Limit shapes in the ising model

R. Kenyon (Brown) R. Pemantle (UPenn) $Octahedron recurrence = Hirota bilinear difference equation (HBDE)$

$$
a_{x+\frac{1}{2},y+\frac{1}{2},z+\frac{1}{2}}=\frac{a_{x,y,z}a_{x+1,y+1,z}+a_{x,y+1,z}a_{x+1,y,z}}{a_{x+\frac{1}{2},y+\frac{1}{2},z-\frac{1}{2}}}
$$

ab c j k de f l m gh i

$$
a_{0,0,1} = \frac{\frac{ae+bd}{j}\frac{ei+fh}{m} + \frac{bf+ce}{k}\frac{dh+eg}{l}}{e}
$$

aei $\frac{u}{im} +$ $\frac{bdi}{jm}+\frac{afh}{jm}+\frac{bdfh}{ejm}+\frac{bdfh}{ekl}+\frac{bf}{kl}+$ $\frac{cdh}{kl}+\frac{ceg}{kl}$ $\overline{}$ $a_{0,0,1} =$

Y-Delta transformation for resistor networks

Cube recurrence = Miwa equation

$$
b_{x+1,y+1,z+1} = \frac{b_{x+1,y,z}b_{x,y+1,z+1} + b_{x,y+1,z}b_{x+1,y,z+1} + b_{x,y,z+1}b_{x+1,y+1,z}}{b_{x,y,z}}
$$

From the values on $0 \le x + y + z \le 2$ and the recurrence, get all $b_{x,y,z}$. The Laurent property holds:

G a graph, $c: E \to \mathbb{R}_{>0}$ edge weights.

Ising model: $\Omega = \{1, -1\}^G$,

$$
Z = \sum_{\sigma \in \Omega} \prod_{i \sim j: \sigma_i = \sigma_j} c_{ij}
$$

$$
= \sum_{\sigma} \prod_{i \sim j} \left(1 + (c_{ij} - 1) \delta_{\sigma_i = \sigma_j} \right)
$$

$$
= \sum_{\sigma} \sum_{S \subset E} \prod_{ij \in S} (c_{ij} - 1) \delta_{\sigma_i = \sigma_j}
$$

$$
=\sum_{S\subset E}\prod_{ij\in S}(c_{ij}-1)2^k.
$$

*FK*² model:

 $=$ $\sum \prod d_{ij} 2^k$ $S \subset E$ $ij \in S$

Here $k =$ number of components of S .

Ising model Y-Delta transformation

abc + 1 $a + bc$ *b* + *ac c* + *ab*

ABC A B C

"Before" and "after" are proportional (Ising measure preserved) iff

$$
A = \sqrt{\frac{(abc+1)(a+bc)}{(b+ac)(c+ab)}}
$$

$$
B = \sqrt{\frac{(abc+1)(b+ac)}{(a+bc)(c+ab)}}
$$

$$
C = \sqrt{\frac{(abc+1)(c+ab)}{(a+bc)(b+ac)}}
$$

Lemma: There is a solution iff

$$
abc - q(a+b+c) - q2 = 0
$$

(or $ABC + AB + AC + BC - q = 0$)
in which case $A = \frac{q}{a}, B = \frac{q}{b}, C = \frac{q}{c}$.

Initial FK_q configuration.

This is the unique configuration with these boundary connections.

Remarkable fact about the Ising Y-Delta move (Kashaev):

Define new variables *f* on vertices and faces:

where ratios of adjacent *f*s are related to edge weights as:

$$
(\frac{a-1/a}{2})^2 = \frac{f_0 f_1}{f_5 f_6}, \quad etc.
$$

 $f_0^2 f_7^2 + f_1^2 f_4^2 + f_2^2 f_5^2 + f_3^2 f_6^2 - 2(f_1 f_2 f_4 f_5 + f_1 f_4 f_3 f_6 + f_2 f_3 f_5 f_6)$ $-2f_0f_7(f_1f_4 + f_2f_5 + f_3f_6) - 4(f_0f_4f_5f_6 + f_7f_1f_2f_3) = 0.$ We say $f : \mathbb{Z}^3 \to \mathbb{C}$ satisfies the Kashaev recurrence if $P(f_{i,j,k}, f_{i+1,j,k}, \ldots, f_{i+1,j+1,k+1}) = 0$ for all $(i,j,k) \in \mathbb{Z}^3$. By defining $f_{i,j,k}$ on $0 \leq i + j + k \leq 2$ we can use P to define it everywhere. Theorem [Kashaev] The *f*s satisfy

Example: Suppose
$$
f_{i,j,k} = f_{i+j+k}
$$

\n $f_0 = 1, f_1 = a, f_2 = b$, then
\n $f_{2n} = a^{2n} R^{n^2} S^{n^2 - n}$
\n $f_{2n+1} = a^{2n+1} R^{n^2 + n} S^{n^2}$
\nwhere $R = b/a^2$ and $S = \frac{2(R+1)^{3/2} + 3R + 2}{R^2}$.

