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Abstract
We prove |x|−2 decay of the critical two-point function for the continuous-time

weakly self-avoiding walk on Z4. The walk two-point function is identified as the

two-point function of a supersymmetric field theory with quartic self-interaction,

and the field theory is then analysed using renormalisation group methods.
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Self-avoiding walk

Discrete-time model: Let Sn(x) be the set of ω : {0, 1, . . . , n} → Zd with:

ω(0) = 0, ω(n) = x, |ω(i + 1)− ω(i)| = 1, and ω(i) 6= ω(j) for all i 6= j.

Let Sn = ∪x∈ZdSn(x).

Let cn(x) = |Sn(x)|. Let cn =
∑

x cn(x) = |Sn|. Easy: c1/n
n → µ.

Declare all walks in Sn to be equally likely: each has probability c−1
n .

Two-point function: Gz(x) =
∑∞

n=0 cn(x)zn, radius of convergence zc = µ−1.

Predicted asymptotic behaviour:

cn ∼ Aµ
n
n

γ−1
, En|ω(n)|2 ∼ Dn

2ν
, Gzc(x) ∼ c|x|−(d−2+η)

,

with universal critical exponents γ, ν, η obeying γ = (2− η)ν.

quad1



Dimensions other than d = 4

Theorem. (Brydges–Spencer (1985); Hara–Slade (1992); Hara (2008)...)

For d ≥ 5,

cn ∼ Aµ
n
, En|ω(n)|2 ∼ Dn, Gzc(x) ∼ c|x|−(d−2)

,
1√
Dn

ω(bntc) ⇒ Bt.

Proof uses lace expansion, requires d > 4.

d = 2. Prediction: γ = 43
32, ν = 3

4, η = 5
24,

Nienhuis (1982); Lawler–Schramm-Werner (2004) — connection with SLE8/3.

d = 3. Numerical: γ ≈ 1.16, ν ≈ 0.588, η ≈ 0.031.

E.g., Clisby (2011): ν = 0.587597(7).

Theorem (Madras 2012+): En|ω(n)|2 ≥ 1
6n

4/3d, so ν ≥ 2/(3d).

Not proved for d = 2, 3, 4: En|ω(n)|2 ≤ O(n2−ε), i.e., that ν < 1.

quad2



Predictions for d = 4

Prediction is that upper critical dimension is 4, and asymptotic behaviour for Z4 has log

corrections (e.g., Brézin, Le Guillou, Zinn-Justin 1973):

cn ∼ Aµ
n
(log n)

1/4
, En|ω(n)|2 ∼ Dn(log n)

1/4
, Gzc(x) ∼ c|x|−2

.

The susceptibility and correlation length are defined by:

χ(z) =

∞∑
n=0

cnz
n
,

1

ξ(z)
= − lim

n→∞
1

n
log Gz(ne1).

For these the prediction is:

χ(z) ∼ A′| log(1− z/zc)|1/4

1− z/zc

, ξ(z) ∼ D′| log(1− z/zc)|1/8

(1− z/zc)1/2
as z ↑ zc.

quad3



Continuous-time weakly self-avoiding walk

A.k.a. discrete Edwards model.

Let E0 denote the expectation for continuous-time nearest-neighbour simple random walk

X(t) on Zd started from 0 (steps at events of rate-1 Poisson process).

Let

I(T ) =

∫ T

0

∫ T

0

δX(s),X(t)ds dt.

Let g ∈ (0,∞), ν ∈ (−∞,∞). The two-point function is

Gg,ν(x) =

∫ ∞

0

E0

(
e
−gI(T ) 1X(T )=x

)
e
−νT

dT

(compare
∑

n cn(x)zn).

Subadditivity argument ⇒ ∃νc(g) s.t. susceptibility χg(ν) =
∑

x∈Zd Gg,ν(x) obeys

χg(ν)

{
< ∞ ν > νc(g)

= ∞ ν < νc(g).

quad4



Main result

Theorem (Brydges–Slade). Let d ≥ 4. There exists g0 > 0 such that for 0 < g ≤ g0,

Gg,νc(g)(x) =
cd,g

|x|d−2
+ o

(
1

|x|d−2

)
.

