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Overview of the talk

I Part : the East model

e East model : definition and main features.

e Previous results on the relaxation to the equilibrium.
High density, non-equilibrium dynamics.

e Staircase behavior of the density;

o Aging for density-density time auto-correlation ;

e Scaling limit for the inter-vacancy interval length.

II Part : Hierarchical Coalescence Process.

e Main features of a hierarchical coalescence process.
e Universality for the HCP.
o Implications for the East model :

Open problems.



Fast Model [Jackle-Eisinger '91]

e Configuration space Q = {0,1}*

1: there is a particle at site x
ec e, o(x)e{0,1} 7
N 0: thereisno particle at site x

e Glauber dynamics with kinetic constraint : the right neighbor
should be empty for a flip to take place.
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Main Features of the Fast Model

o€ Q:={0,1}%, Vx€Z:o(x) € {0,1}
{o+}+>0 denotes the process with initial config. o

Lf(o) =) (1 —o(x+1))(ux(F) — f(0))

XEL
Reversible w.r.t. ;1 (Bernoulli product measure of density
p=1-aq).
Introduced by physicists to model liquid/glass transition.

Constraint on the allowed moves (more effective as g | 0)
simulates geometric constraints on molecules in highly
dense liquids.

As g | 0 constraints slow down the dynamics. The liquid
freezes into an amorphous solid state ~ glass.



Relazxation to equilibrium : basic results

Definition

T.ol == (spectral gap of £)~?

Theorem

o Tl < +00 Vg € (0,1) (Aldous, Diaconis '02)

1\ | eg2(a)l/2

* Tra= (g as q | 0 (Cancrini, M., Roberto,

Toninelli '08)

Theorem (Cancrini, M., Schonmann, Toninelli. '09)

Let v # u be a different product measure. Then

|E,(f(ot)) — p(f)] < Crexp(—t/2T.e1)



High density non-equilibrium dynamics

Basic Setting

Start at time zero from a quite general renewal law v
independent from q ;

Run the Glauber dynamics with g < 1;

Focus on the pre-asymptotic behavior not too far from the
origin (or in large g-independent interval) and up to time
scales T = T(q) with 1 <« T < Tyql.

Physically we are considering a quench from low to high
density, i.e. from the liquid to the glass phase ;



Plateau behavior of the density

e Numerical simulations and non-rigorous theoretical
analysis suggest that, as g — 0 :

(a) the model does not reach equilibrium ;
(b) time auto-correlation function shows aging ;
(c¢) the density profile exhibits plateau behavior.




A First Key Observation

AsqlO0:

Dynamics is dominated by killing the excess vacancies.

Dynamics <= coarsening of intervals delimited by
consecutive vacancies.

To kill a vacancy at x the dynamics must bring a vacancy at
x + 1 from the nearest (East-ward w.r.t. x) vacancy =
cooperative relaxation.

Cooperative relaxation requires a certain number of
auxiliary extra vacancies to be first created and then
destroyed = Energy Barriers.

Metastable effects very relevant.
Key question : what is the structure of the energy barriers ?



Energy Barriers Structure and Activation Times

y—xe2m+1,2, 1< n<logy(l/q)
z X y

0 0000000000 00000000 000000000

Combinatorial argument (Evans, Sollich +
Chung-Diaconis-Graham 01) : during the killing of vacancy at x
at least n extra vacancies between x and y.

Energy barrier AE, = n = Activation Time t, := (1/q)".

Metastability : Actual killing is random and istantaneous (W.r.t.

to the expected time t,) and occurs on scale t, 1 = ﬁ.

Killing vacancy at x < coalescing domain [x, y] with [z, x]



Active and stalling periods

Definition (Hierarchy of activation times)

Domain [x, x + /] is of class nif £ € [2"~1 +1,2"], n > 1.
Vacancy at x is of class n if it is the left border of a domain of
class n.

Definition

e [t ,t]] is called the n-th active period ;
e [t,t,,,]is called the n-th stalling period (nothing
happens).



FEvolution during the n-th active period.

e Recursively assume that at time ¢, all vacancies in e.g.
[-2N 2N], N > 1, are of class at least n w.h.p.

e Vacancies of class larger than n do not disappear w.h.p.
e When a vacancy of the n-th class disappears < the class of

the vacancy to its left becomes at least n + 1
(27 42" =21,



e Thus vacancies of class n either disappear directly or
increase their class w.h.p.

e At the end of the period (t;7) w.h.p. all vacancies are of
class at least n + 1 and were already present at t,, ;

e Between the stalling period [t;7, t, ;] w.h.p. no vacancy is
killed = the recursion step is proved.



