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Models and conjectures

Spin chains

A standard model for magnetism in one dimension:

L
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where the 07" are Pauli matrices acting on the i*® factor of
H = (C?)®L. (we assume periodic boundary conditions, i.e.,
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Spin chains

A standard model for magnetism in one dimension:

[y

L
H=— (oiofis + Jyojoliy + Jzofof)

2
i=1
where the 07" are Pauli matrices acting on the i*® factor of
H = (C?)®L. (we assume periodic boundary conditions, i.e.,
L+1=1)
e the XXX chain: Jy = J, = J, [Heisenberg, 1928; Bethe, 1931]
e the XXZ chain: Jy = J, # J, [Yang and Yang, 1966]

o the XYZ chain: J, # J, # J, [Baxter, 1973]



Models and conjectures

The XXX/XXZ/XYZ Hamiltonian commutes with a one-parameter
family of operators on H called transfer matrices:

[T(u), T(V]I=0  [H, T(u)]=0

For the XXX/XXZ case, u € C, whereas in the XYZ case, u lives
on an elliptic curve.
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Models and conjectures

Six- and Eig

A configuration of the eight-vertex model:

a d b d, b

Six-vertex model: vertices of type d are forbidden ( = number of
propagating lines is conserved)



Models and conjectures

The operator T(u) has the meaning of row-to-row transfer matrix

on the two-dimensional square lattice: C? = <| =+, = —>
ap 0 ap

@[ TWley= S alels  als
iz T

= aw) = da@)Pa()ru + 21)
| ——  b(u) = Da(2n)01(u)a(u + 20)

- c(u) = Dr(20)Da(u)Da(u + 21)

[

7 d(u) = 91(2n)01(u)d1(u + 2n)
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Models and conjectures

We are particularly interested in the ground state of the spin chain,
that is the eigenvector of H corresponding to its lowest eigenvalue.

In a certain range of u it coincides with the largest eigenvalue of
T (u).

If L is odd the ground state is two-fold degenerate, but we make it
unique by imposing Hszl oX=1.

In general, using the Bethe Ansatz (or other related methods), one

can obtain explicit formulae for the ground state only in the
thermodynamic limit where L — oo.



Models and conjectures

Conjecture (Baxter, '72,'73,'89; Stroganov, '99)

Suppose L is odd, and
Hdy + hdz+Jy ) =0

Then the ground state eigenvalue is

L
Bo=—5(hktdy+2)
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Models and conjectures

Combinator

Parameterize (up to normalization)
Je=1+¢ Jy=1-¢ J,=A

then JeJy + JJ; + Jy J; = 0 equivalent to A = 32,
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Combinator

Parameterize (up to normalization)

h=14¢ Jy=1-¢ J=A

then JJ, + JxJ, + Jy,J, = 0 equivalent to A = 422_1.
Further,
‘= <191(277,p)>2 A_ Y30 9a(2n,p)is(2n,p)
94(2n, p) 02(0, p)93(0,p)  V3(2n, p)

then JJ, + JJ; + JyJ. = 0 equivalent to n = 7/3.



Models and conjectures

The XXZ/6-vertex case corresponds to ( =0, or p=10. The
condition on the J's means

L

H=—3 (ofok + o]0l +Aofofy) A=-3
i=1

In this case the conjecture above is a theorem [Yang, Fendley, '04;
Veneziano and Wosiek, '06; Razumov, Stroganov and Z-J, '07].



Set L =2n+1. Call W € H the ground state eigenvector.
Normalize it so that its entries are polynomials in  with integer
coefficients and no common factors.
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Set L =2n+1. Call W € H the ground state eigenvector.
Normalize it so that its entries are polynomials in  with integer
coefficients and no common factors.

We first focus on XXZ case, i.e., the values at ( = 0.
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Models and conjectures

Theorem (Di Francesco, Z-J and Zuber, '06; Razumov, Stroganov
and Z-J, '07)

Set ( = 0 (XXZ case). We consider only entries which have n or
n+ 1 —'s depending on the parity of n (the other ones are zero).

o All entries are positive integers.

oV, 4 =1
=~

n n

oV,  =A= H7;()1 ((?)r;j-:l))"

n

3\N 2x5x%x---x(3n—1
° Zalv--waL Vo, = (j) MAH-

1x3x--x(2n—1)
where + = (—1)".
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Models and conjectures

Theorem (Di Francesco, Z-J and Zuber, '06; Razumov, Stroganov
and Z-J, '07)

Set ( = 0 (XXZ case). We consider only entries which have n or
n+ 1 —'s depending on the parity of n (the other ones are zero).

o All entries are positive integers.

oV, 4 =1
~—

o VL, =A,=[[rtE)
——

i=0 (nti)l -

n

3\N 2x5x%x---x(3n—1
° Zalv--waL Vo, = (j) MAH-

1x3x--x(2n—1)
where + = (—1)".
Ap is the number of Alternating Sign Matrices of size n.
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Models and conjectures

