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The 2-dimensional Ising model

• Planar graph, G = (V (G), E(G)).
• Spin Configurations, σ : V (G)→ {−1, 1}.
• Every edge e ∈ E(G) has a coupling constant, Je > 0.
• Ising Boltzmann measure (finite graph):

PIsing(σ) =
1

ZIsing
exp

 ∑
e=uv∈E(G)

Jeσuσv

 ,

where ZIsing is the partition function.



Isoradial graphs

• Graph G isoradial : can be embedded in the plane so that every
face is inscribable in a circle of radius 1.

• G isoradial ⇒ G∗ isoradial : vertices of G∗ = circumcenters.



Isoradial graphs

• G� : corresponding diamond graph

{
vertices : V (G) ∪ V (G∗)
edges : radii of circles

• Edge e →

{
rhombus
angle θe θe

e

⇒ Coupling constants: Je(θe).



The Z-invariant Ising model [Baxter]

• Star-triangle transformation on G: preserves isoradiality.

• Z-invariant Ising model : satisfies ∆− Y

⇒ sinh(2Je(θe)) =
sn
(2K(k)

π θe|k
)

cn
(2K(k)

π θe|k
) , k2 ∈ R.

sn, cn : Jacobi elliptic trigonometric functions.
K : complete elliptic integral of the first kind.



The critical Z-invariant Ising model [Baxter]

• High and low temperature expansion of the partition function
⇒ measure on contour configurations of G and G∗.

• Generalized form of self-duality ⇒ k = 0, and

Je(θe) =
1
2

log
(

1 + sin θe
cos θe

)
. (1)

• Examples.
◦ G = Z2 : θe = π/4, Je(θe) = log

√
1 +
√

2.
◦ G triangular lattice : θe = π/6, Je(θe) = log(3

1
4 ).

◦ G hexagonal lattice : θe = π/3, Je(θe) = log
√

2 +
√

3.

Critical temperatures (Kramers, Kramers-Wannier)

(1) are called critical coupling constants.



Statistical mechanics on isoradial graphs

• Critical Ising model: [Baxter, Costa-Santos, Mercat, Smirnov,
Chelkak & Smirnov].

• Explicit expressions for:
◦ the Green’s function with weights “tan(θe)” [Kenyon],
◦ the inverse of the Dirac operator ∂̄ for bipartite graphs, with

weights “2 sin θe” [Kenyon],

which only depend on the local geometry of the graph.

• What is special about this setting ?
◦ Z-invariance (integrability).
◦ Natural setting for discrete complex analysis [Duffin, Mercat,

Chelkak & Smirnov].



The dimer model

• Graph G = (V (G), E(G)) (planar).
• Dimer configuration: perfect matching M .
• Weight function, ν : E(G)→ R+

• Dimer Boltzmann measure (finite graph) :

Pdimer(M) =
1

Zdimer

∏
e∈M

νe,

where Zdimer is the dimer partition function.



Ising-dimer correspondence [Fisher]
Ising model on toroidal graph G, coupling constants J .
• Low temperature expansion on G∗ → measure on polygonal

contours of G.

+

−

−

−

• G : Fisher graph of G.
• Correspondence : Contour conf. → 2|V (G)| dimer configurations.

• Critical Ising model on G ↔ critical dimer model on G.

νe =

{
cot θe

2 original edges
1 edges of the decorations.
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Critical dimer model on infinite Fisher graph:
periodic case

• G: infinite Z2-periodic isoradial graph,
G: corresponding Fisher graph.

• Toroidal exhaustion {Gn} = {G/nZ2}. G1: fundamental domain.
Zn: partition function of Gn, Pn: Boltzmann measure of Gn.

• Our goal is to:
◦ compute the free energy:

f = − lim
n→∞

1
n2

logZn.

◦ obtain an explicit expression for a natural Gibbs measure:
probability measure P such that if one fixes a perfect matching
in an annular region, matchings inside and outside of the annulus
are independent, and

P (M)α
∏

e∈M

νe,

when M is a matching inside of the annulus (DLR conditions).
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Kasteleyn matrix K of the graph G
• Kasteleyn orientation of the graph: all elementary cycles are

clockwise odd.
• K: corresponding weighted oriented adjacency matrix,

Ku,v =


νuv if u ∼ v, u→ v

−νuv if u ∼ v, u← v

0 else.

• K1(z, w): is the Kasteleyn matrix of G1, with modified weights
along edges crossing a dual horizontal and vertical cycle.

1/z

1/z
1/z

w w w
z

z

z

1/w1/w1/w

G
1

• detK1(z, w) is the dimer characteristic polynomial.



Free energy and Gibbs measure

Theorem (Boutillier,dT)

• The free energy of the dimer model on G is:

f = − 1
2(2πi)2

∫∫
T2

log(detK1(z, w))
dz

z

dw

w

• The weak limit of the Boltzmann measures Pn defines a Gibbs
measure Pdimer on G. The probability of the subset of edges
E = {e1 = u1v1, · · · , ek = ukvk} being in a dimer configuration
of G is given by:

P(e1, · · · , ek) =

(
k∏
i=1

Kui,vi

)
Pf((K−1)E), where

K−1
(v,x,y)(v′,x′,y′) = 1

(2πi)2

∫∫
T2

Cof(K1(z,w))t
v,v′

detK1(z,w) zx
′−xwy

′−y dz
z
dw
w .

