East model: Aging through Hierarchical Coalescence

Fabio Martinelli

Dept. of Mathematics, University Roma 3, Italy

with: A. Faggionato, C.Roberto, C. Toninelli

Overview of the talk

1 I Part : the East model

- East model : definition and main features.
- Previous results on the relaxation to the equilibrium.
- High density, non-equilibrium dynamics.
- Staircase behavior of the density;
- Aging for density-density time auto-correlation;
- Scaling limit for the inter-vacancy interval length.
- 2 II Part : Hierarchical Coalescence Process.
 - Main features of a hierarchical coalescence process.

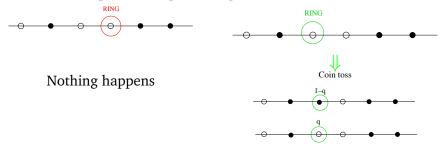
(日) (日) (日) (日) (日) (日) (日)

- Universality for the HCP.
- Implications for the East model :

3 Open problems.

East Model [Jackle-Eisinger '91]

- Configuration space Ω = {0,1}^ℤ
 σ ∈ Ω, σ(x) ∈ {0,1} → 1: there is a particle at site x
 0: there is no particle at site x
- Glauber dynamics with kinetic constraint : the right neighbor should be empty for a flip to take place.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Main Features of the East Model

• $\sigma \in \Omega := \{0,1\}^{\mathbb{Z}}, \quad \forall x \in \mathbb{Z} : \sigma(x) \in \{0,1\}$

•

• $\{\sigma_t\}_{t\geq 0}$ denotes the process with initial config. σ

$$\mathcal{L}f(\sigma):=\sum_{x\in\mathbb{Z}}(1-\sigma(x+1))(\mu_x(f)-f(\sigma))$$

- Reversible w.r.t. μ (Bernoulli product measure of density p = 1 q).
- Introduced by physicists to model liquid/glass transition.
- Constraint on the allowed moves (more effective as $q \downarrow 0$) simulates *geometric constraints* on molecules in highly dense liquids.
- As *q* ↓ 0 constraints slow down the dynamics. The liquid freezes into an amorphous solid state ~ glass.

Relaxation to equilibrium : basic results

Definition

$$T_{\mathrm{rel}} := (\text{spectral gap of } \mathcal{L})^{-1}$$

Theorem

• $T_{rel} < +\infty$ $\forall q \in (0, 1)$ (Aldous, Diaconis '02) • $T_{rel} \simeq \left(\frac{1}{q}\right)^{|\log_2(q)|/2}$ as $q \downarrow 0$ (Cancrini, M., Roberto, Toninelli '08)

Theorem (Cancrini, M., Schonmann, Toninelli. '09)

Let $\nu \neq \mu$ be a different product measure. Then

$$|E_{
u}(f(\sigma_t)) - \mu(f)| \leq C_f \exp(-t/2T_{\mathrm{rel}})$$

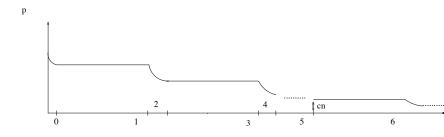
High density non-equilibrium dynamics

Basic Setting

- Start at time zero from a quite general *renewal law* ν independent from *q*;
- **2** Run the Glauber dynamics with $q \ll 1$;
- **B** Focus on the *pre-asymptotic* behavior not too far from the origin (or in large *q*-independent interval) and up to time scales T = T(q) with $1 \ll T \ll T_{rel}$.
- Physically we are considering a *quench* from *low* to *high* density, i.e. from the liquid to the glass phase;

Plateau behavior of the density

- Numerical simulations and non-rigorous theoretical analysis suggest that, as $q \rightarrow 0$:
 - (a) the model does not reach equilibrium;
 (b) time auto-correlation function shows aging;
 (c) the density profile exhibits plateau behavior.



