East model: Aging through Hierarchical Coalescence

Fabio Martinelli

Dept. of Mathematics, University Roma 3, Italy

with: A. Faggionato, C.Roberto, C. Toninelli

Overview of the talk

1 I Part : the East model

- *•* East model : definition and main features.
- *•* Previous results on the relaxation to the equilibrium.
- High density, non-equilibrium dynamics.
- *•* Staircase behavior of the density ;
- Aging for density-density time auto-correlation;
- *•* Scaling limit for the inter-vacancy interval length.
- 2 II Part : Hierarchical Coalescence Process.
	- *•* Main features of a hierarchical coalescence process.

.

- *•* Universality for the HCP.
- *•* Implications for the East model :

3 Open problems.

East Model [Jackle-Eisinger '91]

- Configuration space $\Omega = \{0,1\}^{\mathbb{Z}}$ \bullet $\sigma \in \Omega$, $\sigma(x) \in \{0,1\}$ *↘* 1 : there is a particle at site *x* 0 : there is no particle at site *x*
- Glauber dynamics with kinetic constraint : the right neighbor should be empty for a flip to take place.

Main Features of the East Model

 $\sigma \in \Omega := \{0,1\}^{\mathbb{Z}}, \;\; \forall \text{$x \in \mathbb{Z} : \sigma(x) \in \{0,1\}$.}$

•

• $\{\sigma_t\}_{t>0}$ denotes the process with initial config. σ

$$
\mathcal{L}f(\sigma):=\sum_{\mathsf{x}\in\mathbb{Z}}(1-\sigma(\mathsf{x}+1))(\mu_\mathsf{x}(f)-f(\sigma))
$$

- *•* Reversible w.r.t. *µ* (Bernoulli product measure of density $p = 1 - q$.
- Introduced by physicists to model liquid/glass transition.
- *•* Constraint on the allowed moves (more effective as *q ↓* 0) simulates *geometric constraints* on molecules in highly dense liquids.
- *•* As *q ↓* 0 constraints slow down the dynamics. The liquid freezes into an amorphous solid state *∼* glass.

Relaxation to equilibrium : basic results

Definition

$$
\mathcal{T}_{\text{rel}}:=(\text{spectral gap of }\mathcal{L})^{-1}
$$

Theorem

*• T*rel *<* +*∞ ∀q ∈* (0*,* 1) *(Aldous, Diaconis '02)* • $\tau_{\text{rel}} \simeq \left(\frac{1}{q}\right)$ *q*)*[|]* log² (*q*)*|/*2 *as q ↓* 0 *(Cancrini, M., Roberto, Toninelli '08)*

Theorem (Cancrini, M., Schonmann, Toninelli. '09)

Let $\nu \neq \mu$ *be a different product measure. Then*

|Eν(*f* (*σt*)) *− µ*(*f*)*| ≤ C^f* exp(*−t/*2*T*rel)

High density non-equilibrium dynamics

Basic Setting

- 1 Start at time zero from a quite general *renewal law ν* independent from *q* ;
- 2 Run the Glauber dynamics with *q ≪* 1 ;
- 3 Focus on the *pre-asymptotic* behavior not too far from the origin (or in large *q*-independent interval) and up to time scales $T = T(q)$ with $1 \ll T \ll T_{rel}$.
- 4 Physically we are considering a *quench* from *low* to *high* density, i.e. from the liquid to the glass phase ;

 \overline{AB} . \overline{AB} . \overline{AB} . \overline{AB} . \overline{B} . \overline{BA}

Plateau behavior of the density

- *•* Numerical simulations and non-rigorous theoretical analysis suggest that, as $q \rightarrow 0$:
	- *(a)* the model does not reach equilibrium ; (b) time auto-correlation function shows aging; *(c)* the density profile exhibits plateau behavior.

A First Key Observation

As $q \downarrow 0$:

- **1** Dynamics is dominated by killing the excess vacancies.
- 2 Dynamics *⇐⇒* coarsening of intervals delimited by consecutive vacancies.
- 3 To kill a vacancy at *x* the dynamics *must* bring a vacancy at $x + 1$ from the nearest (East-ward w.r.t. *x*) vacancy \Rightarrow *cooperative* relaxation.
- 4 Cooperative relaxation requires a certain number of auxiliary *extra* vacancies to be first created and then destroyed *⇒ Energy Barriers*.
- 5 *Metastable* effects very relevant.
- 6 Key question : what is the *structure* of the energy barriers ?

