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Model and motivations




Planar maps

Def. A planar map is a way of forming the sphere by gluing polygons.
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Def. A planar map is a way of forming the sphere by gluing polygons.

Embedded connected planar graph
considered up to homeomorphism.
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Planar maps

Def. A planar map is a way of forming the sphere by gluing polygons.

Def. A triangulation is a planar map made of triangles.

Def. A map is rooted if an edge is chosen and oriented.



Percolation

Site percolation: vertices are black with probability p,
white with probability 1 — p.




Percolation

Site percolation: vertices are black with probability p,
white with probability 1 — p.

The clusters are the connected components.

The gasket is the black cluster containing the root-vertex.



Percolation

Bond percolation: edges are open with probability p,
closed with probability 1 — p.

The clusters are the monochromatic connected components.

The gasket is the open cluster containing the root-vertex.



Boltzmann model

Model: pick a rooted triangulation + site percolation with probability
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Boltzmann model

Model: pick a rooted triangulation + site percolation with probability
proportional to

Z#edges #black vertices(l _ _\#White vertices

p p)

Thm [Tutte 62]: The number 7, of rooted triangulations with n»
edges satisfies

1, ~ cn_5/2z0_”, where 25 = 432_1/6,
hence the model is admissible for edge activity z in [0, 2.

Remark: The distribution of the size of the random triangulation 7’
has light tail (exponential decay) if 2 < z,
heavy tail (polynomial decay) if z = 2.

From now on, we fix the edge activity to be z.



Motivations

Phase transition?

regular triangulation random triangulation
Critical probability: Critical probability 7

p. = inf{p, P,(infinite black cluster) > 0}
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Motivations
Motivation 1. Study the phase transition:

e Transition for size of gasket: heavy-tailed / light-tailed at p = p..

Related results. Percolation has been studied on (loop
triangulations (UIPT) [Angel, Schramm 04, Angel 03, Ange

In that context, p. = 1/2 for site perco, and p. = 1/4 for

ess) infinite
,Curien 12].

bond perco.

random infinite
triangulation (UIPT)
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Study the degree of random faces of the gasket.




Motivations
Motivation 1. Study the phase transition:
e Transition for size of gasket: heavy-tailed / light-tailed at p = p..
e Show that interfaces are long (heavy-tailed) only at p = p..
Study the degree of random faces of the gasket.

Related results.
e The tail of the distribution of the degree of faces has been predicted

using the KPZ conjecture.
e The tail of the distribution of the degree of faces for the gasket

of “a rigid” O(n) model on quadrangulations has been identified in
[Borot, Bouttier, Guitter 12].



Motivations
Motivation 1. Study the phase transition:
e Transition for size of gasket: heavy-tailed / light-tailed at p = p..

e Show that interfaces are long (heavy-tailed) only at p = p..
Study the degree of random faces of the gasket.

Motivation 2. Show that the gasket of critical percolation satisfy

the asumptions of [Le Gall, Miermont 11] for convergence (as random
metric space) toward the stable map.




Analytic combinatorics



Counting problem.

Tail of the distribution of the length of an interface?
—> Study the total weight of maps rooted on interface of size n.




Counting problem.

Tail of the distribution of the length of an interface?
—> Study the total weight of maps rooted on interface of size n.
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Triangulation of outer degree ¢ Triangulation of outer degree j
Weight Z#edges(l_p)#outer vertices Weight Z#edgesp#outer vertices
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Results.

Theorem:
e The total weight IV, of triangulations with outer degree n with
black outer vertices satisfies:

c(p)n=3? K(p)" ifp<1/2,
Wy~ clp)n™>P K@) ifp=1/2
c(p)n 2 K(p)» ifp>1/2.

where 1/K (p) is the largest root of
(18pa¢3—9333+5333\/§+6x2\/3—48\/§x+32\/§)(2px— :1:+\/§x—2\/§).



Results.