[Probab. Theory Related Fields, 2010]



Idea of the proof (Gibbs measure)

[Cohn, Kenyon, Propp; Kenyon, Okounkov, Sheffield]

Theorem (Kasteleyn,Kenyon,...)

The Boltzmann measure Pn(e1, · · · , ek) is equal to:(∏k
i=1Kui,vi

)
2Zn

(
−Pf(K00

n )EC + Pf(K10
n )EC + Pf(K01

n )EC + Pf(K11
n )EC

)

• Use Jacobi’s formula: Pf((Kθτ
n )EC ) = Pf(Kθτ

n )Pf((Kθτ
n )−1

E ).
• Use Fourier to block diagonalize Kθτ

n .
• Obtain Riemann sums. Show that they converge on a

subsequence to the corresponding integral.
• Use Sheffield’s theorem, which proves a priori existence of the

limit.



Proof, continued

• Sheffield’s theorem does not hold for non bipartite graphs.

• K00
n is never invertible ⇒ delicate estimate, Pf(K00

n )
EC

Zn = O
(

1
n

)
.

• To show convergence of the Riemann sums, need to know what
are the zeros of detK1(z, w) on the torus T2.



Characteristic polynomial and the Laplacian

• G : infinite Z2-periodic isoradial graph.
• Laplacian on G, with weights tan(θe) is represented by the

matrix ∆:

∆u,v =

{
tan(θuv) if u ∼ v
−
∑

w∼u tan(θuw) if u = v.

• ∆1(z, w) : Laplacian matrix on G1 with additional weights z
and w.

• Laplacian characteristic polynomial: det(∆1(z, w)).

Theorem (Boutillier,dT)

• There exists a constant c such that:

detK1(z, w) = cdet ∆1(z, w).

• The curve {(z, w) ∈ C2 : detK1(z, w) = 0} is a Harnack curve
and detK1(z, w) admits a unique double zero (1, 1) on T2.



Local expression for K−1, general case

• Discrete exponential function [Mercat,Kenyon]
Exp : V (G)× V (G)× C→ C,

v

u

e
iβ

k

eiγ
k

Expu,u(λ) = 1

Expu,uk+1
(λ) = Expu,uk

(λ)
(λ+ eiβk)(λ+ eiγk)
(λ− eiβk)(λ− eiγk)

.



Local expression for K−1

Theorem (Boutillier,dT)

The inverse of the Kasteleyn matrix K on G has the following local
expression:

K−1
u,v =

1
(2πi)2

∮
Cuv

fu(λ)fv(λ)Expu,v log(λ)dλ+ cu,v,

where
• Cuv is a closed contour containing all poles of the integrand,

and avoiding a half-line duv.

• cu,v =

{
0 if u 6= v
±1

4 else.

[Comm. Math. Phys. 2010]



Proof (sketch)

• Idea [Kenyon]
• fv(λ)Expu,v(λ) is in the kernel of K.
• Use singularities of the log: define contours of integrations in

such a way that:

(KK−1)(u, v) =

{
0 if u 6= v

1 if u = v.



Gibbs measure, local expression

Theorem (Boutillier,dT)

P(e1, · · · , ek) =
k∏
i=1

K(ui, vi)Pf((K−1)E),

defines a Gibbs measure in dimer configurations of G.

Proof.

• [dT]: every finite, simply connected subgraph of a rhombus
tiling can be completed by rhombi in order to become a periodic
rhombus tiling of the plane.

• Convergence of the Boltzmann measures in the periodic case.
• Locality of the inverse Kasteleyn matrix.
• Uniqueness of the inverse Kasteleyn matrix in the periodic case.
• Kolmogorov’s extension theorem.



Consequences

• Theorem (Baxter’s formula)

Let G be a periodic isoradial graph. Then, the free energy of the
critical Ising model on G is:

fIsing = − log 2
2
− 1
|V (G1)|

∑
e∈E(G1)

θe
π

log(θe)+
1
π

(
L(θe) + L

(π
2
− θe

))
,

where L(θ) = −
∫ θ
0 log(2 sin(t))dt is Lobachevski’s function.

• PIsing

 θe
+ −

Je

 = 1
4 −

θe
2π sin θe

.

• Spin/spin correlations are local.

• Asymptotics computations for the dimer Gibbs measure.



Critical Ising model and CRSFs
• The dimer characteristic polynomial detK1(z, w) is related to

Ising configurations.
• The Laplacian characteristic polynomial det ∆1(z, w) counts

CRSFs.

Theorem (dT)

There exists an explicit correspondence between weighted
“double-dimer” configurations of G1 counted by detK1(z, w), and
CRSFs counted by det ∆1(z, w).

Proof.

• Matrix-tree theorem for the Kasteleyn matrix K:

detK1(z, w) =
∑

F∈F(G1)

 ∏
e=(x,y)∈F

fxf̄yKx,y

 ∏
T∈F

(1−zh(T )wv(T )).

• To every CRSF of G1 corresponds a family of CRSFs of G1.
Everything is explicit.


