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Plane maps
Definition
A plane map is an embedding of a connected, finite (multi)graph into
the 2-dimensional sphere, considered up to orientation-preserving
homeomorphisms of the sphere.

A rooted map: one
distinguished oriented edge.

V (m) Vertices
E(m) Edges
F (m) Faces

#V (m)−#E(m) + #F (m) = 2 (Euler)
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General motivation
Maps appear naturally in many contexts

Graph theory (4-color theorem, ...)
Counting problems

I by direct resolution of the equation solved by generating functions,
using the quadratic method [Tutte, Bender-Canfield,
Bousquet-Mélou-Jehanne, Bousquet-Mélou-Bernardi]

I by using matrix integrals [t’Hooft, Brézin-Parisi-Itzykson-Zuber, ...]
I by algebraic methods: representation theory of the symmetric

group, algebraic geometry [Goulden-Jackson,...]
I by bijective methods [Cori-Vauquelin, Schaeffer, Poulalhon,

Bouttier-Di Francesco-Guitter, Bernardi, Chapuy, Fusy,...]

Theoretical physics: random maps are natural models of random
surfaces (discretization of 2D quantum gravity) [Polyakov,
Kazakov, Kawai, Ambjørn & Watabiki, ...]
Probability theory: finding scaling limits for discrete ‘combinatorial’
random structures (e.g. Donsker’s theorem, continuum random
trees, statistical physics in 2D and SLE)
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Simulation of a uniform random plane quadrangulation
with 30000 vertices, by J.-F. Marckert

Qn uniform random variable in the
set Qn, of rooted plane
quadrangulations with n faces
The set V (Qn) of its vertices is
endowed with the graph distance
dQn .
Typically dQn (u, v) scales like n1/4

(Chassaing-Schaeffer (2004)).
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Topologies on metric spaces

A natural framework for random metric spaces is to compare them
using the Gromov-Hausdorff distance. If (X ,d), (X ′,d ′) are compact
metric, let

dGH(X ,X ′) = inf
φ,φ′

δH(φ(X ), φ′(X ′)) ,

the infimum being taken over isometric embeddings of X ,X ′ into a
common metric space (Z , δ) and δH is the usual Hausdorff distance
between compact subsets of Z .

Proposition
This endows the space M of isometry classes of compact spaces with
a complete, separable distance.
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Convergence to the Brownian map

Theorem (M. (2011))
There exists a random metric space (S,D∗), called the Brownian map,
such that the following convergence in distribution holds

(V (Qn), (8n/9)−1/4dQn )
(d)−→

n→∞
(S,D∗)

as n→∞, for the Gromov-Hausdorff topology.

This result has been proved independently by Le Gall (2011), via
a different approach.
Before this work, convergence was only known up to extraction of
subsequences, but the uniqueness of the limiting law was open.
Le Gall (2011) also proves universality: For instance, the Brownian
map is also the limit (up to a constant factor) of uniform random
triangulations with n faces, or bipartite Boltzmann random maps.
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Some of the previous results on random maps

Chassaing-Schaeffer (2004) identify n1/4 as the proper scaling
and compute certain limiting functionals for random
quadrangulations. Generalized by Marckert-M. (2007), M. (2008)
to the larger class of Boltzmann random maps.
Marckert-Mokkadem (2006) establish limit theorems (in a sense
weaker than Gromov-Hausdorff), and introduce the Brownian map.
Le Gall (2007) shows tightness for rescaled 2p-angulations in the
Gromov-Hausdorff topology, and shows that the limiting topology
is the same as that of the Brownian map. All subsequential limits
have Hausdorff dimension 4, and so does the Brownian map.
Le Gall-Paulin (2008), and later M. (2008) show that the limiting
topology is that of the 2-sphere.
Bouttier-Guitter (2008) identify the limiting joint law of distances
between three uniformly chosen vertices.
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Other topologies

Similar results are known when the sphere is replaced by the
genus-g torus, building on bijective results by
Chapuy-Marcus-Schaeffer (2007), Chapuy (2009).
Bettinelli (2010) shows that subsequential limits of genus-g
random bipartite quadrangulations exist, have Hausdorff
dimension 4, and have the same topology as the g-torus.
Similar results are known for plane quadrangulations with a
boundary (Bettinelli).
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Local limits

In another direction,
Angel-Schramm (2002) and
Angel (2002) consider local
limit results for random
triangulations. They construct
the so-called uniform infinite
planar triangulation (UIPT).
See also Krikun (2003,2005).
Followed by work of
Chassaing-Durhuus (2006)
Ménard (2008), that generalize
the bijective approaches in this
infinite context.
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Geometry at infinity of the UIPQ

Theorem (Curien-Ménard-M. (2012))
There exists a sequence of vertices p1,p2, . . . such that any
infinite geodesic path goes through every but a finite number of
the vertices pi , i ≥ 1.
Moreover it holds that for every vertices x , y,
z 7→ dgr(x , z)− dgr(y , z) takes the same value for every but a finite
number of z’s.