Energy Barriers Structure and Activation Times

Combinatorial argument (Evans, Sollich + Chung-Diaconis-Graham 01) : during the killing of vacancy at *x at least n* extra vacancies between *x* and *y*.

Energy barrier $\Delta E_n = n \Rightarrow$ *Activation Time* $t_n := (1/q)^n$.

Metastability : Actual killing is *random and istantaneous* (w.r.t. to the expected time t_n) and occurs on scale $t_{n-1} = \frac{1}{q^{n-1}}$ $rac{1}{q^{n-1}}$.

.

Killing vacancy at $x \Leftrightarrow$ coalescing domain [x, y] with [z, x]

Active and stalling periods

Definition (Hierarchy of activation times)

$$
t_n^+:=t_n^{1+\epsilon}=\left(\frac{1}{q^n}\right)^{1+\epsilon},\quad t_n^-:=t_n^{1-\epsilon}=\left(\frac{1}{q^n}\right)^{1-\epsilon}
$$

Definition

Domain $[x, x + \ell]$ is of *class n* if $\ell \in [2^{n-1} + 1, 2^n]$, $n \geq 1$. Vacancy at *x* is of class *n* if it is the left border of a domain of class *n*.

Definition

- *•* [*t − n ,t* + *n*] is called the *n*-th *active period* ;
- *•* $[t_n^+, t_{n+1}^-]$ is called the *n*-th *stalling* period (nothing happens).

Evolution during the n-th active period.

- Recursively assume that at time t_n^- all vacancies in e.g. [*−*2 *^N,* 2 *^N*], *N ≫* 1, are of class at least *n* w.h.p.
- *•* Vacancies of class *larger* than *n* do not disappear w.h.p.
- *•* When a vacancy of the *n*-th class disappears *⇔* the class of the vacancy to its *left* becomes at least $n + 1$ $(2^n + 2^n = 2^{n+1}).$

 \overline{AB} . \overline{AB} . \overline{AB} . \overline{AB} . \overline{B} . \overline{BA}

- *•* Thus vacancies of class *n* either disappear *directly* or *increase* their class w.h.p.
- At the end of the period (t_n^+) w.h.p. *all* vacancies are of class at least $n + 1$ and were already present at t_n^- ;
- Between the *stalling* period $[t_n^+, t_{n+1}^-]$ w.h.p. no vacancy is killed \Rightarrow the recursion step is proved.

 \overline{AB} . \overline{AB} . \overline{AB} . \overline{AB} . \overline{B} . \overline{BA}

Staircase Behavior

Theorem

∀ σ \in {0, 1}^{\mathbb{Z}}, \forall *n* \in N *there exists c_n*(σ) *s.t.*

$$
\lim_{q\downarrow 0}\sup_{t\in [t_n^+,t_{n+1}^-]}|\mathbb{P}_{\sigma}(\sigma_t(0)=0)-c_n(\sigma)|=0
$$

Heigth of plateaux

Definition

Let ν be a (non-trivial) probability law over the integers with finite mean. We define $\text{Ren}(\nu)$ as the stationary renewal distribution on **Z** with interval law *ν*

Theorem

If the initial distribution is $Q = \text{Ren}(\nu)$ *then*

$$
\lim_{n\to\infty}\lim_{q\downarrow 0}\mathbb{E}_Q(c_n)(2^n+1)=1
$$

Coarsening

Let \tilde{X} be the non-negative random variable such that

$$
\mathbb{E}(\exp{(-s\tilde{X})})=1-\exp\Big\{-\int_1^\infty\frac{e^{-sx}}{x}d x\Big\}\qquad s>0
$$

Theorem

If the initial distribution is $Q = \text{Ren}(\nu)$ *then for any bounded function f* and any $k \in \mathbb{Z}$

$$
\lim_{n\uparrow\infty}\lim_{q\downarrow 0}\sup_{t\in[t_n^+,t_{n+1}^-]}\left|\mathbb{E}_Q\big(f(X_k^{(n+1)}(t))\big)-\mathbb{E}\big(f(\tilde{X})\big)\right|=0
$$

.

where
$$
X_k^{(n)}(t) := (x_{k+1}(t) - x_k(t))/(2^{n-1} + 1)
$$

=*⇒* Mean domain length grows as *t* log 2*/|* log *q|*

Aging

Theorem

Fix
$$
\sigma \in \{0,1\}^{\mathbb{Z}}
$$
, $\forall n, m \in \mathbb{N}$ there exists $c_{n,m,x}(\sigma)$ s.t.

