The scaling limit of uniform random plane quadrangulations

Grégory Miermont

Université de Paris-Sud 11, Orsay

Introductory Workshop: Lattice Models and Combinatorics MSRI, Berkeley Wednesday, January 18th 2012

 Ω

 \mathcal{L} and \mathcal{L} is a set \mathcal{L} in \mathcal{L} . The set of \mathcal{L} is a set of \mathcal{L}

Plane maps

Definition

A plane map is an embedding of a connected, finite (multi)graph into the 2-dimensional sphere, considered up to orientation-preserving homeomorphisms of the sphere.

V(**m**) Vertices *E*(**m**) Edges *F*(**m**) Faces

 $\#V(m) - \#E(m) + \#F(m) = 2$ (Euler)

A rooted map: one distinguished oriented edge.

Grégory Miermont (Université Paris-Sud) [Scaling limit of quadrangulations](#page-0-0) Lattice models & combinatorics 2/25

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Plane maps

Definition

A plane map is an embedding of a connected, finite (multi)graph into the 2-dimensional sphere, considered up to orientation-preserving homeomorphisms of the sphere.

V(**m**) Vertices *E*(**m**) Edges *F*(**m**) Faces

 $\#V(m) - \#E(m) + \#F(m) = 2$ (Euler)

A rooted map: one distinguished oriented edge.

Grégory Miermont (Université Paris-Sud) [Scaling limit of quadrangulations](#page-0-0) Lattice models & combinatorics 2/25

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Maps appear naturally in many contexts

- Graph theory (4-color theorem, ...)
- Counting problems
	- \triangleright by direct resolution of the equation solved by generating functions, using the quadratic method [Tutte, Bender-Canfield, Bousquet-Mélou-Jehanne, Bousquet-Mélou-Bernardi]
	- ▶ by using matrix integrals [t'Hooft, Brézin-Parisi-Itzykson-Zuber, ...]
	- \triangleright by algebraic methods: representation theory of the symmetric group, algebraic geometry [Goulden-Jackson,...]
	- \triangleright by bijective methods [Cori-Vauquelin, Schaeffer, Poulalhon, Bouttier-Di Francesco-Guitter, Bernardi, Chapuy, Fusy,...]
- Theoretical physics: random maps are natural models of random surfaces (discretization of 2D quantum gravity) [Polyakov, Kazakov, Kawai, Ambjørn & Watabiki, ...]
- Probability theory: finding scaling limits for discrete 'combinatorial' random structures (e.g. Donsker's theorem, continuum random trees, statistical physics in 2D and SLE) イロト イ押 トイラ トイラトー Ω

Maps appear naturally in many contexts

- Graph theory (4-color theorem, ...)
- Counting problems
	- \triangleright by direct resolution of the equation solved by generating functions, using the quadratic method [Tutte, Bender-Canfield, Bousquet-Mélou-Jehanne, Bousquet-Mélou-Bernardi]
	- ▶ by using matrix integrals [t'Hooft, Brézin-Parisi-Itzykson-Zuber, ...]
	- \triangleright by algebraic methods: representation theory of the symmetric group, algebraic geometry [Goulden-Jackson,...]
	- \triangleright by bijective methods [Cori-Vauquelin, Schaeffer, Poulalhon, Bouttier-Di Francesco-Guitter, Bernardi, Chapuy, Fusy,...]
- Theoretical physics: random maps are natural models of random surfaces (discretization of 2D quantum gravity) [Polyakov, Kazakov, Kawai, Ambjørn & Watabiki, ...]

• Probability theory: finding scaling limits for discrete 'combinatorial' random structures (e.g. Donsker's theorem, continuum random trees, statistical physics in 2D and SLE) Ω

Maps appear naturally in many contexts

- Graph theory (4-color theorem, ...)
- Counting problems
	- \triangleright by direct resolution of the equation solved by generating functions, using the quadratic method [Tutte, Bender-Canfield, Bousquet-Mélou-Jehanne, Bousquet-Mélou-Bernardi]
	- ▶ by using matrix integrals [t'Hooft, Brézin-Parisi-Itzykson-Zuber, ...]
	- \triangleright by algebraic methods: representation theory of the symmetric group, algebraic geometry [Goulden-Jackson,...]
	- \triangleright by bijective methods [Cori-Vauquelin, Schaeffer, Poulalhon, Bouttier-Di Francesco-Guitter, Bernardi, Chapuy, Fusy,...]
- Theoretical physics: random maps are natural models of random surfaces (discretization of 2D quantum gravity) [Polyakov, Kazakov, Kawai, Ambjørn & Watabiki, ...]

• Probability theory: finding scaling limits for discrete 'combinatorial' random structures (e.g. Donsker's theorem, continuum random trees, statistical physics in 2D and SLE) $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$ Ω

Maps appear naturally in many contexts

- Graph theory (4-color theorem, ...)
- Counting problems
	- \triangleright by direct resolution of the equation solved by generating functions, using the quadratic method [Tutte, Bender-Canfield, Bousquet-Mélou-Jehanne, Bousquet-Mélou-Bernardi]
	- by using matrix integrals [t'Hooft, Brézin-Parisi-Itzykson-Zuber, ...]
	- \triangleright by algebraic methods: representation theory of the symmetric group, algebraic geometry [Goulden-Jackson,...]
	- \triangleright by bijective methods [Cori-Vauquelin, Schaeffer, Poulalhon, Bouttier-Di Francesco-Guitter, Bernardi, Chapuy, Fusy,...]
- Theoretical physics: random maps are natural models of random surfaces (discretization of 2D quantum gravity) [Polyakov, Kazakov, Kawai, Ambjørn & Watabiki, ...]
- Probability theory: finding scaling limits for discrete 'combinatorial' random structures (e.g. Donsker's theorem, continuum random trees, statistical physics in 2D and SLE) $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$ Ω

Simulation of a uniform random plane quadrangulation with 30000 vertices, by J.-F. Marckert

- *Qⁿ* uniform random variable in the set **Q***n*, of rooted plane quadrangulations with *n* faces
- The set $V(Q_n)$ of its vertices is endowed with the graph distance *dQⁿ* .
- Typically $d_{Q_n}(u,v)$ scales like $n^{1/4}$ (Chassaing-Schaeffer (2004)).