Theorem:
e The total weight IV, of triangulations with outer degree n with
black outer vertices satisfies:

c(p)n=3? K(p)" ifp<1/2,
Wy~ clp)n™>P K@) ifp=1/2
c(p)n=2 K(p)» ifp>1/2.

where 1/K (p) is the largest root of
(18pa:3—9:133+5:133\/§+6:132\/5—48\/§$+32\/§)(2px— :1:+\/§x—2\/§).

e The probability that the black-white interface started at the root-
edge of a random percolated triangulation has length n decreases
polynomially in n=19/3 if p = 1/2, and exponentially if p # 1/2.



Recursive decomposition of triangulations

Generating function: G(x,z) = 5 a7 OUter degree ,zedges

Triangulation with boundary
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Recursive decomposition of triangulations

Generating function: G(x,z) = 5 a7 OUter degree ,zedges

G(x,2) =1+ 2°2G(x,2)* + Z(G(x,2)—1— z[z']CG(z, 2))

2z
x
Problem: this kind of functional equation does not directly give

counting results.

Solution: use quadratic method to obtain an algebraic equation.



Quadratic method - version Bousquet-Mélou, Jehanne 06.

Input: Functional equation P(G(z,z2),G1(z),z,2z) = 0.

Quadratic method

Output: Algebraic equation Q(G1(z),2z) =0



Quadratic method - version Bousquet-Mélou, Jehanne 06.

Input: Functional equation P(G(z,z2),G1(z),z,2z) = 0.

Theorem: Under mild hypotheseses, there exists a series X = X (z)
such that P/ (G(X(2),2),G1(2), X(2),2z) = 0. Thus,

( ( ()727G1( )7X(Z7Z =0
P(G(X(2),2),G1(z2), X(2),z) =0
( ( (z),z),Gl(z),X(z),z) =0

Hence polynomial elimination of X (z) and G(X(z2), z) gives:

Output: Algebraic equation Q(G1(z),2z) =0



Counting triangulations

Generating function: G(z) = G(x,2) = Zx#outer degree _#edges
T

- Recursive decomposition -
Functional equation: G(z) =1 + 2”2 G(z)” + - (G(x)—1—xG)
x
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T
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T

- Quadratic method -
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Counting triangulations

Generating function: G(z) = G(x,2) = Zx#outer degree _#edges
T

- Recursive decomposition -
2z

Functional equation: G(z) =1+ 22 G(2)” + = (G(x)—1 — 2G,)
T
- Quadratic method -

Algebraic equation:
642°G1° — 962*G1° + 2G12 +302°G1 — G —272° + 22 =0

- Analytic combinatorics -
Asymptotic result:

The number T}, = [2""2]G (%) of triangulations with n edges satisfies:

—5/2 _—n

T, ~ cn 29,  Where 2 = 432746,



Counting triangulations with weight p per external vertex
G(z) = Zp#outer vertices .#outer degree _#edges

-, o7



Counting triangulations with weight p per external vertex
G(z) = Zp#outer vertices .#outer degree _#edges

Q c%b

where Gy = [x|G(x)/p and G(x) =

@“@

G(x) = p+x2G




Counting triangulations with weight p per external vertex
G(z) = Zp#outer vertices .#outer degree _#edges

DT 1 %@+¢ +&>
Q c%

G(r)=p+a°2G(x px(

(a: —xpGy) + é(a?))

Hll\z

where G = (2 |G(x and G(x) = .
e z|G(z)/p (z) 1—G( Y

642°G1° — 9621G1° + 2G1% + 302°G1 — Gy — 272° + 22 = 0
= Algebraic equation: P(G(x),p,z,z) = 0.




Counting triangulations with weight p per external vertex

i edges
H(p,x) = G(p,x, z) = Zp#outer vertices jouter degree z# g
T
Algebraic equation: FPy(H (p,z),p,z) = 0.