$$
\lim_{q\downarrow 0} \sup_{t\in[t_n^+, t_{n+1}^-]} \sup_{s\in[t_m^+, t_{m+1}^-]} |\text{Cov}_{\sigma}(\sigma_t(x); \sigma_s(x)) - c_{n,m,x}(\sigma)| = 0
$$

If $Q = \text{Ren}(\nu)$ *set* $\rho_x := Q(\sigma(x) = 0)$ *, then*

$$
\lim_{n \to \infty} \lim_{m \to \infty} \lim_{q \downarrow 0} \left| \mathbb{E}_Q(c_{n,m,x}) - \frac{\rho_x}{(2^n+1)} \left(1 - \frac{\rho_x}{(2^m+1)} \right) \right| = 0
$$

Hierarchical Coalescence Process (HCP)

- Main motivation : physical modeling of non-equilibrium coarsening dynamics of 1D systems (Derrida, Bray, Godreche,*. . .*) ;
- *•* Features : infinite sequence of 1D coalescence processes $\{\xi_n\}_{n=1}^{\infty}$ with "end of ξ_n = beginning of ξ_{n+1} ".
- *•* The *n*-th process live in the *n*-th *epoch* and *only* intervals with length $∈$ $[d_n, d_{n+1})$ are *active* i.e. merge with very general rates with the left or right neighbor.
- We assume $d_n \uparrow$ and $2d_n \geq d_{n+1}$.
- Examples : $d_n = n$ ("Paste-all-model"), $d_n = a^n$, $a \in (1,2]$, $d_n = 2^{n-1} + 1 \Leftrightarrow$ the East model.

 $\mathbf{1} \sqcup \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \rightarrow \mathbf{1} \oplus \mathbf{1} \opl$

Some Facts

- **1** Assume that at the beginning of the first epoch the intervals form a renewal process
- 2 Physicists observed a large scale (i.e. $n \to \infty$) universality of rescaled variables (e.g. (domain length)*/dn*).
- 3 Different models show the same behavior independently of the merging rates and of the active domains range. For example the "Paste-all-model" behaves as the East model a fact refereed to as "very surprising" in the physics literature.
- 4 Physicists were not able to prove the scaling hypothesis nor were able to classify the universality classes according to the initial renewal process.

HCP definition I

 $\Omega^{(n)}$ is the subset of $\Omega:=(0,1)^{\mathbb{Z}}$ with each domain (=interval among consecutive zeros) of class at least *n*. Class 0 if $d = 1$, class $n \geq 1$ if $d \in [d_n, d_{n+1})$.

n-th epoch Coalescence Process

Initial configuration : $\sigma_0^{(n)} \in \Omega^{(n)}$ Dynamics :

- *•* independent exponential clock on each domain [*x, y*] with rate $\lambda_n(v - x)$;
- $\lambda_n(d) > 0$ iff $d \in [d_n, d_{n+1})$;
- *•* when clock rings on [*x, y*] and if the domain is still present *⇒* incorporate left domain, i.e. erase point *x*.

At infinite time the configuration $\sigma_{\infty}^{(n)}$ belongs to $\Omega^{(n+1)}$

HCP definition II (infinite epochs)

- **1** Start from $\sigma \in \Omega = \Omega^{(0)}$ and run the 0-th epoch coalescence process for an infinite time to get $\sigma_{\infty}^{(0)}$;
- 2 Start from $σ_{\infty}^{(0)}$ ∈ Ω₁ and run the 1-th epoch coalescence process for an infinite time to get $\sigma_{\infty}^{(1)}$;
- 3 . . .
- 4 Start from $σ_{\infty}^{(n-1)}$ ∈ Ω^(*n*) and run the *n*-th epoch coalescence process for an infinite time to get *σ* (*n*) *∞*

 $\mathbf{1}_{\{1,2\}\cup\{1,3\}\cup\{1,4\}}\mathbf{1}_{\{1,3\}\cup\{1,5\}}\mathbf{1}_{\{1,4\}\cup\{1,5\}}\mathbf{1}_{\{1,5\}\cup\{1,6\}}$