・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

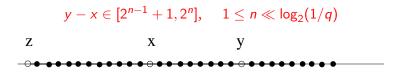
A First Key Observation

As $q \downarrow 0$:

- Dynamics is dominated by killing the excess vacancies.
- 2 Dynamics ⇐⇒ coarsening of intervals delimited by consecutive vacancies.
- **3** To kill a vacancy at *x* the dynamics *must* bring a vacancy at x + 1 from the nearest (East-ward w.r.t. *x*) vacancy \Rightarrow *cooperative* relaxation.
- ☑ Cooperative relaxation requires a certain number of auxiliary *extra* vacancies to be first created and then destroyed ⇒ *Energy Barriers*.
- **5** *Metastable* effects very relevant.
- 6 Key question : what is the *structure* of the energy barriers?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Energy Barriers Structure and Activation Times



Combinatorial argument (Evans, Sollich + Chung-Diaconis-Graham 01) : during the killing of vacancy at *x at least n* extra vacancies between *x* and *y*.

Energy barrier $\Delta E_n = n \Rightarrow$ Activation Time $t_n := (1/q)^n$.

Metastability : Actual killing is *random and istantaneous* (w.r.t. to the expected time t_n) and occurs on scale $t_{n-1} = \frac{1}{a^{n-1}}$.

Killing vacancy at $x \Leftrightarrow$ coalescing domain [x, y] with [z, x]

Active and stalling periods

Definition (Hierarchy of activation times)

$$t_n^+ := t_n^{1+\epsilon} = \left(\frac{1}{q^n}\right)^{1+\epsilon}, \quad t_n^- := t_n^{1-\epsilon} = \left(\frac{1}{q^n}\right)^{1-\epsilon}$$

Definition

Domain $[x, x + \ell]$ is of class *n* if $\ell \in [2^{n-1} + 1, 2^n]$, $n \ge 1$. Vacancy at *x* is of class *n* if it is the left border of a domain of class *n*.

Definition

- $[t_n^-, t_n^+]$ is called the *n*-th active period;
- $[t_n^+, t_{n+1}^-]$ is called the *n*-th *stalling* period (nothing happens).

Evolution during the *n*-th active period.

- Recursively assume that at time t_n^- all vacancies in e.g. $[-2^N, 2^N]$, $N \gg 1$, are of class at least *n* w.h.p.
- Vacancies of class *larger* than *n* do not disappear w.h.p.
- When a vacancy of the *n*-th class disappears ⇔ the class of the vacancy to its *left* becomes at least *n* + 1 (2ⁿ + 2ⁿ = 2ⁿ⁺¹).

- Thus vacancies of class *n* either disappear *directly* or *increase* their class w.h.p.
- At the end of the period (t⁺_n) w.h.p. all vacancies are of class at least n + 1 and were already present at t⁻_n;
- Between the *stalling* period [t⁺_n, t⁻_{n+1}] w.h.p. no vacancy is killed ⇒ the recursion step is proved.

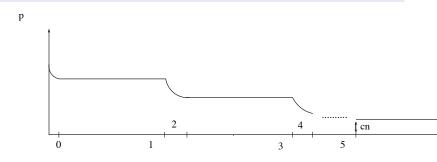
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Staircase Behavior

Theorem

 $\forall \sigma \in \{0,1\}^{\mathbb{Z}}$, $\forall n \in \mathbb{N}$ there exists $c_n(\sigma)$ s.t.

$$\lim_{q\downarrow 0} \sup_{t\in [t_n^+,t_{n+1}^-]} |\mathbb{P}_{\sigma}(\sigma_t(0)=0) - c_n(\sigma)| = 0$$



▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Heigth of plateaux

Definition

Let ν be a (non-trivial) probability law over the integers with finite mean. We define Ren(ν) as the stationary renewal distribution on **Z** with interval law ν

Theorem

If the initial distribution is $Q = Ren(\nu)$ then

$$\lim_{n\to\infty} \lim_{q\downarrow 0} \mathbb{E}_Q(c_n)(2^n+1) = 1$$

Coarsening

Let \tilde{X} be the non-negative random variable such that

$$\mathbb{E}(\exp\left(-s\tilde{X}\right)) = 1 - \exp\left\{-\int_{1}^{\infty} \frac{e^{-sx}}{x} dx\right\} \qquad s > 0$$

