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Abstract
We prove |z|~? decay of the critical two-point function for the continuous-time
weakly self-avoiding walk on Z*. The walk two-point function is identified as the
two-point function of a supersymmetric field theory with quartic self-interaction,
and the field theory is then analysed using renormalisation group methods.
This is joint work with David Brydges.

Papers at http://www.math.ubc.ca/~slade, more in preparation.
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Self-avoiding walk

Discrete-time model: Let S, () be the set of w : {0,1,...,n} — Z% with:
w(0) =0, w(n) =z, |w(t+1) —w()| =1, and w(i) # w(y) for all i # j.
Let S,, = UxEZdSn(w).

Let ¢, () = |Sp(x)]. Let ¢, = 3. cn(x) = |S,|. Easy: /™ — p.
Declare all walks in &,, to be equally likely: each has probability cgl.

Two-point function: G.(z) = >.°% cn(x)2", radius of convergence z. = pu~".
Predicted asymptotic behaviour:

Cn~ Ap"n" Eylw(n)|]? ~ D, Gl (x) ~ c|a:|_(d_2+77),

Y

with universal critical exponents ~y, v, 1) obeying v = (2 — n)v.



Dimensions other than d =4

Theorem. (Brydges—Spencer (1985); Hara—Slade (1992); Hara (2008)...)
For d > 5,

1

e A, Eufo(m)f* ~ D, Guw) ~ elal Y, =
mn

Proof uses lace expansion, requires d > 4.

d = 2. Prediction: 7—4—3 1/:%,77:%,

Nienhuis (1982); Lawler—Schramm-Werner (2004) — connection with SLEg 3.

d = 3. Numerical: v = 1.16, v = 0.588, n ~ 0.031.
E.g., Clisby (2011): v = 0.587597(7).

Theorem (Madras 2012+ ): E,|w(n)|? > in*/?¢ so v > 2/(3d).

1
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Not proved for d = 2, 3,4: E,|w(n)|* < O(n*79), ie., that v < 1.

w(|nt]) = Bs.



Predictions for d = 4

Prediction is that upper critical dimension is 4, and asymptotic behaviour for Z* has log
corrections (e.g., Brézin, Le Guillou, Zinn-Justin 1973):

cn ~ Ap"(logn)*, E,|lw(n)|? ~ Dn(logn)*, G..(z) ~ c|z| >

The susceptibility and correlation length are defined by:

= 1 1
x(z) = Z cnz, = — lim —log G,(ne;).
n=0 S(Z) e n

For these the prediction is:

Alllog(1 — z/z.)|/* D'|log(1 — z/z.)|'/®
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Continuous-time weakly self-avoiding walk

A k.a. discrete Edwards model.

Let E/y denote the expectation for continuous-time nearest-neighbour simple random walk
X (t) on Z* started from O (steps at events of rate-1 Poisson process).

Let

T T
I(T) = /0 /0 5X(s),X(t)d8 dt.

Let g € (0,00), v € (—00, 00). The two-point function is
Gyu(w) = / Lo <€_gI(T) lX(T):x> e VdT
0
(compare ) cp(x)z").

Subadditivity argument = 3v.(g) s.t. susceptibility x4(v) = > .zda Gy () obeys

< oo v > we(g)
X ){:oo v < ve(g).



Main result

Theorem (Brydges—Slade). Let d > 4. There exists go > 0 such that for 0 < g < g,

Cd,g 1
Gye(g)(T) = |2]d=2 +o ( |x|d2) '

Related results:

e weakly SAW on 4-dimensional hierarchical lattice (replacement of Z* by a recursive

structure well-suited to RG): Brydges—Evans—Imbrie (1992); Brydges—Imbrie (2003);
and with different RG method Ohno—Hara (20124 ).

e lagolnitzer—Magnen (1994): related continuum model, different RG method
o weakly self-avoiding Lévy walk on Z* (o« = 3‘2“, d. = 3+ €): Mitter-Scoppola (2008).

Outlook: Method of proof has potential to (but has not yet achieved—work in progress
with Bauerschmidt and Brydges):
e prove same result also with small nearest-neighbour attraction

e prove same result for a particular spread-out model of discrete-time strictly self-avoiding
walk with exponentially decaying step weights

e prove logarithmic corrections for susceptibility and correlation length for d = 4



Finite-volume approximation

Fix g > 0.
Standard methods (Simon-Lieb inequality) show that

Gu.(x) = lim lim Gu . (x),
vlve ATZd

where A = Zd/RZ is a torus approximating Z¢ and
Gav(z) = / Ey <€_gIA(T)]1X(T):a:> e "dT,
0

with Eé\ the expectation for the continuous-time simple random walk on A.

