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Overview of the talk

1 I Part : the East model
• East model : definition and main features.
• Previous results on the relaxation to the equilibrium.
• High density, non-equilibrium dynamics.
• Staircase behavior of the density ;
• Aging for density-density time auto-correlation ;
• Scaling limit for the inter-vacancy interval length.

2 II Part : Hierarchical Coalescence Process.
• Main features of a hierarchical coalescence process.
• Universality for the HCP.
• Implications for the East model :

3 Open problems.
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East Model [Jackle-Eisinger ’91]

• Configuration space Ω = {0, 1}Z

• σ ∈ Ω, σ(x) ∈ {0, 1} ↗
↘

1 : there is a particle at site x

0 : there is no particle at site x

• Glauber dynamics with kinetic constraint : the right neighbor
should be empty for a flip to take place.

RING

Nothing happens

RING

⇓

q

1 q

Coin toss
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Main Features of the East Model

• σ ∈ Ω := {0, 1}Z, ∀x ∈ Z : σ(x) ∈ {0, 1}
• {σt}t≥0 denotes the process with initial config. σ
•

Lf (σ) :=
∑
x∈Z

(1− σ(x + 1))(µx(f )− f (σ))

• Reversible w.r.t. µ (Bernoulli product measure of density
p = 1− q).

• Introduced by physicists to model liquid/glass transition.
• Constraint on the allowed moves (more effective as q ↓ 0)

simulates geometric constraints on molecules in highly
dense liquids.

• As q ↓ 0 constraints slow down the dynamics. The liquid
freezes into an amorphous solid state ∼ glass.



. . . . . .

Relaxation to equilibrium : basic results

Definition

Trel := (spectral gap of L)−1

Theorem

• Trel < +∞ ∀q ∈ (0, 1) (Aldous, Diaconis ’02)

• Trel ≃
(
1
q

)| log2(q)|/2
as q ↓ 0 (Cancrini, M., Roberto,

Toninelli ’08)

Theorem (Cancrini, M., Schonmann, Toninelli. ’09)

Let ν ̸= µ be a different product measure. Then

|Eν(f (σt))− µ(f )| ≤ Cf exp(−t/2Trel)
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High density non-equilibrium dynamics

Basic Setting

1 Start at time zero from a quite general renewal law ν
independent from q ;

2 Run the Glauber dynamics with q ≪ 1 ;

3 Focus on the pre-asymptotic behavior not too far from the
origin (or in large q-independent interval) and up to time
scales T = T (q) with 1 ≪ T ≪ Trel.

4 Physically we are considering a quench from low to high
density, i.e. from the liquid to the glass phase ;
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Plateau behavior of the density

• Numerical simulations and non-rigorous theoretical
analysis suggest that, as q → 0 :

(a) the model does not reach equilibrium ;
(b) time auto-correlation function shows aging ;
(c) the density profile exhibits plateau behavior.
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A First Key Observation

As q ↓ 0 :

1 Dynamics is dominated by killing the excess vacancies.

2 Dynamics ⇐⇒ coarsening of intervals delimited by
consecutive vacancies.

3 To kill a vacancy at x the dynamics must bring a vacancy at
x + 1 from the nearest (East-ward w.r.t. x) vacancy ⇒
cooperative relaxation.

4 Cooperative relaxation requires a certain number of
auxiliary extra vacancies to be first created and then
destroyed ⇒ Energy Barriers.

5 Metastable effects very relevant.

6 Key question : what is the structure of the energy barriers ?
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Energy Barriers Structure and Activation Times

y − x ∈ [2n−1 + 1, 2n], 1 ≤ n ≪ log2(1/q)

yz x

Combinatorial argument (Evans, Sollich +
Chung-Diaconis-Graham 01) : during the killing of vacancy at x
at least n extra vacancies between x and y .

Energy barrier ∆En = n ⇒ Activation Time tn := (1/q)n.

Metastability : Actual killing is random and istantaneous (w.r.t.
to the expected time tn) and occurs on scale tn−1 =

1
qn−1 .

