Percolation on random triangulations

Olivier Bernardi (MIT) Joint work with Grégory Miermont (Université Paris-Sud) Nicolas Curien (École Normale Supérieure)

MSRI, January 2012

Model and motivations

Def. A planar map is a way of forming the sphere by gluing polygons.

Def. A planar map is a way of forming the sphere by gluing polygons.

Def. A planar map is a way of forming the sphere by gluing polygons.

Def. A triangulation is a planar map made of triangles.

Def. A planar map is a way of forming the sphere by gluing polygons.

Def. A triangulation is a planar map made of triangles.

Def. A map is rooted if an edge is chosen and oriented.

Percolation

Site percolation: vertices are black with probability p , white with probability $1 - p$.

Percolation

Site percolation: vertices are black with probability p , white with probability $1 - p$.

The **clusters** are the connected components.

The **gasket** is the black cluster containing the root-vertex.

Percolation

Bond percolation: edges are open with probability p , closed with probability $1 - p$.

The **clusters** are the monochromatic connected components. The **gasket** is the open cluster containing the root-vertex.

Boltzmann model

Model: pick a rooted triangulation $+$ site percolation with probability proportional to

.

Boltzmann model

Model: pick a rooted triangulation $+$ site percolation with probability proportional to

$$
z^{\#edges}p^{\#black \: \: vertices}(1-p)^{\#white \: \: vertices}
$$

.

Thm [Tutte 62]: The number T_n of rooted triangulations with n edges satisfies

$$
T_n \sim cn^{-5/2} z_0^{-n}
$$
, where $z_0 = 432^{-1/6}$,

hence the model is **admissible** for edge activity z in $[0, z_0]$.

Boltzmann model

Model: pick a rooted triangulation $+$ site percolation with probability proportional to

$$
z^{\#edges}p^{\#black \: \: vertices}(1-p)^{\#white \: \: vertices}
$$

.

Thm [Tutte 62]: The number T_n of rooted triangulations with n edges satisfies

$$
T_n \sim cn^{-5/2} z_0^{-n}
$$
, where $z_0 = 432^{-1/6}$,

hence the model is **admissible** for edge activity z in $[0, z₀]$.

Remark: The distribution of the size of the random triangulation T has light tail (exponential decay) if $z < z_0$, **heavy tail** (polynomial decay) if $z = z_0$.

From now on, we fix the edge activity to be z_0 .

Phase transition?

Critical probability: $p_c = \inf\{p, \; \mathbb{P}_p(\text{infinite black cluster}) > 0\}$

regular triangulation random triangulation

Critical probability ?

Motivation 1. Study the phase transition:

• Transition for size of gasket: heavy-tailed / light-tailed at $p = p_c$.

Motivation 1. Study the phase transition:

• Transition for size of gasket: heavy-tailed / light-tailed at $p = p_c$.

Related results. Percolation has been studied on (loopless) infinite triangulations (UIPT) [Angel,Schramm 04, Angel 03, Angel,Curien 12]. In that context, $p_c=1/2$ for site perco, and $p_c=1/4$ for bond perco.

random infinite triangulation (UIPT)

Motivation 1. Study the phase transition:

- Transition for size of gasket: heavy-tailed / light-tailed at $p = p_c$.
- Show that interfaces are long (heavy-tailed) only at $p = p_c$. Study the degree of random faces of the gasket.

Motivation 1. Study the phase transition:

- Transition for size of gasket: heavy-tailed / light-tailed at $p = p_c$.
- Show that interfaces are long (heavy-tailed) only at $p = p_c$. Study the degree of random faces of the gasket.

Related results.

• The tail of the distribution of the degree of faces has been predicted using the KPZ conjecture.

• The tail of the distribution of the degree of faces for the gasket of "a rigid" O(n) model on quadrangulations has been identified in [Borot, Bouttier, Guitter 12].

Motivation 1. Study the phase transition:

- Transition for size of gasket: heavy-tailed / light-tailed at $p = p_c$.
- Show that interfaces are long (heavy-tailed) only at $p = p_c$. Study the degree of random faces of the gasket.

Motivation 2. Show that the gasket of critical percolation satisfy the asumptions of [Le Gall, Miermont 11] for convergence (as random metric space) toward the stable map.