This says that the Uniform Infinite Planar
Quadrangulation has an essentially
unique infinite geodesic path, that leads to
a single point at infinity.

∞
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Schaeffer’s bijection: coding maps with trees

Let Tn be the set of rooted plane trees with n edges,pause
Tn be the set of labeled trees (t, l) where l : V (t)→ Z satisfies
l(root) = 0 and

|l(u)− l(v)| ≤ 1 , u, v neighbors .

Theorem
The construction to follow yields a bijection between Tn × {0,1} and
Q∗n, the set of rooted, pointed plane quadrangulations with n faces.
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Schaeffer’s bijection
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Schaeffer’s bijection

1

2

2

1

3

3

2

2

0

? ?

Note that the labels are geodesic distances in the map. Key formula:

dq(v∗, v) = l(v)− inf l + 1

Grégory Miermont (Université Paris-Sud) Scaling limit of quadrangulations Lattice models & combinatorics 12 / 25



Scaling limits for plane trees: Aldous’ CRT
The Brownian tree arises as the scaling limit of many discrete
random tree models, e.g. uniform random element Tn of Tn:

(V (Tn), (2n)−1/2dTn )→ T ,

for the Gromov-Hausdorff distance.
Note that a tree with n edges can be encoded by a walk (Harris
encoding): let ui ,0 ≤ i ≤ 2n be the i + 1-th explored vertex in
contour order (started at the root). Let Ci the height of ui .

The Harris walk is a
random walk
conditioned to be
non-negative and to
be at 0 at time 2n.
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The Brownian CRT
Let Tn be uniform in Tn, and
Cn be its contour process. As
n→∞, the process
((2n)−1/2Cn

[2nt],0 ≤ t ≤ 1)
converges in distribution to a
normalized Brownian
excursion (et ,0 ≤ t ≤ 1).
Define

de(s, t) = es+et−2 inf
s∧t≤u≤s∨t

eu .

This is a pseudo-distance on
[0,1]. The continuum random
tree is the quotient space
Te = [0,1]/ ∼e, where
s ∼ t ⇐⇒ de(s, t) = 0. It
defines an R-tree.
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Stick-breaking construction

0 m1 ∼ e−r2/2 m2 −m1 ∼ e−r2/2−m1r . . .

Build T◦ as an R-tree, by
grafting segments drawn from
a Poisson measure on R+ with
intensity tdt recursively at a
uniform location in the tree
constructed at each stage.
Then let T be (the isometry
class of) the metric completion
of T◦. It holds that T =d Te.
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Brownian labels on the Brownian tree

Once the tree is build, one can
consider a white noise
supported by the tree, or,
equivalently, branching
Brownian paths.
Informally, we let Z be a
centered Gaussian process
run on T , with covariance
function

Cov (Za,Zb) = dT (root,a ∧ b) ,

a ∧ b the most recent common
ancestor of a,b.
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centered Gaussian process
run on T , with covariance
function

Cov (Za,Zb) = dT (root,a ∧ b) ,

a ∧ b the most recent common
ancestor of a,b.

root

a b
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Convergence of labeled trees
Let (T n, `n) be uniform in Tn. Then(

1√
2n

Tn,

(
9

8n

)1/4

`n

)
(d)−→

n→∞
(Te,Z ) ,

e.g. in the sense of convergence of contour encoding functions.
We want to apply to (Te,Z ) a similar construction as Schaeffer’s
bijection. Assume

(Tn = V (Qn) \ {v∗}, (8n/9)−1/4dQn )
(d)−→

n→∞
(Te,D)

where D is some random (pseudo-)distance on Te (a true distance
on Te/{D = 0}).
The distance D should satisfy the continuous analog of the
distance estimates to v∗ in the discrete setting:

D(a,a∗) = Za − inf Z

whenever a∗ = argminZ .
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The Brownian map
Set

D◦(a,b) = Za + Zb − 2 max
(

min
[a,b]

Z ,min
[b,a]

Z
)
.