Theorem

If the initial distribution is $Q = \text{Ren}(\nu)$ then for any bounded function f and any $k \in \mathbb{Z}$

$$\lim_{n\uparrow\infty} \lim_{q\downarrow 0} \sup_{t\in[t_n^+,t_{n+1}^-]} \left| \mathbb{E}_Q\big(f(X_k^{(n+1)}(t))\big) - \mathbb{E}\big(f(\tilde{X})\big) \right| = 0$$

(日) (日) (日) (日) (日) (日) (日)

where $X_k^{(n)}(t) := (x_{k+1}(t) - x_k(t))/(2^{n-1}+1)$

 \implies Mean domain length grows as $t^{\log 2/|\log q|}$

Aging

Theorem

Fix
$$\sigma \in \{0,1\}^{\mathbb{Z}}$$
, $\forall n, m \in \mathbb{N}$ there exists $c_{n,m,x}(\sigma)$ s.t.

$$\lim_{q\downarrow 0} \sup_{t\in[t_n^+,t_{n+1}^-]} \sup_{s\in[t_m^+,t_{m+1}^-]} |\operatorname{Cov}_{\sigma}(\sigma_t(x);\sigma_s(x)) - c_{n,m,x}(\sigma)| = 0$$

If $Q = Ren(\nu)$ set $\rho_x := Q(\sigma(x) = 0)$, then

$$\lim_{n\to\infty} \lim_{m\to\infty} \lim_{q\downarrow 0} \left| \mathbb{E}_Q(c_{n,m,x}) - \frac{\rho_x}{(2^n+1)} \left(1 - \frac{\rho_x}{(2^m+1)} \right) \right| = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hierarchical Coalescence Process (HCP)

- Main motivation : physical modeling of non-equilibrium coarsening dynamics of 1D systems (Derrida, Bray, Godreche,...);
- Features : infinite sequence of 1D coalescence processes $\{\xi_n\}_{n=1}^{\infty}$ with "end of ξ_n = beginning of ξ_{n+1} ".
- The *n*-th process live in the *n*-th *epoch* and *only* intervals with length ∈ [*d_n*, *d_{n+1}*) are *active* i.e. merge with very general rates with the left or right neighbor.
- We assume $d_n \uparrow \text{and } 2d_n \geq d_{n+1}$.
- Examples : $d_n = n$ ("Paste-all-model"), $d_n = a^n$, $a \in (1, 2]$, $d_n = 2^{n-1} + 1 \Leftrightarrow$ the East model.

Some Facts

- Assume that at the beginning of the first epoch the intervals form a renewal process
- 2 Physicists observed a large scale (i.e. $n \to \infty$) universality of rescaled variables (e.g. (domain length)/ d_n).
- Different models show the same behavior independently of the merging rates and of the active domains range. For example the "Paste-all-model" behaves as the East model a fact refereed to as "very surprising" in the physics literature.
- Physicists were not able to prove the scaling hypothesis nor were able to classify the universality classes according to the initial renewal process.

HCP definition I

 $\Omega^{(n)}$ is the subset of $\Omega := (0, 1)^{\mathbb{Z}}$ with each domain (=interval among consecutive zeros) of class at least *n*. Class 0 if d = 1, class $n \ge 1$ if $d \in [d_n, d_{n+1})$.

n-th epoch Coalescence Process

Initial configuration : $\sigma_0^{(n)} \in \Omega^{(n)}$ Dynamics :

- independent exponential clock on each domain [x, y] with rate λ_n(y x);
- $\lambda_n(d) > 0$ iff $d \in [d_n, d_{n+1})$;
- when clock rings on [x, y] and if the domain is still present \Rightarrow incorporate left domain, i.e. erase point *x*.

At infinite time the configuration $\sigma_{\infty}^{(n)}$ belongs to $\Omega^{(n+1)}$

HCP definition II (infinite epochs)

- Start from $\sigma \in \Omega = \Omega^{(0)}$ and run the 0-th epoch coalescence process for an infinite time to get $\sigma_{\infty}^{(0)}$;
- 2 Start from $\sigma_{\infty}^{(0)} \in \Omega_1$ and run the 1-th epoch coalescence process for an infinite time to get $\sigma_{\infty}^{(1)}$;
- 3 ...
- **4** Start from $\sigma_{\infty}^{(n-1)} \in \Omega^{(n)}$ and run the *n*-th epoch coalescence process for an infinite time to get $\sigma_{\infty}^{(n)}$

(日) (日) (日) (日) (日) (日) (日)

5 . . .