Conjecture (Razumov and Stroganov, '09)

o All entries of W have positive coefficients as polynomials in (.
n(n+1)

O Wiy =C7% ot Ay(n+1)%LE)

Conjecture (Bazhanov and Mangazeev, '09)

The norm of V is given by
W2 =D We e = (4/3)7C Vs (¢2)sn1(¢72)

where the s,(z) are determined by sy = s; = 1 and the recurrence

22(z — 1)(9z — 1)2(snsl — sh2) +2(3z — 1)?(9z — 1)s,s),
+8(2n4+1)%s,1 15,1 —[4(3n+1)(3n+2)+(9z—1)n(5n+3)]s2 = 0

n —
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@ Bazhanov and Mangazeev ('09) give further conjectures for
some entries.
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Models and conjectures

@ Bazhanov and Mangazeev ('09) give further conjectures for
some entries.

e Fendley and Hangendorf ('10) have certain conjectures on
correlation functions.
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Inhomogeneous models

Define a more general transfer matrix:

T(U;X]_,...,XL): it L ‘

where the weight at vertex 7 is a function of u — x;.



Inhomogeneous models

Conjecture (Razumov and Stroganov, '09)

Ifn=m/3 and L is odd, then the inhomogeneous transfer matrix
T(u;x1,...,x.) has the eigenvalue
L
I (a(u = xi) + b(u — X))
i=1
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Inhomogeneous models

Conjecture (Razumov and Stroganov, '09)

Ifn=m/3 and L is odd, then the inhomogeneous transfer matrix
T(u;x1,...,x.) has the eigenvalue

a(u—x;) + b(u — x;))

::].~

I:].

NB: in the XXZ case, this is a theorem [R, S, and Z-J, '07]; see
also [DF and Z-J, '05].
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Inhomogeneous models

Eigenvector

Consider the eigenvector W (x1,...,x;) of T(u;x1,...,x.) with
the eigenvalue H;L:1 (a(u — x;) + b(u — x;)).

Vo, o =
\\ //
o a1 a2



Inhomogeneous models

Relation to «

@ W(xy,...,x.) satisfies the exchange relation
Rilxigr = x)W(xt, .. x) = W(xa, o, X1, Xis -+, XL)

Dy
where Rj(x) = a(x)—&l-b(x) 0 b(x)c(x) © ?

d(x) 0 0 a(x) Pl
@ Cyclic invariance

wa1,~~~,&L(X1’ s >XL) = waz,-~~7aL,al(X2v <o XL Xl)



Inhomogeneous models

Relation to «
@ W(xy,...,x.) satisfies the exchange relation
Rilxigr = x)W(xt, .. x) = W(xa, o, X1, Xis -+, XL)

Dy
where Rj(x) = a(x)—&l-b(x) 0 b(x)c(x) © ?

d(x) 0 0 a(x) Pl
@ Cyclic invariance

wa1,~~~,&L(X1’ s >XL) = waz,-~~7aL,al(X2v <o XL Xl)

These can be considered as a special case of the level 1 quantum
Knizhnik—Zamolodchikov(—Bernard) equation at a cubic root of
unity.



Inhomogeneous models

Six-vertex ca

We assume L odd, A = -1 = 1(g+q71), g = e¥/3. The
normalization of W; can be chosen so that its entries are
polynomials (of degree n — 1) in each variable.



Inhomogeneous models

Six-vertex cas

We assume L odd, A = -1 = 1(g+q71), g = e¥/3. The
normalization of W; can be chosen so that its entries are
polynomials (of degree n — 1) in each variable.

Theorem (R, S and Z-J, '07)

If ®(x) = (P4(x),P_(x)) is the type | vertex operator associated
to level 1 highest weight modules of Uq(s//(E)), then W(xq,...,xL)
coincides (up to normalization) with (0| ®(x1) - -- ®(x.) |1).
Explicitly, if {i : o = +} = {a1 < --- < a,}, and z = e*™,

U, e (x, . x) = H (qzi — g 'z)
1<i<j<L
1

%H de H?:l We H1§€<m§n[(wm - Wf)(q W —q “Wnp
=1

Z
27“ =1 HZ:I [ngigaz(WE - z) HalgigL(q wg — g1z
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Inhomogeneous models

Six-vertex cc

For example, one can compute

— eZiXk

Z ‘Ual,...,aL(Xla R 7XL) = 5(n—1,n—1,...,1,1)(217 v 7ZL) Zk
Ay,

This is closely related to the enumeration of ASMs.