This will be an upper-bound for D(a,b), and equal to D(a,b)
whenever a = a∗ or more generally if a∗,a,b are aligned.

a∗

a
b

inf [a,b] Z

A straightforward analog of D◦

gives an upper-bound for the
distance in the discrete
setting, by concatenating
pieces of geodesics from a,b
to a∗.
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The Brownian map
The function D◦ is not a pseudo-distance, so we set

D∗(a,b) = inf

{
k−1∑
i=1

D◦(ai ,ai+1) : a1 = a,ak = b

}
,

the largest pseudo-distance on Te that is less than D◦.
The space (S,D∗) where

S = Te/{D∗ = 0}

is called the Brownian map.
The method to prove that (V (Qn), (8n/9)−1/4dQn ) converges in
distribution to (S,D∗) is to show that the subsequential limit
(Te,D) satisfies D = D∗.
The part D ≤ D∗ is by definition since D ≤ D◦. The hard part is
the converse.
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Idea of proof: Shape of the typical geodesics
The main idea for the proof is to describe precisely the geodesic γ
between two “generic” points x1, x2. More precisely, one must
show that it is a patchwork of small segments of geodesic paths
headed toward a∗ (geodesics tend to stick).
So we want to show that Γ, the set of points x on γ from which we
can start a geodesic to a∗ not meeting γ again, is a small set.

Proposition
There exists δ ∈ (0,1) such that
a.s. for every ε > 0, the set Γ can
be covered with less than ε−(1−δ)

D-balls of radius ε. In particular
dimH(Γ) < 1.

Segments outside the “bad” purple
set have coinciding D◦ and
D∗-lengths.
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Idea of proof: almost equivalence between D and D∗
The previous proposition is enough, once complemented by the
following lemma.

Lemma
For every α ∈ (0,1), there exists a random C ∈ (0,∞) such that
D∗(a,b) ≤ CD(a,b)α for every a,b ∈ Te.

This lemma comes from precise volume estimates of balls for both
metrics D and D∗ (Le Gall 2010).
Covering Γ with at most ε−(1−δ) balls for D breaks γ into segments
[ai ,bi ],1 ≤ i ≤ K say, each of which has D∗(ai ,bi) = D(ai ,bi).
Then for α > 1− δ,

D∗(x1, x2) ≤
K∑

i=1

D∗(ai ,bi) + ε−(1−δ) sup
D(a,b)≤2ε

D∗(a,b)

≤
K∑

i=1

D(ai ,bi) + C(2ε)α−1+δ ≤ D(x1, x2) + o(1)
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Idea of proof: Quickly separating geodesics

γ

ε

x1 x2

x0

x3

A method to prove the main
proposition is to approach
points of Γ by points where
geodesics perform a quick
separation: Evaluate the
probability that for 4 randomly
chosen points x0, x1, x2, x3,

I The three geodesics from x3
to x0, x1, x2 are disjoint
outside of the ball of radius ε
around x3

I γ passes through the latter
ball.

Proposition (codimension estimate)

The probability of the latter event is bounded above by Cε3+χ for some
χ > 0.
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Idea of proof: Evaluating quickly avoiding geodesic
configurations

x1

x2

x3

x0

0

0

0

We then use a bijection (M.
2009) generalizing Schaeffer’s
by adding sources at
x0, x1, x2, x3, measuring
geodesic distances
simultaneously from these
points.
Count labeled maps as in the
picture: Labeled trees are
branching out of a 3-regular
graph with 4 faces.
Red=non-negative labels.
Green=labels are ≥ −2ε and
`(x3) ≤ −ε. Dotted path is not
a geodesic.
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Loop models on random quadrangulations

n

g

h1

h2

weight W (n)
g,h (q) = g12h12

1 h16
2 n4

Decorate a quadrangulation
with “matter”: a configuration
of simple and mutually
avoiding loops on the dual
graph (Borot, Bouttier, Guitter).
Emptying the interior of the
loops, on obtains a Boltzmann
random map, with distribution
proportional to∏

f∈F (m) qdeg f/2, where

qk = gδk2+nh2k
∑
|∂q|=2k

W (n)
g,h (q)

summing over decorated
quadrangulations with a
boundary
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Loop models on random quadrangulations

weight q13
2 q5q8

Decorate a quadrangulation
with “matter”: a configuration
of simple and mutually
avoiding loops on the dual
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Limits of maps with large faces: Stable maps

For critical values of
g,h1,h2, one expects a
continuum model to
arise, which is the
model of stable maps
of Le Gall-M. (2011)
Instead of a topological
sphere, these objects
are random Sierpinsky
carpets or gaskets.
Conjectured links to
Sheffield-Werner’s CLE
(candidate limits of loop
models on Euclidean
lattices!)
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