HCP Main Results

Theorem

Assume $\sigma \sim Q = \operatorname{Ren}(\nu)$ with ν any finite mean probability measure on $[1, \infty)$. Then (i) $\sigma_t^{(n)}$ is distributed with $\operatorname{Ren}(\nu_t^{(n)})$; (ii) Let $X^{(n)}$ be distributed with $\nu_0^{(n)}$ and $Z^{(n)} := X^{(n)}/d_n$. Then $Z^{(n)}$ weakly converges to $Z^{(\infty)}$ with

$$\mathbb{E}(e^{-s Z^{(\infty)}}) = 1 - \exp\left\{-\int_{1}^{\infty} \frac{e^{-sx}}{x} dx\right\}$$

(iii) If instead $Q = \text{Ren}(\nu|0)$ with ν in the domain of attraction of an α -stable law then

$$\mathbb{E}(e^{-s\,Z^{(\infty)}}) = 1 - \exp\left\{-\alpha \int_{1}^{\infty} \frac{e^{-sx}}{x} dx\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hints for the proof

■ The Laplace transforms $\{g^{(n)}(s)\}_{n\geq 1}$ of $\{Z^{(n)}\}_{n\geq 1}$ satisfy a highly non-linear system of recursive identities

$$1-g^{(n)}(s\,a_{n-1})=(1-g_{n-1}(s))e^{h^{(n-1)}(s)}\quad orall n\geq 2$$
 .

where

$$a_n = d^{(n+1)}/d^{(n)}, \quad h^{(n)}(s) = \mathbb{E}\left(e^{-sZ^{(n)}}\chi_{1 \le Z^{(n)} < a_n}\right)$$

One observes that a family of fixed points is given by

$$g_c^{(\infty)}(s) = 1 - \exp\left(-c\int_1^\infty dx \ \frac{e^{-sx}}{x}\right), \quad c \in (0,1]$$

2 One then *proves* that there exists a non-negative measure $dt^{(n)}(x)$ such that

$$g^{(n)}(s) = 1 - \exp\left(-\int_1^\infty dt^{(n)}(x) \frac{e^{-sx}}{x}\right)$$

3 The recursive identities for the {g⁽ⁿ⁾(s)}_{n≥1} become indentities for the measures {t⁽ⁿ⁾}_{n≥1} and one can prove that t⁽ⁿ⁾ → c × Leb if

$$\lim_{s \downarrow 0} -s \, rac{d}{ds} g^{(1)}(s) / (1 - g^{(1)}(s)) = c (\in (0, 1])$$

HCP Universality and generalizations

- Previous result \Rightarrow Universality Classes.
- One can generalize to Q = Ren(μ, ν) : scaling for the position of the first vacancy + same scaling for the rescaled domain length.
- Same method for triple coalescence (merging with left *and* right neighboring intervals) but *different* asymptotics.

East model vs HCP

Discussion about activation times and energy barriers suggest that, as $q \downarrow 0$, the East dynamics should be approximated by a suitable HCP such that;

- 1 $d_n = 2^{n-1} + 1;$
- 2 time t⁺_n should corresponds to the end of the *n*-th coalescence;
- 3 It remains to determine the appropriate rates $\lambda_n(d) \Leftrightarrow$ survival propability of a vacancy with domain *d* (of class *n*).
- The rates are found solving a large deviation problem for the East dynamics. All what is needed is that the rates only weakly depend on *q*.

• The final result is that, on finite, large volume *independent* from *q*, the marginal for the East process and for the HCP above are close in $|| \cdot ||_{\text{TV}}$ for $q \downarrow 0$.

• Staircase behavior and aging follow at once from the scaling limit of the HCP.

▲□▶▲□▶▲□▶▲□▶ □ のQで

 A.Faggionato, F.Martinelli, C.Roberto, C.T. arXiv :1012.4912 to appear in Communication of Math. Physics ;

A.Faggionato, F.Martinelli, C.Roberto, C.T. arXiv :1007.0109, to appear in Annals of Probability;

B P.Sollich, M.Evans, Phys.Rev.Lett, 83 (1999), p.3238–3241.