Analytic combinatorics

Counting problem.

Tail of the distribution of the length of an interface?

 \implies Study the total weight of maps rooted on interface of size n.

Counting problem.

Tail of the distribution of the length of an interface?

 \implies Study the total weight of maps rooted on interface of size n.

Results.

Theorem:

 \bullet The total weight W_n of triangulations with outer degree n with black outer vertices satisfies:

$$
W_n \sim \begin{cases} c(p) \, n^{-3/2} \, K(p)^n & \text{if } p < 1/2, \\ c(p) \, n^{-5/3} \, K(p)^n & \text{if } p = 1/2, \\ c(p) \, n^{-5/2} \, K(p)^n & \text{if } p > 1/2. \end{cases}
$$

where $1/K(p)$ is the largest root of $(18px^3 - 9x^3 + 5x^3\sqrt{3} + 6x^2)$ √ √ : root or $(\overline{3}\!-\!48\sqrt{3}x\!+\!32\sqrt{3})(2px\!-x\!+\!1)$ √ $3x-2$ √ 3).

Results.

Theorem:

 \bullet The total weight W_n of triangulations with outer degree n with black outer vertices satisfies:

$$
W_n \sim \begin{cases} c(p) \, n^{-3/2} \, K(p)^n & \text{if } p < 1/2, \\ c(p) \, n^{-5/3} \, K(p)^n & \text{if } p = 1/2, \\ c(p) \, n^{-5/2} \, K(p)^n & \text{if } p > 1/2. \end{cases}
$$

where $1/K(p)$ is the largest root of $(18px^3 - 9x^3 + 5x^3\sqrt{3} + 6x^2)$ √ √ : root or $(\overline{3}\!-\!48\sqrt{3}x\!+\!32\sqrt{3})(2px\!-x\!+\!1)$ √ $3x-2$ √ 3).

• The probability that the black-white interface started at the rootedge of a random percolated triangulation has length n decreases polynomially in $n^{-10/3}$ if $p=1/2$, and exponentially if $p\neq 1/2$.

Generating function: $G(x,z)=\sum_T x^{\text{\#outer}}$ degree ${}_z\text{\#edges}$

Triangulation with boundary

Generating function: $G(x,z)=\sum_T x^{\text{\#outer}}$ degree ${}_z\text{\#edges}$

Generating function: $G(x,z)=\sum_T x^{\text{\#outer}}$ degree ${}_z\text{\#edges}$

 $G(x, z) = 1 + x^2$ $z\,G(x,z)\!\times\!G(x,z)\,\,+\,\,\,\frac{z}{\mathbb{B}}$ \overline{x} $(G(x, z) - 1 - x[x^1]G(x, z))$

Generating function: $G(x,z)=\sum_T x^{\text{\#outer}}$ degree ${}_z\text{\#edges}$

$$
G(x, z) = 1 + x^2 z G(x, z)^2 + \frac{z}{x} (G(x, z) - 1 - x[x^1] G(x, z))
$$

Problem: this kind of **functional equation** does not directly give counting results.

Solution: use quadratic method to obtain an algebraic equation.

Quadratic method - version Bousquet-Mélou, Jehanne 06.

Input: Functional equation $P(G(x, z), G_1(z), x, z) = 0$.

Quadratic method

Output: Algebraic equation $Q(G_1(z), z) = 0$

Quadratic method - version Bousquet-Mélou, Jehanne 06.

Input: Functional equation $P(G(x, z), G_1(z), x, z) = 0$.

Theorem: Under mild hypotheseses, there exists a series $X \equiv X(z)$ such that P_1^\prime $G'_1(G(X(z),z),G_1(z),X(z),z)=0$. Thus,

$$
\begin{cases}\nP(G(X(z), z), G_1(z), X(z), z) = 0 \\
P'_1(G(X(z), z), G_1(z), X(z), z) = 0 \\
P'_3(G(X(z), z), G_1(z), X(z), z) = 0.\n\end{cases}
$$

Hence polynomial elimination of $X(z)$ and $G(X(z), z)$ gives:

Output: Algebraic equation $Q(G_1(z), z) = 0$

Counting triangulations

Generating function: $G(x) \equiv G(x,z) = \sum$ \overline{T} $x^{\# \mathtt{outer}}$ degree $z^{\# \mathtt{edges}}$