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$

Simulation of a uniform random plane quadrangulation with 30000 vertices, by J.-F. Marckert

- *Qⁿ* uniform random variable in the set **Q***n*, of rooted plane quadrangulations with *n* faces
- The set $V(Q_n)$ of its vertices is endowed with the graph distance *dQⁿ* .
- Typically $d_{Q_n}(u,v)$ scales like $n^{1/4}$ (Chassaing-Schaeffer (2004)).

 Ω

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

Simulation of a uniform random plane quadrangulation with 30000 vertices, by J.-F. Marckert

- *Qⁿ* uniform random variable in the set **Q***n*, of rooted plane quadrangulations with *n* faces
- The set $V(Q_n)$ of its vertices is endowed with the graph distance *dQⁿ* .
- Typically $d_{Q_n}(u,v)$ scales like $n^{1/4}$ (Chassaing-Schaeffer (2004)).

 Ω

 $4.60 \times 4.70 \times 1.70$

A natural framework for random metric spaces is to compare them **using the Gromov-Hausdorff distance.** If (X, d) , (X', d') are compact metric, let

$$
d_{GH}(X,X') = \inf_{\phi,\phi'} \delta_H(\phi(X),\phi'(X'))\,,
$$

the infimum being taken over isometric embeddings of X, X' into a common metric space (Z, δ) and δ_H is the usual Hausdorff distance between compact subsets of *Z*.

This endows the space M *of isometry classes of compact spaces with a complete, separable distance.*

 Ω

A natural framework for random metric spaces is to compare them using the Gromov-Hausdorff distance. If $(X, d), (X', d')$ are compact metric, let

$$
\mathrm{d}_{\mathrm{GH}}(X,X')=\inf_{\phi,\phi'}\delta_H(\phi(X),\phi'(X'))\,,
$$

the infimum being taken over isometric embeddings of X, X' into a common metric space (Z, δ) and δ_H is the usual Hausdorff distance between compact subsets of *Z*.

This endows the space M *of isometry classes of compact spaces with a complete, separable distance.*

 Ω

A natural framework for random metric spaces is to compare them using the Gromov-Hausdorff distance. If $(X, d), (X', d')$ are compact metric, let

$$
\mathrm{d}_{\mathrm{GH}}(X,X')=\inf_{\phi,\phi'}\delta_H(\phi(X),\phi'(X'))\,,
$$

the infimum being taken over isometric embeddings of X, X' into a **common metric space (Z,** δ **)** and δ_H is the usual Hausdorff distance between compact subsets of *Z*.

This endows the space M *of isometry classes of compact spaces with a complete, separable distance.*

 Ω

A natural framework for random metric spaces is to compare them using the Gromov-Hausdorff distance. If $(X, d), (X', d')$ are compact metric, let

$$
\mathrm{d}_{\mathrm{GH}}(X,X')=\inf_{\phi,\phi'}\delta_H(\phi(X),\phi'(X'))\,,
$$

the infimum being taken over isometric embeddings of X, X' into a common metric space (Z, δ) and δ_H is the usual Hausdorff distance between compact subsets of *Z*.

This endows the space M *of isometry classes of compact spaces with a complete, separable distance.*

 Ω

A natural framework for random metric spaces is to compare them using the Gromov-Hausdorff distance. If $(X, d), (X', d')$ are compact metric, let

$$
\mathrm{d}_{\mathrm{GH}}(X,X')=\inf_{\phi,\phi'}\delta_H(\phi(X),\phi'(X'))\,,
$$

the infimum being taken over isometric embeddings of X, X' into a common metric space (Z, δ) and δ_H is the usual Hausdorff distance between compact subsets of *Z*.

Proposition

This endows the space M *of isometry classes of compact spaces with a complete, separable distance.*

 Ω

イロト イ押 トイラト イラト

Convergence to the Brownian map

Theorem (M. (2011))

There exists a random metric space (*S*, *D* ∗)*, called the Brownian map, such that the following convergence in distribution holds*

$$
(V(Q_n), (8n/9)^{-1/4}d_{Q_n})\underset{n\to\infty}{\overset{(d)}{\longrightarrow}} (S, D^*)
$$

as n $\rightarrow \infty$ *, for the Gromov-Hausdorff topology.*

- This result has been proved independently by Le Gall (2011), *via* a different approach.
- Before this work, convergence was only known up to extraction of subsequences, but the uniqueness of the limiting law was open.
- Le Gall (2011) also proves universality: For instance, the Brownian map is also the limit (up to a constant factor) of uniform random triangulations with *n* faces, or bipartite Boltzmann random maps.