Related results:

• weakly SAW on 4-dimensional hierarchical lattice (replacement of Z4 by a recursive

structure well-suited to RG): Brydges–Evans–Imbrie (1992); Brydges–Imbrie (2003);

and with different RG method Ohno–Hara (2012+).

• Iagolnitzer–Magnen (1994): related continuum model, different RG method

• weakly self-avoiding Lévy walk on Z3 (α = 3+ε
2 , dc = 3+ε): Mitter–Scoppola (2008).

Outlook: Method of proof has potential to (but has not yet achieved—work in progress

with Bauerschmidt and Brydges):

• prove same result also with small nearest-neighbour attraction

• prove same result for a particular spread-out model of discrete-time strictly self-avoiding

walk with exponentially decaying step weights

• prove logarithmic corrections for susceptibility and correlation length for d = 4

quad5



Finite-volume approximation

Fix g > 0.

Standard methods (Simon–Lieb inequality) show that

Gνc(x) = lim
ν↓νc

lim
Λ↑Zd

GΛ,ν(x),

where Λ = Zd/RZ is a torus approximating Zd and

GΛ,ν(x) =

∫ ∞

0

E
Λ
0

(
e
−gIΛ(T )1X(T )=x

)
e
−νT

dT,

with EΛ
0 the expectation for the continuous-time simple random walk on Λ.

Thus we can work in finite volume, and slightly subcritical, but must maintain sufficient

control to take the limits.

quad6



Functional integral representation

Let φ : Λ → C, with complex conjugate φ̄.

Let ∆ denote the discrete Laplacian on Λ, i.e., ∆φx =
∑

y:|y−x|=1(φy − φx).

Let

τx = φxφ̄x + 1
2πidφx∧dφ̄x,

τ∆,x =
1

2

(
φx(−∆φ̄)x + 1

2πidφx∧(−∆dφ̄)x + c.c.
)

,

where ∧ is the standard anti-commutative wedge product.

Theorem.

GΛ,ν(x) =

∫

CΛ
e
−∑

u∈Λ(τ∆,u+gτ2
u+ντu)

φ̄0φx.

RHS is the two-point function of a supersymmetric field theory with boson field (φ, φ̄)

and fermion field (dφ, dφ̄).

(Parisi–Sourlas 1980; McKane 1980; Luttinger 1983; Dynkin 1983; Le Jan 1987;

Brydges–Evans–Imbrie 1992; Brydges–Imbrie 2003; Brydges–Imbrie–Slade 2009).

quad7



Meaning of the integral

The definition of an integral such as

GΛ,ν(x) =

∫

CΛ
e
−∑

u∈Λ(τ∆,u+gτ2
u+ντu)

φ̄0φx

is as follows (very closely related to Grassmann integration):

• expand entire integrand in power series about degree-zero part (finite sum), e.g.,

e
τu = e

φuφ̄u+ 1
2πidφudφ̄u = e

φuφ̄u
(
1 + 1

2πidφudφ̄u

)
,

• keep only terms with one factor dφx and one dφ̄x for each x ∈ Λ,

• write φx = ux + ivx, φ̄x = ux − ivx and similarly for differentials,

• then use anti-commutativity to rearrange the differentials to
∏

x∈Λ duxdvx,

• and finally perform Lebesgue integral over R2|Λ|.

Such integrals have nice properties. Let S(Λ) =
∑

u∈Λ(τ∆,u + m2τu). Then:

∫
e
−S(Λ)

φ̄0φx = (−∆Λ + m
2
)
−1

(0, x),

∫
e
−S(Λ)

F (τ) = F (0).

Now we study the integral and forget about the walks.

quad8



Auxiliary variables and Gaussian approximation

For m2 > 0 and z0 > −1, let

GΛ(m
2
, g0, ν0, z0) =

∫
e
−S(Λ)−Ṽ0(Λ)

φ̄0φx, where

S(Λ)=
∑

u∈Λ

(
τ∆,u + m

2
τu

)
, Ṽ0(Λ)=

∑

u∈Λ

(
g0τ

2
u + ν0τu + z0τ∆,u

)
.