Let
$$
X_{i,j,k} = \sqrt{f_{i,j,k}f_{i,j+1,k+1} + f_{i,j+1,k}f_{i,j,k+1}},
$$

\nand symmetrically for Y, Z .
\nThen f, X, Y, Z satisfy the recurrence:
\n
$$
f_{i,j,k} = \frac{Z_{i-1,j-1,k}^2 - f_{i-1,j,k}f_{i,j-1,k}}{f_{i-1,j-1,k}}
$$
\n
$$
X_{i,j,k} = \frac{f_{i,j,k}X_{i-1,j,k} + Y_{i-1,j,k}Z_{i-1,j,k}}{f_{i-1,j,k}}
$$
 &cyclic

Fact(?): $f_{i',j',k'}$ is a Laurent polynomial in the quantities

$$
f_{i,j,k}, \quad i+j+k = 0, 1
$$

$$
X_{i,j,k}, Y_{i,j,k}, Z_{i,j,k}, \quad i+j+k = 0
$$

Conjecture: $f_{i,j,k} = \sum_{S} wt(S)$, where the sum is over edge subsets having the desired boundary connectivity,

and $wt(S) = \ldots$

Arctic circle theorem: Use $f_{i,j,k} = 3^{(i+j+k)^2/2}$.

 $f'_{n,n,n}$ satisfies a linear recurrence (with coefficients depending on f).

Let
$$
G(x, y, z) = \sum f'_{i,j,k} x^i y^j z^k
$$
.

Then $G(x, y, z)$ satisfies a linear recurrence with characteristic polynomial:

$$
P(x, y, z) = xyz + 1 - \frac{1}{3}(xy + xz + yz + x + y + z).
$$

Analyze growth of coefficients of $1/P$:

- polynomial inside inscribed circle
- *•* exponential decay outside inscribed circle

 $Q = 309811509974955984020737569841a^6 - 1858374937729039544359650269170a^5b -$ 1858374937729039544359650269170*a*⁵*c*+5883454153820320725807778237007*a*⁴*b*²+ ⁴³³⁴³⁹⁷¹⁹⁵⁰⁰⁶⁵⁴⁶³⁶⁹⁷¹¹³³⁶³¹⁵⁶⁵⁴*a*⁴*bc*+5883454153820320725807778237007*a*⁴*c*² $8669781452132474330937731075356a^3b^3 - 7427079315358238395356762728212a^3b^2c$ $7427079315358238395356762728212a^3bc^2 - 8669781452132474330937731075356a^3c^3 +$ $5883454153820320725807778237007a^2b^4 - 7427079315358238395356762728212a^2b^3c +$ $32797543284281898673568730387594a^2b^2c^2 - 7427079315358238395356762728212a^2bc^3 +$ ⁵⁸⁸³⁴⁵⁴¹⁵³⁸²⁰³²⁰⁷²⁵⁸⁰⁷⁷⁷⁸²³⁷⁰⁰⁷*a*²*c*⁴1858374937729039544359650269170*ab*⁵⁺ ⁴³³⁴³⁹⁷¹⁹⁵⁰⁰⁶⁵⁴⁶³⁶⁹⁷¹¹³³⁶³¹⁵⁶⁵⁴*ab*⁴*c*7427079315358238395356762728212*ab*³*c*² ⁷⁴²⁷⁰⁷⁹³¹⁵³⁵⁸²³⁸³⁹⁵³⁵⁶⁷⁶²⁷²⁸²¹²*ab*²*c*³+4334397195006546369711336315654*abc*⁴ ¹⁸⁵⁸³⁷⁴⁹³⁷⁷²⁹⁰³⁹⁵⁴⁴³⁵⁹⁶⁵⁰²⁶⁹¹⁷⁰*ac*⁵+309811509974955984020737569841*b*⁶ ¹⁸⁵⁸³⁷⁴⁹³⁷⁷²⁹⁰³⁹⁵⁴⁴³⁵⁹⁶⁵⁰²⁶⁹¹⁷⁰*b*⁵*c*+5883454153820320725807778237007*b*⁴*c*² $8669781452132474330937731075356b^3c^3+5883454153820320725807778237007b^2c^4$ 1858374937729039544359650269170*bc*⁵ + 309811509974955984020737569841*c*⁶