 Ω

(ロトヨ母トヨヨトヨヨ)

Convergence to the Brownian map

Theorem (M. (2011))

There exists a random metric space (*S*, *D* ∗)*, called the Brownian map, such that the following convergence in distribution holds*

$$
(V(Q_n), (8n/9)^{-1/4}d_{Q_n})\xrightarrow[n\to\infty]{(d)} (S, D^*)
$$

as n $\rightarrow \infty$ *, for the Gromov-Hausdorff topology.*

- This result has been proved independently by Le Gall (2011), *via* a different approach.
- Before this work, convergence was only known up to extraction of subsequences, but the uniqueness of the limiting law was open.
- Le Gall (2011) also proves universality: For instance, the Brownian map is also the limit (up to a constant factor) of uniform random triangulations with *n* faces, or bipartite Boltzmann random maps.

 \leftarrow \leftarrow \leftarrow

- Chassaing-Schaeffer (2004) identify *n* ¹/⁴ as the proper scaling and compute certain limiting functionals for random quadrangulations. Generalized by Marckert-M. (2007), M. (2008) to the larger class of Boltzmann random maps.
- Marckert-Mokkadem (2006) establish limit theorems (in a sense weaker than Gromov-Hausdorff), and introduce the Brownian map.
- Le Gall (2007) shows tightness for rescaled 2*p*-angulations in the Gromov-Hausdorff topology, and shows that the limiting topology is the same as that of the Brownian map. All subsequential limits have Hausdorff dimension 4, and so does the Brownian map.
- Le Gall-Paulin (2008), and later M. (2008) show that the limiting topology is that of the 2-sphere.
- Bouttier-Guitter (2008) identify the limiting joint law of distances between three uniformly chosen vertices.

 Ω

- Chassaing-Schaeffer (2004) identify *n* ¹/⁴ as the proper scaling and compute certain limiting functionals for random quadrangulations. Generalized by Marckert-M. (2007), M. (2008) to the larger class of Boltzmann random maps.
- Marckert-Mokkadem (2006) establish limit theorems (in a sense weaker than Gromov-Hausdorff), and introduce the Brownian map.
- Le Gall (2007) shows tightness for rescaled 2*p*-angulations in the Gromov-Hausdorff topology, and shows that the limiting topology is the same as that of the Brownian map. All subsequential limits have Hausdorff dimension 4, and so does the Brownian map.
- Le Gall-Paulin (2008), and later M. (2008) show that the limiting topology is that of the 2-sphere.
- Bouttier-Guitter (2008) identify the limiting joint law of distances between three uniformly chosen vertices.

- Chassaing-Schaeffer (2004) identify *n* ¹/⁴ as the proper scaling and compute certain limiting functionals for random quadrangulations. Generalized by Marckert-M. (2007), M. (2008) to the larger class of Boltzmann random maps.
- Marckert-Mokkadem (2006) establish limit theorems (in a sense weaker than Gromov-Hausdorff), and introduce the Brownian map.
- Le Gall (2007) shows tightness for rescaled 2*p*-angulations in the Gromov-Hausdorff topology, and shows that the limiting topology is the same as that of the Brownian map. All subsequential limits have Hausdorff dimension 4, and so does the Brownian map.
- Le Gall-Paulin (2008), and later M. (2008) show that the limiting topology is that of the 2-sphere.
- Bouttier-Guitter (2008) identify the limiting joint law of distances between three uniformly chosen vertices.

 Ω

イロト イ押 トイラ トイラトー

- Chassaing-Schaeffer (2004) identify *n* ¹/⁴ as the proper scaling and compute certain limiting functionals for random quadrangulations. Generalized by Marckert-M. (2007), M. (2008) to the larger class of Boltzmann random maps.
- Marckert-Mokkadem (2006) establish limit theorems (in a sense weaker than Gromov-Hausdorff), and introduce the Brownian map.
- Le Gall (2007) shows tightness for rescaled 2*p*-angulations in the Gromov-Hausdorff topology, and shows that the limiting topology is the same as that of the Brownian map. All subsequential limits have Hausdorff dimension 4, and so does the Brownian map.
- Le Gall-Paulin (2008), and later M. (2008) show that the limiting topology is that of the 2-sphere.
- Bouttier-Guitter (2008) identify the limiting joint law of distances between three uniformly chosen vertices.

E

- Chassaing-Schaeffer (2004) identify *n* ¹/⁴ as the proper scaling and compute certain limiting functionals for random quadrangulations. Generalized by Marckert-M. (2007), M. (2008) to the larger class of Boltzmann random maps.
- Marckert-Mokkadem (2006) establish limit theorems (in a sense weaker than Gromov-Hausdorff), and introduce the Brownian map.
- Le Gall (2007) shows tightness for rescaled 2*p*-angulations in the Gromov-Hausdorff topology, and shows that the limiting topology is the same as that of the Brownian map. All subsequential limits have Hausdorff dimension 4, and so does the Brownian map.
- Le Gall-Paulin (2008), and later M. (2008) show that the limiting topology is that of the 2-sphere.
- Bouttier-Guitter (2008) identify the limiting joint law of distances between three uniformly chosen vertices.

E

 Ω

イロト イ押 トイラ トイラトー

Other topologies

- Similar results are known when the sphere is replaced by the genus-*g* torus, building on bijective results by Chapuy-Marcus-Schaeffer (2007), Chapuy (2009).
- **•** Bettinelli (2010) shows that subsequential limits of genus-*g* random bipartite quadrangulations exist, have Hausdorff dimension 4, and have the same topology as the *g*-torus.
- Similar results are known for plane quadrangulations with a boundary (Bettinelli).