Killing vacancy at x ⇔ coalescing domain [x , y ] with [z , x ]
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Active and stalling periods

Definition (Hierarchy of activation times)

t+n := t1+ϵ
n =

(
1

qn

)1+ϵ

, t−n := t1−ϵ
n =

(
1

qn

)1−ϵ

Definition

Domain [x , x + ℓ] is of class n if ℓ ∈ [2n−1 + 1, 2n], n ≥ 1.
Vacancy at x is of class n if it is the left border of a domain of
class n.

Definition

• [t−n , t+n ] is called the n-th active period ;
• [t+n , t−n+1] is called the n-th stalling period (nothing

happens).
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Evolution during the n-th active period.

• Recursively assume that at time t−n all vacancies in e.g.
[−2N , 2N ], N ≫ 1, are of class at least n w.h.p.

• Vacancies of class larger than n do not disappear w.h.p.

• When a vacancy of the n-th class disappears ⇔ the class of
the vacancy to its left becomes at least n + 1
(2n + 2n = 2n+1).
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• Thus vacancies of class n either disappear directly or
increase their class w.h.p.

• At the end of the period (t+n ) w.h.p. all vacancies are of
class at least n + 1 and were already present at t−n ;

• Between the stalling period [t+n , t−n+1] w.h.p. no vacancy is
killed ⇒ the recursion step is proved.
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Staircase Behavior

Theorem

∀σ ∈ {0, 1}Z, ∀n ∈ N there exists cn(σ) s.t.

lim
q↓0

sup
t∈[t+n ,t−n+1]

|Pσ(σt(0) = 0)− cn(σ)| = 0
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Heigth of plateaux

Definition

Let ν be a (non-trivial) probability law over the integers with
finite mean. We define Ren(ν) as the stationary renewal
distribution on Z with interval law ν

Theorem

If the initial distribution is Q = Ren(ν) then

lim
n→∞

lim
q↓0

EQ(cn)(2
n + 1) = 1
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Coarsening

Let X̃ be the non-negative random variable such that

E(exp (−sX̃ )) = 1− exp
{
−

∫ ∞

1

e−sx

x
dx

}
s > 0

Theorem

If the initial distribution is Q = Ren(ν) then for any bounded
function f and any k ∈ Z

lim
n↑∞

lim
q↓0

sup
t∈[t+n ,t−n+1]

∣∣∣EQ

(
f (X

(n+1)
k (t))

)
− E

(
f (X̃ )

)∣∣∣ = 0

where X
(n)
k (t) := (xk+1(t)− xk(t))/(2

n−1 + 1)

=⇒ Mean domain length grows as t log 2/| log q|
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Aging

Theorem

Fix σ ∈ {0, 1}Z, ∀n,m ∈ N there exists cn,m,x(σ) s.t.

lim
q↓0

sup
t∈[t+n ,t−n+1]

sup
s∈[t+m ,t−m+1]

|Covσ(σt(x);σs(x))− cn,m,x(σ)| = 0

If Q = Ren(ν) set ρx := Q(σ(x) = 0), then

lim
n→∞

lim
m→∞

lim
q↓0

∣∣∣EQ(cn,m,x)−
ρx

(2n + 1)

(
1− ρx

(2m + 1)

)∣∣∣ = 0
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Hierarchical Coalescence Process (HCP)

• Main motivation : physical modeling of non-equilibrium
coarsening dynamics of 1D systems (Derrida, Bray,
Godreche,. . .) ;

• Features : infinite sequence of 1D coalescence processes
{ξn}∞n=1 with “end of ξn = beginning of ξn+1”.

• The n-th process live in the n-th epoch and only intervals
with length ∈ [dn, dn+1) are active i.e. merge with very
general rates with the left or right neighbor.

• We assume dn ↑ and 2dn ≥ dn+1.
• Examples : dn = n (“Paste-all-model”), dn = an, a ∈ (1, 2],
dn = 2n−1 + 1 ⇔ the East model.
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Some Facts

1 Assume that at the beginning of the first epoch the intervals
form a renewal process

2 Physicists observed a large scale (i.e. n → ∞) universality
of rescaled variables (e.g. (domain length)/dn).

3 Different models show the same behavior independently of
the merging rates and of the active domains range. For
example the “Paste-all-model” behaves as the East model a
fact refereed to as “very surprising” in the physics literature.