Inhomogeneous models

Six-vertex cc

For example, one can compute

2iXk

Z wal, el le cee XL) = S(n—l,n—l,...,l,l)(zla s ,ZL) Zxk = €

This is closely related to the enumeration of ASMs. In fact, in the
six-vertex case, there is an analogue problem in even size (twisted
XXZ chain). There again,

E Von, o (X155 X2n) = S(n—1,n-1,...,1,1) (215 - - -, 22n)

- Q2p

and it coincides with the partition function of the six-vertex model
with Domain-Wall Boundary Conditions, whose configurations are
in bijection with Alternating Sign Matrices.



Inhomogeneous models

Eight-verte

Go back to the general 8-vertex case:

The normalization of V can be chosen so that its entries are theta
functions of nome p and of order L — 1 in each variable.

(theta functions = holomorphic, doubly pseudo-periodic functions)



Quadratic sum rule

Definition

Define
ZL(Xl, v ,XL) = Z wal,.__@L(Xl, v >XL)\U041,...,04L(_X17 ey —XL)
Qye500)
\\ _///
\\ _///
\\ //




Quadratic sum rule

Assuming the conjecture above, we have the

Z, is a symmetric function of its arguments, and a theta function
of nome /p and of order L — 1 in each.




Quadratic sum rule

Characteriza

Assuming the conjecture above, we have the

Z, is a symmetric function of its arguments, and a theta function
of nome /p and of order L — 1 in each.

Furthermore, it is entirely determined by certain recurrence
relations (of the same type as Korepin relations for the partition
funtion of the six-vertex model with Domain Wall Boundary
Condition).



Quadratic sum rule

Half-speciali

Define

Z1(0,x1, —x1, ..., H192 192 (xi +m)Xn(x1y .-, %n)

Then X, is an even theta function in each of its arguments, of
degree 2(2n — 1), which is entirely determined by the recurrence
relations
o Xp(...,x,x+n)=
[T7=2 9(x = n = ) *0(x — 0+ x;)*o(x)(x + 1) Xna(. ).
o Xp(...,n+ a) = (stuff)X,—1(...) for all three o # 0 s.t.
2a0 = 0.



@ The recurrence relations are solved by a product of Pfaffians:

Xn(x1, -y x2n) = An(X1, - -, Xn)Ba(x1, - - -, Xn)
An(x1, ..., xn) < Pf f(xi,x;),  Bn(...) = Angi(...,7/2+17)

where f is a certain skew-symmetric elliptic functions of their
arguments. (for Apm+1 add extra row/column)

P. Zinn-Justin 6v/8v at combinatorial point



@ The recurrence relations are solved by a product of Pfaffians:

Xn(x1, -y x2n) = An(X1, - -, Xn)Ba(x1, - - -, Xn)
An(x1, ..., xn) < Pf f(xi,x;),  Bn(...) = Angi(...,7/2+17)
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@ The recurrence relations are solved by a product of Pfaffians:

Xn(x1, -y x2n) = An(X1, - -, Xn)Ba(x1, - - -, Xn)
An(x1, ..., xn) < Pf f(xi,x;),  Bn(...) = Angi(...,7/2+17)

where f is a certain skew-symmetric elliptic functions of their
arguments. (for Apm+1 add extra row/column)

@ A, and B, can also be expressed as products of two
determinants (similar to elliptic versions of Tsuchiya's
determinant as in [Filali, '11]).

o In the homogeneous limit, A, — ¢L7/2] sn(¢2) and
B, — (4/3)"¢L(m+1?/2ls_ | 1 (¢=2), and the BM bilinear
recurrence relations = Pliicker + linear differential relations.

P. Zinn-Justin 6v/8v at combinatorial point



Quadratic sum rule

Polynomials

If ones sends all x; to zero, then Z; becomes the product of 4
polynomials in ¢ (the constant term corresponding to the six-vertex
limit), best expressed separately depending on parity of n:

)

Il
e S S = S SOy SR

3+
7+,
2+ ¢+ ¢
2- ¢+
5+ 2¢ 4 (2,
5—2¢+ (%,
14 ¢,
3+,

26 4 29¢% +8¢* + ¢

143 +99¢2 +13¢* + ¢°

11 +12¢ 4+ 21¢2 + 103 + 7¢* +
11 — 12¢ 4 21¢2 —10¢3 + 7¢* —
66 4 63¢ + 81¢2 + 30¢3 4 12¢* -
66 — 63¢ + 81¢2 — 30¢3 + 12¢* -
34+9¢24+3¢*+¢°

21 4+ 39¢% 4+ 3¢* + ¢°
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Polynomials

If ones sends all x; to zero, then Z; becomes the product of 4
polynomials in ¢ (the constant term corresponding to the six-vertex
limit), best expressed separately depending on parity of n:

Hom=1, 1, 342 26 + 29¢2 + 8¢* + ¢5
1,1,3,26,646... is the number of VSASMs of odd size.