5 *. . .*

HCP Main Results

Theorem

Assume $\sigma \sim Q = \text{Ren}(\nu)$ *with* ν *any finite mean probability measure on* $[1,\infty)$ *. Then (i)* $\sigma_t^{(n)}$ *t is distributed with Ren*(*ν* (*n*) *t*)*; (ii)* Let $X^{(n)}$ be distributed with $\nu_0^{(n)}$ $Q_0^{(n)}$ and $Z^{(n)} := X^{(n)}/d_n$. Then *Z* (*n*) *weakly converges to Z* (*∞*) *with*

$$
\mathbb{E}(e^{-s Z^{(\infty})}) = 1 - \exp\Big\{-\int_1^\infty \frac{e^{-sx}}{x} dx\Big\}
$$

(iii) If instead $Q = \text{Ren}(\nu|0)$ with ν in the domain of attraction of *an α-stable law then*

$$
\mathbb{E}(e^{-s Z^{(\infty)}}) = 1 - \exp\left\{-\alpha \int_1^{\infty} \frac{e^{-sx}}{x} dx\right\}
$$

Hints for the proof

1 The Laplace transforms $\{g^{(n)}(s)\}_{n\geq 1}$ of $\{Z^{(n)}\}_{n\geq 1}$ satisfy a highly non-linear system of recursive identities

$$
1-g^{(n)}(s a_{n-1})=(1-g_{n-1}(s))e^{h^{(n-1)}(s)} \quad \forall n\geq 2.
$$

where

$$
a_n = d^{(n+1)}/d^{(n)}, \quad h^{(n)}(s) = \mathbb{E}\left(e^{-sZ^{(n)}}\chi_{1 \leq Z^{(n)} < a_n}\right)
$$

1 One observes that a family of fixed points is given by

$$
g_c^{(\infty)}(s) = 1 - \exp\left(-c \int_1^{\infty} dx \, \frac{e^{-sx}}{x}\right), \quad c \in (0,1]
$$

2 One then *proves* that there exists a non-negative measure $dt^{(n)}(x)$ such that

$$
g^{(n)}(s) = 1 - \exp\left(-\int_1^\infty dt^{(n)}(x) \frac{e^{-sx}}{x}\right)
$$

3 The recursive identitities for the ${g^{(n)}(s)}_{n\geq 1}$ become indentities for the measures $\{t^{(n)}\}_{n\geq 1}$ and one can *prove* that $t^{(n)} \rightarrow c \times Leb$ if

$$
\lim_{s\downarrow 0} -s\,\frac{d}{ds}g^{(1)}(s)/(1-g^{(1)}(s))=c(\in(0,1])
$$

 $\mathbf{1}_{\{1,2\}\cup\{1,3\}\cup\{1,4\}}\mathbf{1}_{\{1,3\}\cup\{1,5\}}\mathbf{1}_{\{1,4\}\cup\{1,5\}}\mathbf{1}_{\{1,5\}\cup\{1,6\}}$

HCP Universality and generalizations

- *•* Previous result *⇒ Universality Classes*.
- One can generalize to $Q = \text{Ren}(\mu, \nu)$: scaling for the position of the first vacancy $+$ same scaling for the rescaled domain length.
- *•* Same method for triple coalescence (merging with left *and* right neighboring intervals) but *different* asymptotics.

East model vs HCP

Discussion about activation times and energy barriers suggest that, as $q \downarrow 0$, the East dynamics should be approximated by a suitable HCP such that ;

- $d_n = 2^{n-1} + 1$;
- $\frac{1}{2}$ time t_n^+ should corresponds to the end of the *n*-th coalescence ;
- 3 It remains to determine the appropriate rates $\lambda_n(d) \Leftrightarrow$ survival propability of a vacancy with domain *d* (of class *n*).
- 4 The rates are found solving a large deviation problem for the East dynamics. All what is needed is that the rates only weakly depend on *q*.

Main result

• The final result is that, on finite, large volume *independent* from *q*, the marginal for the East process and for the HCP above are close in $|| \cdot ||_{TV}$ for $q \downarrow 0$.

• Staircase behavior and aging follow at once from the scaling limit of the HCP.

References

1 A.Faggionato, F.Martinelli, C.Roberto, C.T. arXiv :1012.4912 to appear in Communication of Math. Physics ;

2 A.Faggionato, F.Martinelli, C.Roberto, C.T. arXiv :1007.0109, to appear in Annals of Probability ;

3 P.Sollich, M.Evans, Phys.Rev.Lett, 83 (1999), p.3238–3241.