Thus we can work in finite volume, and slightly subcritical, but must maintain sufficient
control to take the limits.



Functional integral representation

Let ¢ : A — C, with complex conjugate ¢.
Let A denote the discrete Laplacian on A, ie., Agy =)0 1_1(Py — Pa).
Let

1 _ _
AL = E(qﬁm(—Aqﬁ)m + Ldgs A(—Ad). + c.c.) ,
where A is the standard anti-commutative wedge product.
Theorem.

2 _
Gau(z) = /Ae_ZUEA(TA’u+gTu+VTU)¢O¢m-
C

RHS is the two-point function of a supersymmetric field theory with boson field (¢, ¢)
and fermion field (d¢, do).

(Parisi—-Sourlas 1980; McKane 1980; Luttinger 1983; Dynkin 1983; Le Jan 1987;
Brydges—Evans—Imbrie 1992; Brydges—Imbrie 2003; Brydges—Imbrie-Slade 2009).



Meaning of the integral

The definition of an integral such as
- T 7'2 vTu) 1
Gala) = [ | & Tuealant i g,
C

is as follows (very closely related to Grassmann integration):
e expand entire integrand in power series about degree-zero part (finite sum), e.g.,

_ 1 _ _ 3
eTu — €¢u¢u+md¢ud¢u — €¢u¢u (1 i ﬁdqbudqbu) :

e keep only terms with one factor d¢, and one d¢, for each € A,
® write ¢, = Uy + 1V, ¢ = u; — v, and similarly for differentials,

e then use anti-commutativity to rearrange the differentials to || du,dvy,,

xeA
e and finally perform Lebesgue integral over R2IAL

Such integrals have nice properties. Let S(A) = Y, (7a.u +m”7,). Then:

[ e Whotn = (~an+m) 00, [ VR = FO)

Now we study the integral and forget about the walks.



Auxiliary variables and Gaussian approximation

For m? > 0 and zg > —1, let

Ga(m?, go, v, 20) = / G_S(A)_%(A)&o@m where

S(A): Z (TA,u + mQTu) ) VO(A): Z (907_3 + VoTu + ZOTA,U) .

ucA ueN

Change of variable ¢, +— /1 + zg¢, gives

2
2 1 old 90 vptm
GA(m »y 90, V0, ZO) T 14z GA ((1+ZO)2’ 142 ) ’

Case of Vy = 0: Gp(m?,0,0,0) = (—Ap + m?)"(a,b) so

lim lim Ga(m?,0,0,0) = (—A,4) (0, z) ~ colz| 7.
m210 A1zd

Objective: given gg > 0 show that there exist v, zo (yield v. and c) such that

lim lim Ga(m?, go, vo, z0) ~ c(go)|z|~ @72,

m210 A1Zd



External field

Introducing an external field o € C, let

SA) =D (rauw+m’n),  Vo(A) = Vo(A) — ody — 5.

ueA

Then

o 0

GAV(mza go, Vo, Zo) — / B_S(A)_%(A)CEO% = ==
’ 0o Oc

/ L —S()=Vp(A)
0

Thus we are led to study the integral

o 0
Oo 0o

/ L~ S()=Vp(A).
0



Gaussian super-expectation

For a positive definite A X A matrix C, and A = C~1 et

x,yeN

and, for a form F (lin. comb. of products of d¢ and d¢ with coeffs depending on ¢),

Then Ecl = 1. With C = (—=Aj + m?) ™!, the integral of interest is

o 0

G,/mQ, , Vo, 20) = ———
A 9o, V0, 20) 90 05

/esA(mvo(A):ﬂﬂ e 00,
0 0o 0o |

Much of the standard theory of Gaussian integration carries over to this setting, even
though E¢ involves Grassmann integration and will take values in a space of differential
forms.



Convolution integrals and progressive integration

Recall that a random variable X ~ N (0, 0} + o3) has the same distribution as X; + Xo
where X1 ~ N(0,0%) and X2 ~ N (0, 03) are independent, and

Ef(X) = Ex (E1(f(X1 4+ X2)[X2)) .

This finds expression for E¢ via:
ECQ+01F = ]EC’2 O EcleF,

where

(0F)(¢, &, do, d§) = F(¢+ &, do + df),

Ec, integrates out £ and d§, leaving ¢ and d¢ fixed, and
Ec, integrates out ¢ and d¢.