- Recursive decomposition -

Functional equation: $G(x) = 1 + x^2 z G(x)^2 +$ z \overline{x} $(G(x)-1-xG_1)$

Counting triangulations

Generating function: $G(x) \equiv G(x,z) = \sum$ \overline{T} $x^{\# \mathtt{outer}}$ degree $z^{\# \mathtt{edges}}$

- Recursive decomposition -

Functional equation: $G(x) = 1 + x^2 z G(x)^2 +$ z \overline{x} $(G(x)-1-xG_1)$

- Quadratic method -

Algebraic equation:

 $64z⁵G₁³ - 96z⁴G₁² + zG₁² + 30z³G₁ - G₁ - 27z⁵ + z² = 0$

Counting triangulations

Generating function: $G(x) \equiv G(x,z) = \sum x^{\text{\#outer}}$ degree $z^{\text{\#edges}}$ \overline{T}

- Recursive decomposition -

Functional equation: $G(x) = 1 + x^2 z G(x)^2 +$ z \overline{x} $(G(x)-1-xG_1)$

- Quadratic method -

Algebraic equation:

$$
64z5G13 - 96z4G12 + zG12 + 30z3G1 - G1 - 27z5 + z2 = 0
$$

- Analytic combinatorics -

Asymptotic result:

The number $T_n = [z^{n+2}]G_1(z)$ of triangulations with n edges satisfies:

$$
T_n \sim cn^{-5/2} z_0^{-n}
$$
, where $z_0 = 432^{-1/6}$.

Counting triangulations with weight p per external vertex $G(x)$ \overline{T} $p^{\# \textsf{outer vertices}} x^{\# \textsf{outer degree}} z^{\# \textsf{edges}}$ $\sqrt{2}$

Counting triangulations with weight p per external vertex

Algebraic equation: $P_0(H(p, x), p, x) = 0.$ $H(p, x) = G(p, x, z_0) = \sum$ \overline{T} $p^{\# \mathsf{outer}}$ vertices $x^{\# \mathsf{outer}}$ degree $z_0^{\# \mathsf{edges}}$ 0

- Analytic combinatorics -

Theorem: The total weight $W_n = [x^n]H(p, x)$ of triangulations with outer degree n with black outer vertices satisfies:

$$
W_n \sim \begin{cases} c(p) \, n^{-3/2} \, K(p)^n & \text{if } p < 1/2, \\ c(p) \, n^{-5/3} \, K(p)^n & \text{if } p = 1/2, \\ c(p) \, n^{-5/2} \, K(p)^n & \text{if } p > 1/2. \end{cases}
$$

where $1/K(p)$ is the largest root of $(18px^3 - 9x^3 + 5x^3\sqrt{3} + 6x^2)$ √ √ : root or $(\overline{3}\!-\!48\sqrt{3}x\!+\!32\sqrt{3})(2px\!-x\!+\!1)$ √ $3x-2$ √ 3). Counting triangulations with weight p per external vertex

Algebraic equation: $P_0(H(p, x), p, x) = 0.$ $H(p, x) = G(p, x, z_0) = \sum$ \overline{T} $p^{\# \mathsf{outer}}$ vertices $x^{\# \mathsf{outer}}$ degree $z_0^{\# \mathsf{edges}}$ 0

- Analytic combinatorics -

Theorem: The total weight $W_n = [x^n]H(p, x)$ of triangulations with outer degree n with black outer vertices satisfies:

$$
W_n \sim \begin{cases} c(p) \, n^{-3/2} \, K(p)^n & \text{if } p < 1/2, \\ c(p) \, n^{-5/3} \, K(p)^n & \text{if } p = 1/2, \\ c(p) \, n^{-5/2} \, K(p)^n & \text{if } p > 1/2. \end{cases}
$$

Integrating the Necklace

Lemma. Total weight of necklace $+$ black component is $Q_n := \sum$ $k\geq 0$ \sqrt{n} \boldsymbol{k} \setminus W_k . Moreover if $W_n\!\sim\! c(p)\,n^{a(p)}K(p)^n$ then $Q_n\!\sim\!\tilde c(p)\,n^{a(p)}\bigg(\frac{1}{1-\frac{1}{L}}\bigg)$ $1 - K(p)$ \setminus^n

Proof: Express N_n as a residue and compute by method of Hankel contour.

