

Theorem.
• The weights (qn) defining the gasket are critical for p ≥ 1/2.
• The size of the gasket has a tail in n−20/7if p = 1/2,

n−5/2 if p > 1/2.



Criticality of the gasket

Def: We say that a weight sequence (qn) is critical if the correspond-
ing Galton Watson tree is critical
(that is, the matrix of reproduction-means has spectral radius 1).

Proof of criticality.
• Criticality of (qn) is equivalent to R′(1) =∞ where
R(u), S(u) are the smallest non-negative solutions of
R(u) = 1 +

∑
i,j

(
2i+j+1
i+1,i,j

)
q2i+j+2R(u)

i+1S(u)j ,

S(u) =
∑
i,j

(
2i+j
i,i,j

)
q2i+j+1R(u)

iS(u)j .

• The total weight of maps with outer degree n

is
∫ 1

0

∑
2i+j=n

(
n
i,i,j

)
R(u)iS(u)j which behaves like

c n−3/n (S(1) + 2
√
R(1))n unless R′(1) =∞.

Theorem.
• The weights (qn) defining the gasket are critical for p ≥ 1/2.
• The size of the gasket has a tail in n−20/7if p = 1/2,

n−5/2 if p > 1/2.



Scaling limit of the gasket

Theorem. Suppose (qn) is a sequence of weights which is critical and
such that q2n+1 = 0 and q2n ∼ c n−γ−1/2Kn with γ ∈ (1, 2).
Let Mn= random metric space (V, dgr) corresponding to a q-
Boltzmann map conditioned to have n vertices.

Then n−2γMn converges in law (in the Gromov-Haussdorff topology)
toward a compact metric space of Hausdorff dimension 2γ.



Scaling limit of the gasket

Theorem. Suppose (qn) is a sequence of weights which is critical and
such that q2n+1 = 0 and q2n ∼ c n−γ−1/2Kn with γ ∈ (1, 2).
Let Mn= random metric space (V, dgr) corresponding to a q-
Boltzmann map conditioned to have n vertices.

Then n−2γMn converges in law (in the Gromov-Haussdorff topology)
toward a compact metric space of Hausdorff dimension 2γ.

If the result extends to the non-bipartite setting, then the gasket of
percolation converges toward the stable map of parameter γ = 7/6.



Thanks.