More generally,
EC1+"-+CN = ]ECN ©---0 ]EC29 O ]Ecle.



Finite-range decomposition of covariance

Theorem (Brydges—Guadagni—Mitter 2004). Let d > 2. Fix a large L and suppose
IA| = LY Let C = (—Ax + m?)~!. Then there exist C1, . .., Cy such that:

o (' = Zj\le Cj

e (' positive definite,

e Cj(z,y) =0if [z —y| > 3L/

e forj =1,..., N —1andwith [¢] = 3(d — 2) (so [¢p] =1 for d = 4),

Cj(z, x)| < O(L2),

|V$V§Cj(x, z)| < O(L_(2[¢]+|O‘|1+|ﬁ|1)j).



The dynamical system

The covariance decomposition induces a field decomposition and allows the expectation to
be done progressively:

N N
¢:ij, dgb:Zdﬁj, EO:ECNO"'OECQO]ECl-
Jj=1 J=1

Write ¢p; = >°. 1 &, with ¢o = ¢, ¢y = 0. Then ¢; = ¢j11 + &j41. Let
Zo = Zo(, dgp) = e 00,

and
Zj(qu, dqu) = ]Ecj O-+-0 ]E01Z().
In particular, our goal is to compute

Zn = EcZy = Ege 0™ in the limit N — oo,
and we are led to study the dynamical system:

Zj =Ec,, Z;.



Relevant, marginal, irrelevant directions

Recall that [¢] = %. The covariance estimates suggest that ¢, , ~ L7771 and that

this field is approximately constant over distance L’. Thus, for a block B of side L7,

S I¢yal? & |BIL 70 = pitd=pléD,
reEDB

For d = 4 the RHS is L/*~P) which is
relevant for p < 4, marginal for p = 4, irrelevant for p > 4.

Taking symmetries and derivatives into account, the relevant and marginal monomials are:

2
T, TA T .

The role of d = 4: 72 is relevant for d < 4 and irrelevant for d > 4:

S jalt = L7,

reB



The RG map

Up to an error that must be controlled, seek approximation Z; ~ e "%/, with

ue

The error in the approximation is described by a family of forms, written K; = (K,;(X)):

Zy=> e "iMYIEK(X).
XCA
Then
Z; is characterised by (g, v, zj, Kj, A\j, q;).

The main effort: to devise an appropriate Banach space whose norm measures the size of
K, and calculate how the coupling constants in V; should evolve with 5 in such a way
that K; remains small.

The RG map is the description of the dynamical system Z; — Z;; = Ec,, | Z; via

(95, V5> 25, Kj) 7 (gj+1, Vjs1, Zj41, Kjp1)  which determines  (Xj, q;) — (Aj41, @j+1).



Flow of coupling constants

Theorem. Let d > 4. The flow of the coupling constants is given by

gji+1= g5 — 6932' + Ty,

vit1= v; + 29;C;41(0,0) + 7y 5
ZjH1= 25+ Tz

Kj1= Tk j,

where the r's are error terms within an appropriately defined Banach space, and Lipschitz
in (g5, v, 25, Kj). K enters only in the error terms and these are independent of A, g;.

Also, with w; = 7\ >, Ci(0, y),

Ajr1 = (L4 vjpwjpn — vjwy)Aj + ra

qj+1 = q; + XjCi41(0, ) + 7g 5.



Flow diagram

stable manifold fixed point
S~ = \C/_\‘
“N

unstable manifold

Schematic depiction of the stable manifold for the flow of the RG map.



Stable manifold theorem

Theorem. For small gg there is a choice of initial conditions zg, 19 such that the solution
(95, Vi, i, Kj)o<j<n, in the limits N — oo, m? — 0, j — oo obeys

(95,v5, 25, K;) — (0,0,0,0) “infrared asymptotic freedom.”

From this and estimates on Ky,

G.,q(0 ) = lim i 0 9 Z
, Jgo, Vo, 20) = lim lim ——
zd 3" 90, V0, 20 m210 N—oo 00 0G| N
— lim lim ii e VNMlp=dp=0
m2]0 N—oo Qo 05 |
0 0 .
= lim lim ——| e’V = lim lim gqu.
m?2]0 N—o0 Oo 0o 0 m2]0 N—oo

By solving the q recursion we obtain

lim lim gy = c(—AZ4)_1(O, x),
m2]0 N—o0

and this proves the main result for the critical two-point function.