Integrating the Necklace

Lemma. Total weight of necklace $+$ black component is $Q_n := \sum$ $k\geq 0$ \sqrt{n} \boldsymbol{k} \setminus W_k . Moreover if $W_n\!\sim\! c(p)\,n^{a(p)}K(p)^n$ then $Q_n\!\sim\!\tilde c(p)\,n^{a(p)}\bigg(\frac{1}{1-\frac{1}{L}}\bigg)$ $1 - K(p)$ \setminus^n

Corollary: The weight for interface of white length n is $\sim \hat{c}(p) n^{a(p)+a(1-p)} \left(\frac{K(p)}{1-K(p)} \right)$ $1-K(p)$ \setminus^n where $1/K(p)$ is the largest root of $(18px^3 - 9x^3 + 5x^3\sqrt{3} + 6x^2)$ $\sqrt{1-\kappa(p)}$ / $\sqrt{1-\kappa(p)}$ $\frac{3}{3}$ – 48 $\sqrt{3}x+32\sqrt{3}$ $(2px-x+\sqrt{3}x-2\sqrt{3})$. \Rightarrow polynomially in $n^{-10/3}$ if $p=1/2$, and exponentially if $p\neq 1/2$.

Average size on each side of loops

Theorem: The mean number of edges on the black side of an interface of length n is of order

n	if $p < 1/2$,
$n^{4/3}$	if $p = 1/2$,
n^2	if $p < 1/2$.

The counting problem for bond percolation.

The counting problem for bond percolation.

Edges incident to **Edges** incident to **Outer edges** are open. outer vertices are closed.

The counting problem for bond percolation.

Theorem. Let
$$
p_c = \frac{2\sqrt{3}-1}{11} \approx 2.22
$$
.

 \bullet The total weight W_n, \hat{W}_n of triangulations with outer degree n with outer edges open (resp. with edges incident to outer vertices closed) satisfies:

$$
W_n \sim c(p) n^{-3/2} K(p)^n
$$
 and
$$
\hat{W}_n \sim \hat{c}(p) n^{-5/2} \hat{K}(p)^n
$$
 if $p < p_c$,
\n
$$
W_n \sim c(p) n^{-5/3} K(p)^n
$$
 and
$$
\hat{W}_n \sim \hat{c}(p) n^{-5/3} \hat{K}(p)^n
$$
 if $p = p_c$,
\n
$$
W_n \sim c(p) n^{-5/2} K(p)^n
$$
 and
$$
\hat{W}_n \sim \hat{c}(p) n^{-3/2} \hat{K}(p)^n
$$
 if $p > p_c$.

The counting problem for bond percolation.

Theorem. Let
$$
p_c = \frac{2\sqrt{3}-1}{11} \approx 2.22
$$
.

• The probability that the bond-percolation interface started at the root-edge of a random percolated triangulation has length n decreases polynomially in $n^{-10/3}$ if $p=1/2$, and exponentially if $p\neq 1/2$.

• The mean size of the two sides of an interface conditioned to have size n are of order

The random gasket

What do we know about the gasket?

What do we know about the gasket?

Lemma. The probability that the degree of a random face of the gasket has degree n is of order $n^{-10/3}$ at criticality, and has an exponential tail otherwise.

What do we know about the gasket?

Lemma. The probability that the degree of a random face of the gasket has degree n is of order $n^{-10/3}$ at criticality, and has an exponential tail otherwise.

Proof. Let $F=$ face at the right of a uniformly random edge in gasket.

$$
\mathbb{P}(\deg(F) = n) = \mathbb{P}(\deg(F_0) = n) = \frac{I_n}{Z},
$$

where I_n is the total weight of percolated triangulations rooted on an interface of length n .

The gasket as a Boltzmann map

Def. Given weights $\mathbf{q}=(q_n)_{n>0}$, we call q-Boltzmann map a map chosen with probability proportional to $\prod_{\deg(f)}$. f face

The gasket as a Boltzmann map

Def. Given weights $\mathbf{q}=(q_n)_{n>0}$, we call q-Boltzmann map a map chosen with probability proportional to $\prod_{\deg(f)}$.

 f face

Remark. Boltzmann distribution on triangulations+percolations gives a gasket which is a **q**-Boltzmann map, where

$$
q_n = p^{n/2 - 1} (z_0^{3/2} \delta_{n,3} + Q_n(p)).
$$

Total weight of necklace of outside length n $+$ inside with white outer vertices.