 Ω

イロト イ押 トイラト イラト

Local limits

• In another direction. Angel-Schramm (2002) and Angel (2002) consider local limit results for random triangulations. They construct the so-called uniform infinite planar triangulation (UIPT). See also Krikun (2003,2005).

• Followed by work of Chassaing-Durhuus (2006) Ménard (2008), that generalize the bijective approaches in this infinite context.

 Ω

AD > 3 B > 3 B

Local limits

- In another direction. Angel-Schramm (2002) and Angel (2002) consider local limit results for random triangulations. They construct the so-called uniform infinite planar triangulation (UIPT). See also Krikun (2003,2005).
- **•** Followed by work of Chassaing-Durhuus (2006) Ménard (2008), that generalize the bijective approaches in this infinite context.

Local limits

- In another direction. Angel-Schramm (2002) and Angel (2002) consider local limit results for random triangulations. They construct the so-called uniform infinite planar triangulation (UIPT). See also Krikun (2003,2005).
- **•** Followed by work of Chassaing-Durhuus (2006) Ménard (2008), that generalize the bijective approaches in this infinite context.

Geometry at infinity of the UIPQ

Theorem (Curien-Ménard-M. (2012))

- **•** There exists a sequence of vertices p_1, p_2, \ldots such that any *infinite geodesic path goes through every but a finite number of the vertices* $p_i, i \geq 1$.
- *Moreover it holds that for every vertices x*, *y,* $z \mapsto d_{\text{gr}}(x, z) - d_{\text{gr}}(y, z)$ *takes the same value for every but a finite number of z's.*

This says that the Uniform Infinite Planar Quadrangulation has an essentially unique infinite geodesic path, that leads to a single point at infinity.

Schaeffer's bijection: coding maps with trees

- Let **T***ⁿ* be the set of rooted plane trees with *n* edges,pause
- \mathbb{T}_n be the set of labeled trees (\mathbf{t}, \mathbf{l}) where $\mathbf{l}: V(\mathbf{t}) \to \mathbb{Z}$ satisfies $I(root) = 0$ and

 $|I(u) - I(v)| \leq 1$, *u*, *v* neighbors .

The construction to follow yields a bijection between ^T*ⁿ* × {0, ¹} *and* **Q**∗ *n , the set of rooted, pointed plane quadrangulations with n faces.*

 Ω

Schaeffer's bijection: coding maps with trees

- Let **T***ⁿ* be the set of rooted plane trees with *n* edges,pause
- \mathbb{T}_n be the set of labeled trees (\mathbf{t}, \mathbf{l}) where $\mathbf{l}: V(\mathbf{t}) \to \mathbb{Z}$ satisfies $I(root) = 0$ and

 $|I(u) - I(v)| \leq 1$, *u*, *v* neighbors.

Theorem

The construction to follow yields a bijection between ^T*ⁿ* × {0, ¹} *and* **Q**∗ *n , the set of rooted, pointed plane quadrangulations with n faces.*

 Ω

4 0 8 4 6 8 4 9 8 4 9 8 1

Grégory Miermont (Université Paris-Sud) [Scaling limit of quadrangulations](#page-0-0) Lattice models & combinatorics 12/25

重

 \rightarrow

 299

イロトメ 倒 トメ 差 トメ 差

 \sim

重

 299

 $-0.11 - 1.5$

 \leftarrow \leftarrow \leftarrow \sim 画

Grégory Miermont (Université Paris-Sud) [Scaling limit of quadrangulations](#page-0-0) Lattice models & combinatorics 12/25

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

 $-0.11 - 1.5$

 299

重

Grégory Miermont (Université Paris-Sud) [Scaling limit of quadrangulations](#page-0-0) Lattice models & combinatorics 12/25

 \sim -41 ∍

÷

 $-0.11 - 1.5$ k. AD 15 \sim 299

Þ

Grégory Miermont (Université Paris-Sud) [Scaling limit of quadrangulations](#page-0-0) Lattice models & combinatorics 12/25

重

 299

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

COLE

重

 299

K ロメ K 御 メ K 君 メ K 君 X

Note that the labels are geodesic distances in the map. Key formula:

$$
d_{\mathbf{q}}(\mathbf{v}_{*},\mathbf{v})=\mathbf{I}(\mathbf{v})-\inf\mathbf{I}+\mathbf{1}
$$

 299

A + + E + + E

Scaling limits for plane trees: Aldous' CRT

• The Brownian tree arises as the scaling limit of many discrete random tree models, e.g. uniform random element T_n of \mathbf{T}_n :

$$
(V(T_n),(2n)^{-1/2}d_{T_n})\to \mathcal{T},
$$

for the Gromov-Hausdorff distance.

Note that a tree with *n* edges can be encoded by a walk (Harris encoding): let $u_i, 0 \leq i \leq 2n$ be the $i + 1$ -th explored vertex in contour order (started at the root). Let C_i the height of u_i .

 Ω

イロト イ押ト イヨト イヨト

Scaling limits for plane trees: Aldous' CRT

The Brownian tree arises as the scaling limit of many discrete random tree models, e.g. uniform random element T_n of \mathbf{T}_n :

$$
(V(T_n),(2n)^{-1/2}d_{T_n})\to \mathcal{T},
$$

for the Gromov-Hausdorff distance.

Note that a tree with *n* edges can be encoded by a walk (Harris encoding): let $u_i, 0 \le i \le 2n$ be the $i + 1$ -th explored vertex in contour order (started at the root). Let C_i the height of u_i .