- Analytic combinatorics -
Theorem: The total weight W,, = [x"|H (p, x) of triangulations with
outer degree n with black outer vertices satisfies:
(c(p)nTPPK(p)t ifp<1/2,
Wn~ Y elp)n>PK(p  ifp=1/2
e(p)n TP K(p)m ifp>1/2.

where 1/K (p) is the largest root of
(18px3—9x3+5x3\/§+6x2\/§—48\/§a:+32\/§)(2p:1:— x+\/§x—2\/§).




Counting triangulations with weight p per external vertex
H(p,z) = G(p,x, 2) = Zp#outer vertices #outer degree Z(;;%&edges

T

Algebraic equation: FPy(H (p,z),p,z) = 0.

- Analytic combinatorics -
Theorem: The total weight W,, = [x"|H (p, x) of triangulations with
outer degree n with black outer vertices satisfies:

Wy, ~ <

[ c(p)n
c(p)n
s c(p)n

2 K(p)
—5/3 K(p)n
—5/2 K(p)n

where 1/K (p) is the largest root of
(18px3—9x3+5x3\/§+6a:2\/§—48\/§a:+32\/§)(2p:1:— x+\/§x—2\/§).

H(x)

p<1/2 ////:fi\\\\ p=1/2

X

H(x)

—

X

if p<1/2,
if p=1/2,
if p>1/2.

p>1/2

H(x)

—C.




Integrating the Necklace

Lemma. Total weight of necklace + black component is
n
Q=Y ( k) Wi
o ) (p)™ then Q (p) (p)< I )n
Moreover if W,, ~c(p)n” »)" then ), ~c(p)n”
7 =K ()
A
Length n.
v

Proof: Express IV, as a residue and compute by method of Hankel
contour. [ ]



Integrating the Necklace

Lemma. Total weight of necklace + black component is

s (o

k>0
Moreover if W,, ~c(p “<p)K " then Q,, ~c(p a(p)

(83

Corollary:  The weight for interface of white length n is

~ ¢(p) notp)+all=p) (15[%9)) where 1/K (p) is the largest root of

(18px3 — 923 4-523v/3+622v/3 —48v/32+32v3) (2pxr — x4+/32—2/3).

=polynomially in n71%/3 if p = 1/2, and exponentially if p # 1/2.




Average size on each side of loops

Theorem: The mean number of edges on the black side of an interface
of length n is of order

n if p<1/2,

nt/3  ifp=1/2,

n? if p<1/2.



Bond percolation

The counting problem for bond percolation.




Bond percolation

The counting problem for bond percolation.

Edges incident to

_ Outer edges are open.
outer vertices are closed.



Bond percolation

The counting problem for bond percolation.

Theorem. Let p. = 2\/151_1 ~ 2.22.

e [he total weight W/,,, W, of triangulations with outer degree n with
outer edges open (resp. with edges incident to outer vertices closed)
satisfies:
W, ~c(p)n=2K(p)® and W, ~ép)n=>2 K" ifp < pe,
W, ~ c(p)n=53 K(p)" and W, ~ é&p)n=5/3K({p)" ifp=p.,
Wy ~clp)n 2 K(p)* and W, ~é&(p)n 22 K(p)" if p> p..




Bond percolation

The counting problem for bond percolation.

Theorem. Let p. = 2\/151_1 ~ 2.22.

e The probability that the bond-percolation interface started at the
root-edge of a random percolated triangulation has length n decreases
polynomially in n=1%/3 if p = 1/2, and exponentially if p # 1/2.

e [ he mean size of the two sides of an interface conditioned to have

size . are of order

Closed side Open side
n n? if p < pe
nt/3 it p=pe

n n if p < pe




The random gasket




V8% '
=0
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What do we know about the gasket?

Lemma. The probability that the degree of a random face of the
gasket has degree n is of order n 19/ at criticality, and has an
exponential tail otherwise.



What do we know about the gasket?

Lemma. The probability that the degree of a random face of the
gasket has degree n is of order n 19/ at criticality, and has an
exponential tail otherwise.

Proof. Let F'= face at the right of a uniformly random edge in gasket.