Bijection with trees [Bouttier, Di Francesco, Guitter 04] rooted pointed map $\qquad \qquad$ plane tree + labels

Bijection with trees [Bouttier, Di Francesco, Guitter 04] rooted pointed map \Box plane tree + labels

q-Boltzmann map **q-Galton-Watson tree**

 $\mathbb{P}_\text{o}(i\bullet) = (1-1/R)^i/R$ $\mathbb{P}_{\bullet}(i\circ,j\bullet)=\big(\begin{smallmatrix} 2i+j+1\ i+1,i,j \end{smallmatrix}\big)q_{2i+j+2}R^iS^j$ $\mathbb{P}_{\bullet}(i\circ,j\bullet)=\big(\begin{smallmatrix} 2i+j \ i,i,j \end{smallmatrix}\big)^{\circ}_{q_{2i+j+1}}R^iS^j$ where R, S defined in terms of q .

Criticality of the gasket

Def: We say that a weight sequence (q_n) is critical if the corresponding Galton Watson tree is critical

(that is, the matrix of reproduction-means has spectral radius 1).

Criticality of the gasket

Def: We say that a weight sequence (q_n) is critical if the corresponding Galton Watson tree is critical (that is, the matrix of reproduction-means has spectral radius 1).

Theorem.

- \bullet The weights (q_n) defining the gasket are critical for $p\geq 1/2.$
- \bullet The size of the gasket has a tail in $n^{-20/7}$ if $p=1/2$, $n^{-5/2}$ if $p>1/2$.

Criticality of the gasket

Def: We say that a weight sequence (q_n) is critical if the corresponding Galton Watson tree is critical (that is, the matrix of reproduction-means has spectral radius 1).

Theorem.

- \bullet The weights (q_n) defining the gasket are critical for $p\geq 1/2.$
- \bullet The size of the gasket has a tail in $n^{-20/7}$ if $p=1/2$, $n^{-5/2}$ if $p>1/2$.

Proof of criticality.

• Criticality of (q_n) is equivalent to $R'(1) = \infty$ where $R(u), S(u)$ are the smallest non-negative solutions of $R(u) = 1 + \sum_{i,j} \binom{2i+j+1}{i+1,i,j} q_{2i+j+2} R(u)^{i+1} S(u)^j,$ $S(u) = \sum_{i,j} {2i+j \choose i,i,j} q_{2i+j+1} R(u)^i S(u)^j.$

• The total weight of maps with outer degree n is \int_0^1 $\sum_{2i+j=n}$ $\binom{n}{i,i,j}R(u)^iS(u)^j$ which behaves like $cn^{-3/n} (S(1) + 2\sqrt{R(1)})^n$ unless $R'(1) = \infty$.

Scaling limit of the gasket

 $\bf Theorem.$ Suppose (q_n) is a sequence of weights which is critical and such that $q_{2n+1}=0$ and $q_{2n}\sim c\,n^{-\gamma-1/2}\,K^n$ with $\gamma\in(1,2).$ Let M_n = random metric space (V,d_{gr}) corresponding to a ${\bf q}$ -Boltzmann map conditioned to have n vertices.

Then $n^{-2\gamma}M_n$ converges in law (in the Gromov-Haussdorff topology) toward a compact metric space of Hausdorff dimension 2γ .

Scaling limit of the gasket

 $\bf Theorem.$ Suppose (q_n) is a sequence of weights which is critical and such that $q_{2n+1}=0$ and $q_{2n}\sim c\,n^{-\gamma-1/2}\,K^n$ with $\gamma\in(1,2).$ Let M_n = random metric space (V,d_{gr}) corresponding to a ${\bf q}$ -Boltzmann map conditioned to have n vertices.

Then $n^{-2\gamma}M_n$ converges in law (in the Gromov-Haussdorff topology) toward a compact metric space of Hausdorff dimension 2γ .

If the result extends to the non-bipartite setting, then the gasket of percolation converges toward the stable map of parameter $\gamma = 7/6$.

Thanks.