The Harris walk is a random walk conditioned to be non-negative and to be at 0 at time 2*n*.

 Ω

イロ トラ 河 トラ モ トラ モ ト

Scaling limits for plane trees: Aldous' CRT

The Brownian tree arises as the scaling limit of many discrete random tree models, e.g. uniform random element T_n of \mathbf{T}_n :

$$
(V(T_n),(2n)^{-1/2}d_{T_n})\to \mathcal{T},
$$

for the Gromov-Hausdorff distance.

Note that a tree with *n* edges can be encoded by a walk (Harris encoding): let $u_i, 0 \le i \le 2n$ be the $i + 1$ -th explored vertex in contour order (started at the root). Let C_i the height of u_i .

The Harris walk is a random walk conditioned to be non-negative and to be at 0 at time 2*n*.

 Ω

イロメ イ何 メラモメラ 三

The Brownian CRT

• Let T_n be uniform in \mathbf{T}_n , and *C ⁿ* be its contour process. As $n \to \infty$, the process $((2n)^{-1/2}C_{[2nt]}^n, 0 \le t \le 1)$ converges in distribution to a normalized Brownian excursion (e_t , 0 $\leq t \leq$ 1).

 \blacksquare Define

$$
d_{\mathbf{e}}(\mathbf{s},t)=\mathbf{e}_{\mathbf{s}}+\mathbf{e}_{t}-2\inf_{\mathbf{s}\wedge t\leq u\leq \mathbf{s}\vee t}\mathbf{e}_{u}.
$$

This is a pseudo-distance on [0, 1]. The continuum random tree is the quotient space $\mathcal{T}_{\rm e}=[0,1]/\sim_{\rm e}$, where *s* ∼ *t* \iff *d*_e(*s*, *t*) = 0. It defines an R-tree.

The Brownian CRT

Let *Tⁿ* be uniform in **T***n*, and *C ⁿ* be its contour process. As $n \to \infty$, the process $((2n)^{-1/2}C_{[2nt]}^n, 0 \le t \le 1)$ converges in distribution to a normalized Brownian excursion (e_t , 0 $\leq t \leq$ 1).

o Define

$$
d_{\mathbf{e}}(\mathbf{s},t)=\mathbf{e}_{\mathbf{s}}+\mathbf{e}_{t}-2\inf_{\mathbf{s}\wedge t\leq u\leq \mathbf{s}\vee t}\mathbf{e}_{u}.
$$

This is a pseudo-distance on [0, 1]. The continuum random tree is the quotient space $\mathcal{T}_{\scriptscriptstyle \mathsf{e}} = [0,1]/\sim_{\scriptscriptstyle \mathsf{e}}$, where $s \sim t \iff d_e(s,t) = 0$. It defines an R-tree.

Stick-breaking construction

- Build \mathcal{T}_{\circ} as an R-tree, by grafting segments drawn from a Poisson measure on \mathbb{R}_+ with intensity *t*d*t* recursively at a uniform location in the tree constructed at each stage.
- Then let $\mathcal T$ be (the isometry class of) the metric completion of \mathcal{T}_{\circ} . It holds that $\mathcal{T} = d \mathcal{T}_{\circ}$.

 Ω

オター・エヌ エヌ

Stick-breaking construction

- Build \mathcal{T}_{\circ} as an R-tree, by grafting segments drawn from a Poisson measure on \mathbb{R}_+ with intensity *t*d*t* recursively at a uniform location in the tree constructed at each stage.
- Then let $\mathcal T$ be (the isometry class of) the metric completion of \mathcal{T}_{\circ} . It holds that $\mathcal{T} = d \mathcal{T}_{\circ}$.

A T

Brownian labels on the Brownian tree

- Once the tree is build, one can consider a white noise supported by the tree, or, equivalently, branching Brownian paths.
- **•** Informally, we let Z be a centered Gaussian process run on $\mathcal T$, with covariance function

 $Cov(Z_a, Z_b) = d_{\mathcal{T}}(\text{root}, a \wedge b),$

a ∧ *b* the most recent common ancestor of *a*, *b*.

Brownian labels on the Brownian tree

- Once the tree is build, one can consider a white noise supported by the tree, or, equivalently, branching Brownian paths.
- Informally, we let *Z* be a centered Gaussian process run on $\mathcal T$, with covariance function

 $Cov(Z_a, Z_b) = d_{\mathcal{T}}(\text{root}, a \wedge b),$

a ∧ *b* the most recent common ancestor of *a*, *b*.

Brownian labels on the Brownian tree

- Once the tree is build, one can consider a white noise supported by the tree, or, equivalently, branching Brownian paths.
- Informally, we let *Z* be a centered Gaussian process run on T , with covariance function

$$
Cov(Z_a, Z_b) = d_{\mathcal{T}}(\text{root}, a \wedge b),
$$

a ∧ *b* the most recent common ancestor of *a*, *b*.

Convergence of labeled trees

Let (T^n, ℓ^n) be uniform in \mathbb{T}_n . Then

$$
\left(\frac{1}{\sqrt{2n}}T_n,\left(\frac{9}{8n}\right)^{1/4}\ell_n\right)\xrightarrow[n\to\infty]{(d)}\left(T_e,Z\right),
$$

e.g. in the sense of convergence of contour encoding functions. • We want to apply to (\mathcal{T}_e, Z) a similar construction as Schaeffer's bijection. Assume

$$
(\mathcal{T}_n=V(Q_n)\setminus\{v_*\},(8n/9)^{-1/4}d_{Q_n})\bigcap_{n\to\infty}^{(d)}(\mathcal{T}_e,D)
$$

where *D* is some random (pseudo-)distance on \mathcal{T}_{e} (a true distance on $T_e/\{D = 0\}$).