Staircase Behauvior

Theorem

Vo € {0,1}%, ¥n € N there exists c,(o) s.t.

lim  sup  [Po(0¢(0) = 0) — ca(0)| =0

0 _
aql te[td ]




Heigth of plateauz

Definition
Let v be a (non-trivial) probability law over the integers with

finite mean. We define Ren(v) as the stationary renewal
distribution on Z with interval law v

Theorem
If the initial distribution is Q = Ren(v) then

lim lim Eq(cy)(2"+1)=1

n—oo ql0



Coarsening

Let X be the non-negative random variable such that

e—SX

o0
E(exp(—sX)) =1— exp{ — /
1 X

If the initial distribution is Q = Ren(v) then for any bounded
function f and any k € Z

dx} s>0

lim lim  sup ‘EQ(f(X,E"H)(t)))—E(f(f())‘:O

oo ql0 te[t b1

where X{" (t) := (xer1(t) — xi(£))/(2"1 + 1)

— Mean domain length grows as t'°82/Ilegal



Theorem

Fix o € {0,1}%, ¥n, m € N there exists cp m x(7) s.L.

lim  sup sup  |Covg(oe(x); 0s(x)) — cpmx(c)| =0
MO reftt i) selth o]

If Q = Ren(v) set py := Q(co(x) = 0), then

. . . Px Px _
sm Al [Ee(enmx) = Gy (1 L 1)>‘ =0



Hierarchical Coalescence Process (HCP)

e Main motivation : physical modeling of non-equilibrium
coarsening dynamics of 1D systems (Derrida, Bray;,
Godreche,...);

e Features : infinite sequence of 1D coalescence processes
{&n}02; with “end of ¢, = beginning of £,,1”.

e The n-th process live in the n-th epoch and only intervals
with length € [d,, d,+1) are active i.e. merge with very

general rates with the left or right neighbor.
e We assume d,, 1 and 2d, > d,11.

e Examples : d, = n (“Paste-all-model”), d, = a", a € (1,2],
d, =2"1 4+ 1 < the East model.



Assume that at the beginning of the first epoch the intervals
form a renewal process

Physicists observed a large scale (i.e. n — o) universality
of rescaled variables (e.g. (domain length)/d,,).

Different models show the same behavior independently of
the merging rates and of the active domains range. For
example the “Paste-all-model” behaves as the East model a
fact refereed to as “very surprising” in the physics literature.

Physicists were not able to prove the scaling hypothesis nor
were able to classify the universality classes according to
the initial renewal process.



HCP definition I

Q(" is the subset of Q := (0, 1)” with each domain (=interval
among consecutive zeros) of class at least n.
Class0if d =1, classn > 1if d € [dp, dpt1)-

n-th epoch Coalescence Process

Initial configuration : 0'( " e
Dynamics :

e independent exponential clock on each domain [x, y] with
rate A\p(y — x);

o \o(d) > 0iff d € [dn, dpy1);

e when clock rings on [x, y| and if the domain is still present
= incorporate left domain, i.e. erase point x.

At infinite time the configuration a( ) belongs to Q("+1)



HCP definition II (infinite epochs)

| Start from o € Q = Q(© and run the 0-th epoch coalescence
process for an infinite time to get 0(0)

Start from o0 € 2; and run the 1-th epoch coalescence
process for an infinite time to get 0(1)

Start from o7 ) € Q(" and run the n-th epoch coalescence

process for an infinite time to get ol



HCP Main Results

Theorem

Assume o ~ @ = Ren(v) with v any finite mean probability
measure on [1,00). Then (i) ag ") is distributed with Ren(v; (n )),

(ii) Let X(") be distributed with v{" and Z(" := X" /d,,. Then
Z(") weakly converges to Z(>) with

00 ,—SX
E(esZ(oo)):l_eXp{_/ e dX}
1

X

(iii) If instead Q = Ren(v|0) with v in the domain of attraction of
an a-stable law then

E(e —sZ(= )—1—exp{ /looe—sxdx}




Hints for the proof

The Laplace transforms {g(")(s)},>1 of {Z(M},>; satisfy a
highly non-linear system of recursive identities

1— g (sa,1) = (1 - gn1(s))e"” ) wn>2.
where

an = d(n+1)/d(n), h(n)(s) - (e_SZ(H)X1§Z(n)<a")



One observes that a family of fixed points is given by

(Oo) o e*SX
gt (s)=1—exp|—c dx , c€(0,1]
1 X

One then proves that there exists a non-negative measure
dt("(x) such that

2" (s) = 1— exp (- /1 () £ >

X

The recursive identitities for the {g(")(s)},>1 become
indentities for the measures {t(”)}n21 and one can prove
that t(" — ¢ x Leb if

i —s 2-8M()/(1 — g(s)) = c(e (0.1)



HCP Universality and generalizations

e Previous result = Universality Classes.

¢ One can generalize to Q@ = Ren(y, v) : scaling for the
position of the first vacancy + same scaling for the rescaled
domain length.

e Same method for triple coalescence (merging with left and
right neighboring intervals) but different asymptotics.



Fast model vs HCP

Discussion about activation times and energy barriers suggest
that, as q | 0, the East dynamics should be approximated by a
suitable HCP such that;

dp=2""1+1;
time t;" should corresponds to the end of the n-th
coalescence ;

It remains to determine the appropriate rates \,(d) <
survival propability of a vacancy with domain d (of class n).

The rates are found solving a large deviation problem for
the East dynamics. All what is needed is that the rates only
weakly depend on q.



e The final result is that, on finite, large volume independent
from g, the marginal for the East process and for the HCP
above are close in || - ||Tv for g | 0.

e Staircase behavior and aging follow at once from the
scaling limit of the HCP.
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