Iy,

P(deg(F) = n) = P(deg(Fo) = n) = 2.

where [,, is the total weight of percolated triangulations rooted on an
interface of length n.



The gasket as a Boltzmann map
Def. Given weights q = (¢, )n~0, we call g-Boltzmann map a map

chosen with probability proportional to H Qdeg(f)-
f face



The gasket as a Boltzmann map
Def. Given weights q = (¢, )n~0, we call g-Boltzmann map a map

chosen with probability proportional to H Qdeg(f)-

f face

Remark. Boltzmann distribution on triangulations+percolations gives
a gasket which is a g-Boltzmann map, where

gn = P ¥ (2 %005 + Qu (D).

Total weight of necklace of outside length n
+ inside with white outer vertices.



Bijection with trees [Bouttier, Di Francesco, Guitter 04]
rooted pointed map plane tree + labels

vertices <«g——p  White vertices
faces T black vertices



Bijection with trees [Bouttier, Di Francesco, Guitter 04]

rooted pointed map

plane tree + labels

<>
vertices «g——p  White vertices
faces <«4—»  black vertices
-+ gray vertices
g-Boltzmann map <4—»  g-Galton-Watson tree
P,(ie) = (1—-1/R)"/R
- 21 1
P)o (207] ) (27J_|__|_1];|_])Q22—|—J—|—2R SJ
P.(io,j¢) = (f:r])CI2z+g+1R S
S

where R,

defined in terms of q.



Criticality of the gasket

Def: We say that a weight sequence (g, ) is critical if the correspond-
ing Galton Watson tree is critical
(that is, the matrix of reproduction-means has spectral radius 1).
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Def: We say that a weight sequence (g, ) is critical if the correspond-
ing Galton Watson tree is critical
(that is, the matrix of reproduction-means has spectral radius 1).

Theorem.
e The weights (¢,,) defining the gasket are critical for p > 1/2.
e The size of the gasket has a tail in n=2%/7if p = 1/2,

n=%2 if p > 1/2.



Criticality of the gasket

Def: We say that a weight sequence (g, ) is critical if the correspond-
ing Galton Watson tree is critical
(that is, the matrix of reproduction-means has spectral radius 1).

Theorem.
e The weights (¢,,) defining the gasket are critical for p > 1/2.
e The size of the gasket has a tail in n=2%/7if p = 1/2,
n=%2 if p > 1/2.
Proof of criticality.
e Criticality of (¢,) is -equivalent to R'(1)=o0c0 where
R(u),S(w) are the smallest non-negative  solutions  of

R(u) =1+ 3, ; (075 @i R(u) ™S (u),
(u

S(u) =3 ; (i) a2ivsa R(u)' S(u).
e The total weight of maps with outer degree n

is fo 222—1—] . (Z?J)R(u)iS(u)j which behaves like

n =3/ (S(1) 4+ 24/R(1))" unless R'(1) = oo.



Scaling limit of the gasket

Theorem. Suppose (¢, ) is a sequence of weights which is critical and
such that ¢2,,11 = 0 and o, ~ cn 7" /2 K™ with v € (1,2).

Let M, = random metric space (V,d,.) corresponding to a g-
Boltzmann map conditioned to have n vertices.

Then n~ 27 M, converges in law (in the Gromov-Haussdorff topology)
toward a compact metric space of Hausdorff dimension 2.



Scaling limit of the gasket

Theorem. Suppose (¢, ) is a sequence of weights which is critical and
such that ¢2,,11 = 0 and o, ~ cn 7" /2 K™ with v € (1,2).

Let M, = random metric space (V,d,.) corresponding to a g-
Boltzmann map conditioned to have n vertices.

Then n~ 27 M, converges in law (in the Gromov-Haussdorff topology)
toward a compact metric space of Hausdorff dimension 2.

If the result extends to the non-bipartite setting, then the gasket of
percolation converges toward the stable map of parameter v = 7/6.




Thanks.