The distance *D* should satisfy the continuous analog of the distance estimates to *v*[∗] in the discrete setting:

$$
D(a,a_*)=Z_a-\inf Z
$$

whenever $a_*=$ argmin Z .

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Convergence of labeled trees

Let (T^n, ℓ^n) be uniform in \mathbb{T}_n . Then

$$
\left(\frac{1}{\sqrt{2n}}T_n,\left(\frac{9}{8n}\right)^{1/4}\ell_n\right)\xrightarrow[n\to\infty]{(d)}\left(T_e,Z\right),
$$

e.g. in the sense of convergence of contour encoding functions. • We want to apply to (\mathcal{T}_{e}, Z) a similar construction as Schaeffer's bijection. Assume

$$
(T_n=V(Q_n)\setminus\{v_*\},(8n/9)^{-1/4}d_{Q_n})\underset{n\to\infty}{\overset{(d)}{\longrightarrow}}({\mathcal T}_e,D)
$$

where *D* is some random (pseudo-)distance on \mathcal{T}_{e} (a true distance on $T_e/\{D = 0\}$).

The distance *D* should satisfy the continuous analog of the distance estimates to *v*[∗] in the discrete setting:

$$
D(a,a_*)=Z_a-\inf Z
$$

whenever $a_*=argmin Z$.

 Ω

4 0 8 4 4 9 8 4 9 8 4 9 8

Convergence of labeled trees

Let (T^n, ℓ^n) be uniform in \mathbb{T}_n . Then

$$
\left(\frac{1}{\sqrt{2n}}T_n,\left(\frac{9}{8n}\right)^{1/4}\ell_n\right)\xrightarrow[n\to\infty]{(d)}\left(T_e,Z\right),
$$

e.g. in the sense of convergence of contour encoding functions. • We want to apply to (\mathcal{T}_{e}, Z) a similar construction as Schaeffer's bijection. Assume

$$
(T_n=V(Q_n)\setminus\{v_*\},(8n/9)^{-1/4}d_{Q_n})\underset{n\to\infty}{\overset{(d)}{\longrightarrow}}({\mathcal T}_e,D)
$$

where *D* is some random (pseudo-)distance on \mathcal{T}_{e} (a true distance on $T_e/\{D = 0\}$).

The distance *D* should satisfy the continuous analog of the distance estimates to *v*[∗] in the discrete setting:

$$
D(a,a_*)=Z_a-\inf Z
$$

whenever $a_*=argmin Z$.

 Ω

イロメ イ何 メラモ メラメー

Set

$$
D^{\circ}(a,b)=Z_a+Z_b-2\max\left(\min_{[a,b]}Z,\min_{[b,a]}Z\right)\,.
$$

This will be an upper-bound for *D*(*a*, *b*), and equal to *D*(*a*, *b*) whenever $a = a_*$ or more generally if a_*, a, b are aligned.

A straightforward analog of *D* ◦ gives an upper-bound for the distance in the discrete setting, by concatenating pieces of geodesics from *a*, *b* to *a*∗.

The function D° is not a pseudo-distance, so we set

$$
D^*(a,b) = \inf \left\{ \sum_{i=1}^{k-1} D^{\circ}(a_i, a_{i+1}) : a_1 = a, a_k = b \right\} ,
$$

the largest pseudo-distance on \mathcal{T}_e that is less than $D^\circ.$ The space (S, D^*) where

$$
S=\mathcal{T}_\text{e}/\{D^*=0\}
$$

is called the Brownian map.

- The method to prove that $(V(Q_n),(8n/9)^{-1/4}d_{Q_n})$ converges in distribution to (S, D^*) is to show that the subsequential limit (\mathcal{T}_e, D) satisfies $D = D^*$.
- The part $D \leq D^*$ is by definition since $D \leq D^{\circ}$. The hard part is the converse.

 Ω

4 0 8 4 4 9 8 4 9 8 4 9 8

The function D° is not a pseudo-distance, so we set

$$
D^*(a,b) = \inf \left\{ \sum_{i=1}^{k-1} D^{\circ}(a_i, a_{i+1}) : a_1 = a, a_k = b \right\} ,
$$

the largest pseudo-distance on \mathcal{T}_e that is less than $D^\circ.$

The space (*S*, *D* ∗) where

$$
S=\mathcal{T}_{\text{e}}/\{D^*=0\}
$$

is called the Brownian map.

- The method to prove that $(V(Q_n),(8n/9)^{-1/4}d_{Q_n})$ converges in distribution to (S, D^*) is to show that the subsequential limit (\mathcal{T}_e, D) satisfies $D = D^*$.
- The part $D \leq D^*$ is by definition since $D \leq D^{\circ}$. The hard part is the converse.

 Ω

4 0 8 4 4 9 8 4 9 8 4 9 8

The function D° is not a pseudo-distance, so we set

$$
D^*(a,b) = \inf \left\{ \sum_{i=1}^{k-1} D^{\circ}(a_i, a_{i+1}) : a_1 = a, a_k = b \right\} ,
$$

the largest pseudo-distance on \mathcal{T}_e that is less than $D^\circ.$

The space (*S*, *D* ∗) where

$$
S=\mathcal{T}_{\text{e}}/\{D^*=0\}
$$

is called the Brownian map.