Change of variable φx 7→
√

1 + z0φx gives

GΛ(m
2
, g0, ν0, z0) = 1

1+z0
Gold

Λ

(
g0

(1+z0)2
,

ν0+m2

1+z0

)
.

Case of Ṽ0 = 0: GΛ(m2, 0, 0, 0) = (−∆Λ + m2)−1(a, b) so

lim
m2↓0

lim
Λ↑Zd

GΛ(m
2
, 0, 0, 0) = (−∆Zd)

−1
(0, x) ∼ c0|x|−(d−2)

.

Objective: given g0 > 0 show that there exist ν0, z0 (yield νc and c) such that

lim
m2↓0

lim
Λ↑Zd

GΛ(m
2
, g0, ν0, z0) ∼ c(g0)|x|−(d−2)

.

quad9



External field

Introducing an external field σ ∈ C, let

S(Λ) =
∑

u∈Λ

(
τ∆,u + m

2
τu

)
, V0(Λ) = Ṽ0(Λ) − σφ̄0 − σ̄φx.

Then

GΛ,ν(m
2
, g0, ν0, z0) =

∫
e
−S(Λ)−Ṽ0(Λ)

φ̄0φx =
∂

∂σ

∂

∂σ̄

∣∣∣∣
0

∫
e
−S(Λ)−V0(Λ)

.

Thus we are led to study the integral

∂

∂σ

∂

∂σ̄

∣∣∣∣
0

∫
e
−S(Λ)−V0(Λ)

.

quad10



Gaussian super-expectation

For a positive definite Λ× Λ matrix C, and A = C−1, let

SA(Λ) =
∑

x,y∈Λ

(
φxAxyφ̄x + 1

2πidφxAxydφ̄y

)

and, for a form F (lin. comb. of products of dφ and dφ̄ with coeffs depending on φ),

ECF =

∫

CΛ
e
−SA(Λ)

F.

Then EC1 = 1. With C = (−∆Λ + m2)−1, the integral of interest is

GΛ,ν(m
2
, g0, ν0, z0) =

∂

∂σ

∂

∂σ̄

∣∣∣∣
0

∫
e
−SA(Λ)−V0(Λ)

=
∂

∂σ

∂

∂σ̄

∣∣∣∣
0

ECe
−V0(Λ)

.

Much of the standard theory of Gaussian integration carries over to this setting, even

though EC involves Grassmann integration and will take values in a space of differential

forms.

quad11



Convolution integrals and progressive integration

Recall that a random variable X ∼ N(0, σ2
1 +σ2

2) has the same distribution as X1 +X2

where X1 ∼ N(0, σ2
1) and X2 ∼ N(0, σ2

2) are independent, and

Ef(X) = E2 (E1(f(X1 + X2)|X2)) .

This finds expression for EC via:

EC2+C1
F = EC2

◦ EC1
θF,

where

(θF )(φ, ξ, dφ, dξ) = F (φ + ξ, dφ + dξ),

EC1
integrates out ξ and dξ, leaving φ and dφ fixed, and

EC2
integrates out φ and dφ.

More generally,

EC1+···+CN
= ECN

◦ · · · ◦ EC2
θ ◦ EC1

θ.

quad12



Finite-range decomposition of covariance

Theorem (Brydges–Guadagni–Mitter 2004). Let d > 2. Fix a large L and suppose

|Λ| = LNd. Let C = (−∆Λ + m2)−1. Then there exist C1, . . . , CN such that:

• C =
∑N

j=1 Cj

• Cj positive definite,

• Cj(x, y) = 0 if |x− y| ≥ 1
2L

j

• for j = 1, . . . , N − 1 and with [φ] = 1
2(d− 2) (so [φ] = 1 for d = 4),

|Cj(x, x)| ≤ O(L
−2[φ]j

),

|∇α
x∇β

yCj(x, x)| ≤ O(L
−(2[φ]+|α|1+|β|1)j

).

quad13



The dynamical system

The covariance decomposition induces a field decomposition and allows the expectation to

be done progressively:

φ =

N∑

j=1

ξj, dφ =

N∑

j=1

dξj, EC = ECN
◦ · · · ◦ EC2

◦ EC1
.