4 Physicists were not able to prove the scaling hypothesis nor
were able to classify the universality classes according to
the initial renewal process.
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HCP definition I

Ω(n) is the subset of Ω := (0, 1)Z with each domain (=interval
among consecutive zeros) of class at least n.
Class 0 if d = 1, class n ≥ 1 if d ∈ [dn, dn+1).

n-th epoch Coalescence Process

Initial configuration : σ(n)
0 ∈ Ω(n)

Dynamics :
• independent exponential clock on each domain [x , y ] with

rate λn(y − x) ;
• λn(d) > 0 iff d ∈ [dn, dn+1) ;
• when clock rings on [x , y ] and if the domain is still present
⇒ incorporate left domain, i.e. erase point x .

At infinite time the configuration σ
(n)
∞ belongs to Ω(n+1)
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HCP definition II (infinite epochs)

1 Start from σ ∈ Ω = Ω(0) and run the 0-th epoch coalescence
process for an infinite time to get σ(0)

∞ ;

2 Start from σ
(0)
∞ ∈ Ω1 and run the 1-th epoch coalescence

process for an infinite time to get σ(1)
∞ ;

3 . . .

4 Start from σ
(n−1)
∞ ∈ Ω(n) and run the n-th epoch coalescence

process for an infinite time to get σ(n)
∞

5 . . .
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HCP Main Results

Theorem

Assume σ ∼ Q = Ren(ν) with ν any finite mean probability
measure on [1,∞). Then (i) σ

(n)
t is distributed with Ren(ν(n)t ) ;

(ii) Let X (n) be distributed with ν
(n)
0 and Z (n) := X (n)/dn. Then

Z (n) weakly converges to Z (∞) with

E(e−s Z (∞)
) = 1− exp

{
−

∫ ∞

1

e−sx

x
dx

}
(iii) If instead Q = Ren(ν|0) with ν in the domain of attraction of
an α-stable law then

E(e−s Z (∞)
) = 1− exp

{
− α

∫ ∞

1

e−sx

x
dx

}



. . . . . .

Hints for the proof

1 The Laplace transforms {g (n)(s)}n≥1 of {Z (n)}n≥1 satisfy a
highly non-linear system of recursive identities

1− g (n)(s an−1) = (1− gn−1(s))e
h(n−1)(s) ∀n ≥ 2 .

where

an = d (n+1)/d (n), h(n)(s) = E
(
e−sZ (n)

χ1≤Z (n)<an

)
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1 One observes that a family of fixed points is given by

g
(∞)
c (s) = 1− exp

(
−c

∫ ∞

1
dx

e−sx

x

)
, c ∈ (0, 1]

2 One then proves that there exists a non-negative measure
dt(n)(x) such that

g (n)(s) = 1− exp

(
−
∫ ∞

1
dt(n)(x)

e−sx

x

)
3 The recursive identitities for the {g (n)(s)}n≥1 become

indentities for the measures {t(n)}n≥1 and one can prove
that t(n) → c × Leb if

lim
s↓0

−s
d

ds
g (1)(s)/(1− g (1)(s)) = c(∈ (0, 1])
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HCP Universality and generalizations

• Previous result ⇒ Universality Classes.
• One can generalize to Q = Ren(µ, ν) : scaling for the

position of the first vacancy + same scaling for the rescaled
domain length.

• Same method for triple coalescence (merging with left and
right neighboring intervals) but different asymptotics.
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East model vs HCP

Discussion about activation times and energy barriers suggest
that, as q ↓ 0, the East dynamics should be approximated by a
suitable HCP such that ;

1 dn = 2n−1 + 1 ;

2 time t+n should corresponds to the end of the n-th
coalescence ;

3 It remains to determine the appropriate rates λn(d) ⇔
survival propability of a vacancy with domain d (of class n).

4 The rates are found solving a large deviation problem for
the East dynamics. All what is needed is that the rates only
weakly depend on q.
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Main result

• The final result is that, on finite, large volume independent
from q, the marginal for the East process and for the HCP
above are close in || · ||TV for q ↓ 0.

• Staircase behavior and aging follow at once from the
scaling limit of the HCP.
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