- The method to prove that ($V(Q_n), (8n/9)^{-1/4}d_{Q_n})$ converges in distribution to (S, D^*) is to show that the subsequential limit (\mathcal{T}_e, D) satisfies $D = D^*$.
- The part $D \leq D^*$ is by definition since $D \leq D^{\circ}$. The hard part is the converse.

в

 Ω

4 0 8 4 6 8 4 9 8 4 9 8 1

The function D° is not a pseudo-distance, so we set

$$
D^*(a,b) = \inf \left\{ \sum_{i=1}^{k-1} D^{\circ}(a_i, a_{i+1}) : a_1 = a, a_k = b \right\} ,
$$

the largest pseudo-distance on \mathcal{T}_e that is less than $D^\circ.$

The space (*S*, *D* ∗) where

$$
S=\mathcal{T}_{\text{e}}/\{D^*=0\}
$$

is called the Brownian map.

- The method to prove that ($V(Q_n), (8n/9)^{-1/4}d_{Q_n})$ converges in distribution to (S, D^*) is to show that the subsequential limit (\mathcal{T}_e, D) satisfies $D = D^*$.
- The part $D \leq D^*$ is by definition since $D \leq D^{\circ}$. The hard part is the converse.

в

 Ω

4 0 8 4 6 8 4 9 8 4 9 8 1

Idea of proof: Shape of the typical geodesics

- The main idea for the proof is to describe precisely the geodesic γ between two "generic" points x_1, x_2 . More precisely, one must show that it is a patchwork of small segments of geodesic paths headed toward *a*[∗] (geodesics tend to stick).
- **•** So we want to show that Γ , the set of points x on γ from which we can start a geodesic to $a_∗$ not meeting γ again, is a small set.

-length[s.](#page-53-0)

There exists $\delta \in (0, 1)$ *such that a.s. for every* ε > 0*, the set* Γ *can be covered with less than* $\varepsilon^{-(1-\delta)}$ *D-balls of radius* ε*. In particular* dim_H(Γ) < 1.

 \Box \rightarrow \land \Box \rightarrow \rightarrow

Idea of proof: Shape of the typical geodesics

- The main idea for the proof is to describe precisely the geodesic γ between two "generic" points x_1, x_2 . More precisely, one must show that it is a patchwork of small segments of geodesic paths headed toward *a*[∗] (geodesics tend to stick).
- **So we want to show that Γ, the set of points x on** γ **from which we** can start a geodesic to $a_∗$ not meeting γ again, is a small set.

Proposition

There exists $\delta \in (0, 1)$ *such that a.s. for every* ε > 0*, the set* Γ *can be covered with less than* ε^{-(1−δ)} *D-balls of radius* ε*. In particular* dim_H(Γ) < 1.

Segments outside the "bad" purple set have coinciding D° and D^{*}-length[s.](#page-54-0) 000

Idea of proof: almost equivalence between *D* and *D* ∗

The previous proposition is enough, once complemented by the following lemma.

Lemma

For every $\alpha \in (0,1)$ *, there exists a random C* $\in (0,\infty)$ *such that* $D^*(a,b) \le CD(a,b)^\alpha$ for every $a,b \in \mathcal{T}_e$.

• This lemma comes from precise volume estimates of balls for both metrics *D* and *D* ∗ (Le Gall 2010).

Covering Γ with at most $\varepsilon^{-(1-\delta)}$ balls for *D* breaks γ into segments $[a_i, b_i], 1 \leq i \leq K$ say, each of which has $D^*(a_i, b_i) = D(a_i, b_i)$. Then for $\alpha > 1 - \delta$.

$$
D^*(x_1, x_2) \leq \sum_{i=1}^K D^*(a_i, b_i) + \varepsilon^{-(1-\delta)} \sup_{D(a,b) \leq 2\varepsilon} D^*(a, b)
$$

$$
\leq \sum_{i=1}^K D(a_i, b_i) + C(2\varepsilon)^{\alpha - 1 + \delta} \leq D(x_1, x_2) + o(1)
$$

Grégory Miermont (Université Paris-Sud) [Scaling limit of quadrangulations](#page-0-0) Lattice models & combinatorics 21/25

Idea of proof: almost equivalence between *D* and *D* ∗

The previous proposition is enough, once complemented by the following lemma.

Lemma

For every $\alpha \in (0,1)$ *, there exists a random C* $\in (0,\infty)$ *such that* $D^*(a,b) \le CD(a,b)^\alpha$ for every $a,b \in \mathcal{T}_e$.

- This lemma comes from precise volume estimates of balls for both metrics *D* and *D* ∗ (Le Gall 2010).
- Covering Γ with at most $\varepsilon^{-(1-\delta)}$ balls for *D* breaks γ into segments $[a_i, b_i], 1 \leq i \leq K$ say, each of which has $D^*(a_i, b_i) = D(a_i, b_i)$. Then for $\alpha > 1 - \delta$.

$$
D^*(x_1, x_2) \leq \sum_{i=1}^K D^*(a_i, b_i) + \varepsilon^{-(1-\delta)} \sup_{D(a,b) \leq 2\varepsilon} D^*(a, b)
$$

$$
\leq \sum_{i=1}^K D(a_i, b_i) + C(2\varepsilon)^{\alpha - 1 + \delta} \leq D(x_1, x_2) + o(1)
$$

Grégory Miermont (Université Paris-Sud) [Scaling limit of quadrangulations](#page-0-0) Lattice models & combinatorics 21/25

Idea of proof: Quickly separating geodesics

- A method to prove the main proposition is to approach points of Γ by points where geodesics perform a quick separation: Evaluate the probability that for 4 randomly chosen points x_0 , x_1 , x_2 , x_3 ,
	- In The three geodesics from x_3 to x_0, x_1, x_2 are disjoint outside of the ball of radius ε around *x*₃
	- $\blacktriangleright \gamma$ passes through the latter ball.