Write φj =
∑N

i=j+1 ξi, with φ0 = φ, φN = 0. Then φj = φj+1 + ξj+1. Let

Z0 = Z0(φ, dφ) = e
−V0(Λ)

,

and

Zj(φj, dφj) = ECj
◦ · · · ◦ EC1

Z0.

In particular, our goal is to compute

ZN = ECZ0 = ECe
−V0(Λ)

in the limit N →∞,

and we are led to study the dynamical system:

Zj+1 = ECj+1
Zj.

quad14



Relevant, marginal, irrelevant directions

Recall that [φ] = d−2
2 . The covariance estimates suggest that φj,x ≈ L−j[φ] and that

this field is approximately constant over distance Lj. Thus, for a block B of side Lj,

∑

x∈B

|φj,x|p ≈ |B|L−jp[φ]
= L

j(d−p[φ])
.

For d = 4 the RHS is Lj(4−p), which is

relevant for p < 4, marginal for p = 4, irrelevant for p > 4.

Taking symmetries and derivatives into account, the relevant and marginal monomials are:

τ, τ∆, τ
2
.

The role of d = 4: τ2 is relevant for d < 4 and irrelevant for d > 4:

∑

x∈B

|φj,x|4 = L
j(4−d)

.

quad15



The RG map

Up to an error that must be controlled, seek approximation Zj ≈ e−Vj(Λ), with

Vj(Λ) =
∑

u∈Λ

(
(gjτ

2
u + νjτu + zjτ∆,u) + λj(σφ̄0 + σ̄φx) + qjσσ̄

)

The error in the approximation is described by a family of forms, written Kj = (Kj(X)):

Zj =
∑

X⊂Λ

e
−Vj(Λ\X)

Kj(X).

Then

Zj is characterised by (gj, νj, zj, Kj, λj, qj).

The main effort: to devise an appropriate Banach space whose norm measures the size of

Kj, and calculate how the coupling constants in Vj should evolve with j in such a way

that Kj remains small.

The RG map is the description of the dynamical system Zj 7→ Zj+1 = ECj+1
Zj via

(gj, νj, zj, Kj) 7→ (gj+1, νj+1, zj+1, Kj+1) which determines (λj, qj) 7→ (λj+1, qj+1).

quad16



Flow of coupling constants

Theorem. Let d ≥ 4. The flow of the coupling constants is given by

gj+1= gj − cg
2
j + rg,j

νj+1= νj + 2gjCj+1(0, 0) + rµ,j

zj+1= zj + rz,j

Kj+1= rK,j,

where the r’s are error terms within an appropriately defined Banach space, and Lipschitz

in (gj, νj, zj, Kj). Kj enters only in the error terms and these are independent of λj, qj.

Also, with wj =
∑

y∈Λ

∑j
i=1 Ci(0, y),

λj+1 = (1 + νj+1wj+1 − νjwj)λj + rλ,j

qj+1 = qj + λjCj+1(0, x) + rq,j.

quad17



Flow diagram

stable manifold fixed point

unstable manifold

Schematic depiction of the stable manifold for the flow of the RG map.

quad18



Stable manifold theorem

Theorem. For small g0 there is a choice of initial conditions z0, ν0 such that the solution

(gj, νj, zj, Kj)0≤j≤N , in the limits N →∞, m2 → 0, j →∞ obeys

(gj, νj, zj, Kj) → (0, 0, 0, 0) “infrared asymptotic freedom.”

From this and estimates on KN ,

GZd(0, g0, ν0, z0) = lim
m2↓0

lim
N→∞

∂

∂σ

∂

∂σ̄

∣∣∣∣
0

ZN

= lim
m2↓0

lim
N→∞

∂

∂σ

∂

∂σ̄

∣∣∣∣
0

e
−VN (Λ)|φ=dφ=0

= lim
m2↓0

lim
N→∞

∂

∂σ

∂

∂σ̄

∣∣∣∣
0

e
σσ̄qN = lim

m2↓0
lim

N→∞
qN .

By solving the q recursion we obtain

lim
m2↓0

lim
N→∞

qN = c(−∆Z4)
−1

(0, x),

and this proves the main result for the critical two-point function.

quad19