2" Hym(h) = 1, T+, 143 4+ 99¢2 +13¢* + ¢5
Hom(J3) = 1, 24C+¢%  114+12¢+21¢% +10C3 +7¢4 +
Hom(Ja) = 1, 2—C+¢?% 11—12¢+21¢2 —10¢3 +7¢* —
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Quadratic sum rule

Polynomials

If ones sends all x; to zero, then Z; becomes the product of 4
polynomials in ¢ (the constant term corresponding to the six-vertex
limit), best expressed separately depending on parity of n:

Hom=1, 1, 342 26 + 29¢2 + 8¢* + ¢5

2" Hym(h) = 1, T+ 143 +99¢2 +13¢* + ¢°
Hom(J) = 1, 24C+¢%  114+12¢+21¢2+10C3 +7¢4 +
Hom(Js) = 1, 2—C+¢%, 11 —-12¢+21¢%2 —103 +7¢* —

1,2,11,170... is the number of CSTCPPs.

2 o (Ja, 3) = 1, 54+2C+C% 664 63¢ + 81¢2 4 30¢3 + 12¢4 -
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Quadratic sum rule

Polynomials

If ones sends all x; to zero, then Z; becomes the product of 4
polynomials in ¢ (the constant term corresponding to the six-vertex
limit), best expressed separately depending on parity of n:

Hom=1, 1, 342 26 + 29¢2 + 8¢* + ¢5
2" Hym(h) = 1, T+ 143 4+ 99¢2 +13¢* + ¢°
Hom(J) = 1, 24C+¢%  114+12¢+21¢2+10C3 +7¢4 +
Hom(Js) = 1, 2—C+¢%, 11 —-12¢+21¢%2 —103 +7¢* —
2" Hy (o, )= 1, 54+2C+ (% 66+ 63 +81¢2 +30¢3 + 12¢* A
2" Hy (o, i) = 1, 5—2C+ (% 66— 63C+81¢%—30¢3 +12¢* -

1,5,66,2431... is one of the factors in the number of UUASMs.

. - .0 - A LA



Quadratic sum rule

Polynomials

If ones sends all x; to zero, then Z; becomes the product of 4
polynomials in ¢ (the constant term corresponding to the six-vertex
limit), best expressed separately depending on parity of n:

Hom=1, 1, 342 26 + 29¢2 + 8¢* + ¢5
2" Hym(h) = 1, T+ 143 4+ 99¢2 +13¢* + ¢°

24 C4+ ¢ 1141204212 +10C3 +7¢H +
2— (4¢3 11-12¢+21¢2 —10¢3 +7¢* —
5+2C4 (2, 66+ 63¢ +81¢%+30¢3 + 12¢* -
5—2C + (% 66— 63C+81¢2 —30¢3 +12¢* -

. - - A LA

x
3
—
=
Il
e



IRF model

Vertex-IRF

The equations above do not enable us to compute V because of
lack of §% conservation. — use vertex-IRF transformation.
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Vertex-IRF

The equations above do not enable us to compute V because of
lack of §% conservation. — use vertex-IRF transformation.

Introduce (dual) vertex-IRF intertwiners:

(@ = () (= bz + 200

and for any sequence (a;)i=o,.. 1 such that aj;; = a; £1,

_ al 1
(Dao,.A.,aL = E wal, ap | | ta ZI
o1

=%

(a1) = \/\



IRF model

Conclusion

The exchange relation turns into a simple recurrence formula for ®.

Conjecture (Weston and Z
° (Dao,...,aL =0 ifaL 75 ao + 1.

@ The ®, . .1 are determined by \
the initial condition:

q)a,a+1,.‘.,a+n,a+n+1,a+n,...,a+1 (0.8

I[I 9@-z+2n) [ 9G@-z+20)

1§i<j§n+1 nt2<i<j<L
n+1 L
H ¥z;) 792 3 E zZi — E zi—2(a— n)n)
i=n+2 i=n+2

and the recurrence relation: (t; = permutation of z; and zj 1)
(20 b)Y (2n+2j—zi11)7i—9(2n)9(2bn+2zi—2zi41)
9(2n(b+1))9(zi1—2)
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S pb1p,.. = D bbt1b,..
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Prospects

Connection to nonsymmetric elliptic Macdonad polynomials?
Connection/appliation to the work of Rosengren?
Connection to Painlevé VI?

Combinatorial interpretation of all the entries of these
polynomials?

IRF model:

Can we “solve” the recurrence relations for the IRF model?
(factorized expression?)

Lashkevich and Pugai introduced elliptic vertex operators and
wrote integral expressions for vacuum correlation functions
which should be related to ®,, ., . Use these integral
expressions?

Can we go back to the “spin” basis and prove other

Bazhanov—Mangazeev conjectures?
6v/8v at combinatorial point
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