イロ トラ 風 トラ モトラ モ

The probability of the latter event is bounded above by Cε^{3+χ} for some $x > 0$.

Idea of proof: Quickly separating geodesics

- A method to prove the main proposition is to approach points of Γ by points where geodesics perform a quick separation: Evaluate the probability that for 4 randomly chosen points x_0 , x_1 , x_2 , x_3 ,
	- \blacktriangleright The three geodesics from x_3 to x_0, x_1, x_2 are disjoint outside of the ball of radius ε around *x*₃
	- $\blacktriangleright \gamma$ passes through the latter ball.

Proposition (codimension estimate)

The probability of the latter event is bounded above by Cε^{3+χ} for some $\chi > 0$.

 Ω

イロト イ押ト イヨト イヨト

Idea of proof: Evaluating quickly avoiding geodesic configurations

- We then use a bijection (M. 2009) generalizing Schaeffer's by adding sources at x_0, x_1, x_2, x_3 , measuring geodesic distances simultaneously from these points.
- Count labeled maps as in the picture: Labeled trees are branching out of a 3-regular graph with 4 faces.
- \bullet Red=non-negative labels. Green=labels are $\geq -2\varepsilon$ and $\ell(x_3) \leq -\varepsilon$. Dotted path is not a ge[ode](#page-59-0)[si](#page-61-0)[c](#page-59-0)[.](#page-60-0) QQ

Loop models on random quadrangulations

weight *W*

$$
W_{g,h}^{(n)}({\bf q})=g^{12}h_1^{12}h_2^{16}n^4
$$

• Decorate a quadrangulation with "matter": a configuration of simple and mutually avoiding loops on the dual graph (Borot, Bouttier, Guitter).

Emptying the interior of the \bullet loops, on obtains a Boltzmann random map, with distribution proportional to $\prod_{f \in \mathcal{F}(\textbf{m})} q_{\deg f/2}$, where

$$
q_k = g\delta_{k2} + nh^{2k} \sum_{|\partial \mathbf{q}| = 2k} W_{g,h}^{(n)}(\mathbf{q})
$$

summing over decorated quadrangulations with a boun[da](#page-60-0)r[y](#page-62-0) (a) (E) (E)

 QQ

Loop models on random quadrangulations

weight *W*

$$
W^{(n)}_{g,h}({\bf q})=g^{12}h_1^{12}h_2^{16}n^4
$$

• Decorate a quadrangulation with "matter": a configuration of simple and mutually avoiding loops on the dual graph (Borot, Bouttier, Guitter).

Emptying the interior of the \bullet loops, on obtains a Boltzmann random map, with distribution proportional to $\prod_{f \in \mathcal{F}(\textbf{m})} q_{\deg f/2}$, where

$$
q_k = g\delta_{k2} + nh^{2k} \sum_{|\partial \mathbf{q}|=2k} W_{g,h}^{(n)}(\mathbf{q})
$$

summing over decorated quadrangulations with a boun[da](#page-61-0)r[y](#page-63-0) (a) (E) (E)

 QQ

Loop models on random quadrangulations

weight *q* 13 2 *q*5*q*⁸

- Decorate a quadrangulation with "matter": a configuration of simple and mutually avoiding loops on the dual graph (Borot, Bouttier, Guitter).
- **•** Emptying the interior of the loops, on obtains a Boltzmann random map, with distribution proportional to $\prod_{f \in \mathcal{F}(\textbf{m})} q_{\deg f/2}$, where

$$
q_k = g\delta_{k2} + nh^{2k} \sum_{|\partial \mathbf{q}| = 2k} W_{g,h}^{(n)}(\mathbf{q})
$$

summing over decorated quadrangulations with a boun[da](#page-62-0)r[y](#page-64-0)

 000

Limits of maps with large faces: Stable maps

- **•** For critical values of $g, h₁, h₂$, one expects a continuum model to arise, which is the model of stable maps of Le Gall-M. (2011)
- Instead of a topological sphere, these objects are random Sierpinsky
- Conjectured links to Sheffield-Werner's CLE (candidate limits of loop models on Euclidean lattices!)

 Ω

イロト イ押ト イヨト イヨ

Limits of maps with large faces: Stable maps

- **•** For critical values of $g, h₁, h₂$, one expects a continuum model to arise, which is the model of stable maps of Le Gall-M. (2011)
- Instead of a topological sphere, these objects are random Sierpinsky carpets or gaskets.
- Conjectured links to Sheffield-Werner's CLE (candidate limits of loop models on Euclidean lattices!)

 Ω

Limits of maps with large faces: Stable maps

- **•** For critical values of $g, h₁, h₂$, one expects a continuum model to arise, which is the model of stable maps of Le Gall-M. (2011)
- Instead of a topological sphere, these objects are random Sierpinsky carpets or gaskets.
- **•** Conjectured links to Sheffield-Werner's CLE (candidate limits of loop models on Euclidean lattices!)

 Ω

オター・エヌ エヌ