LIMIT SHAPES IN THE DOUBLE ISING MODEL

R. Kenyon
Brown University

inspired by discussions with
Nike Sun, Robin Pemantle, David Wilson, Peter Winkler

Ising model

$$
\Omega=\{+,-\}^{G}
$$

for $\sigma \in \Omega$,

$$
\operatorname{Prob}(\sigma)=\frac{1}{Z} \exp \left(\beta \sum_{\text {edges } x y} \delta_{\sigma(x)=\sigma(y)}\right)
$$

Ising characteristic polynomial $\quad t=e^{\beta}$

$$
P(z, w)=\left(t^{2}+1\right)^{2}+t\left(t^{2}-1\right)\left(z+\frac{1}{z}+w+\frac{1}{w}\right)
$$

[Onsager] Free energy: $\quad F=\frac{-1}{4 \pi^{2}} \iint_{|z|=|w|=1} \log P(z, w) \frac{d z}{z} \frac{d w}{w}$
[Fisher] Energy-energy correlations: obtained from Fourier coefficients of $1 / P(z, w)$.
[Z. Li (2011)] Critical β : when P has roots on \mathbb{T}^{2}.

$$
\left(\text { when } \frac{\left(t^{2}+1\right)^{2}}{t\left(t^{2}-1\right)}=4\right)
$$

Note also: $\frac{\left(t^{2}+1\right)^{2}}{t\left(t^{2}-1\right)} \geq 4$

Amoeba of $P \quad\{(\log |z|, \log |w|): P(z, w)=0\}$

More complicated graph
\Longrightarrow more features

What is the probabilistic meaning of the "rest" of P ?

Bipartite dimer model:

"Translates" of P are characteristic polynomials for other Gibbs states (gradient measures).

$$
P(z, w)=\sum_{j, k} C_{j, k} z^{j} w^{k}
$$

Translate $(-x,-y)$ to origin:

$$
P\left(e^{x} z, e^{y} w\right)=\sum_{j, k} C_{j, k} e^{j x+k y} z^{j} w^{k}
$$

$$
1+z+w
$$

$1+\frac{2}{3} z+\frac{2}{3} w$

Ising model:

 do translations of P correspond to other measures? Yes!... but these are not (Ising) Gibbs measures

Dimer/Ising correspondence (Kasteleyn/Fisher)

long edges have weight e^{β} short edges have weight 1.

Kasteleyn matrix

G is a graph on the torus;
$K(z, w):$
oriented adjacency matrix of green graph with certain orientations and weights.

Theorem [Kasteleyn]

$P(z, w)=\operatorname{det} K(z, w)$ is a weighted, signed sum of double-dimer covers:

$$
P(z, w)=\sum_{i, j} C_{i, j} z^{i} w^{j}
$$

$C_{i, j}$ is a weighted, signed sum of double-dimer configurations containing (oriented) loops with total homology class (i, j).
(signs are due to topologically nontrivial loops with "wrong" parity)

Also: not every double dimer cover comes from an Ising configuration
... there may be a spin change when going horizontally or vertically around \mathbb{T}^{2}.

Let $\left(\sigma_{x}, \sigma_{y}\right)$ be this spin change.

Idea: write $C_{i, j}$ as a sum of positive terms.

Another interpretation of $C_{j, k}$
Double Ising model

Two independent Ising models.

XOR-spin domain boundaries

Random cluster model on XOR spin domains

Choose edges joining like double-spins with probability $\frac{t^{2}}{1+t^{2}}$.

For G on a torus:
$C_{j, k}$: - the XOR domain boundaries (blue) have homology (j, k)

- the FK clusters (orange) percolate around the annuli

$$
\begin{aligned}
(j, k) & =(1,1) \\
\left(\sigma_{x}, \sigma_{y}\right) & =(+-,+-)
\end{aligned}
$$

Theorem: $C_{i, j}=\sum_{\gamma} w t(\gamma) Z_{\mathrm{FK}_{2}}\left(\gamma^{c}\right)$. where γ runs over possible XOR-spin domain boundaries with homology (i, j) (and edge weights e^{β}) and
$Z_{\mathrm{FK}_{2}}\left(\gamma^{c}\right)=$ partition sum of FK_{2} model on complementary domains, conditioned to percolate on oriented annuli. (edge weights $e^{2 \beta}-1$)

Simple example: 1×1 torus

$$
P(z, w)=\left(t^{2}+1\right)^{2}+\left(t^{3}-t\right)(z+1 / z+w+1 / w)
$$

$$
C_{1,0}=t\left(t^{2}-1\right)
$$

$C_{1,0}=$ weight of:

"Banded states" for the double Ising model
For each $(s, t) \in N$ there is a measure $\mu_{s, t}$ on Ising/FK configurations.

$$
N=\bullet \quad \bullet \quad \text { - Newton polygon of } P
$$

$\mu_{s, t}$ has FK-components with horiz./vert. density s, t.

$$
\mu_{0,0}=\text { unconstrained double Ising model. }
$$

"Surface tension" (entropy) $\sigma_{s, t}$ of measure $\mu_{s, t}$

To compute $C_{\lfloor n s\rfloor,\lfloor n t\rfloor}$ for the $n \times n$ torus, use

$$
P_{n \times n}(z, w)=\prod_{\zeta^{n}=z, \eta^{n}=w} P_{1 \times 1}(\zeta, \eta)
$$

We define the surface tension $\quad \sigma_{s, t}:=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log C_{\lfloor n s\rfloor,\lfloor n t\rfloor}$.

Lemma [KOS]: $\sigma(s, t)=$ Legendre dual of $R(x, y)$ where

$$
R(x, y)=\frac{1}{(2 \pi i)^{2}} \iint_{|z|=|w|=1} \log P\left(e^{x} z, e^{y} w\right) \frac{d z}{z} \frac{d w}{w}
$$

$R(x, y)$ is the "Ronkin function" of P.

Surface tension

Limit shape for banded model conditioned on certain boundary connections
surface tensions

limit shape boundaries

critical temperature

subcritical temperature

even more subcritical temperature

These surface tensions are identical
to those arising in the square-octagon dimer model

$s=s(\beta)$

Conjecture: For any periodic planar graph, the banded Ising model surface tension equals that arising from some bipartite dimer model.

Follows from:
Conjecture: The spectral curve $P(z, w)=0$ in the ferromagnetic Ising model on any periodic planar graph is a simple Harnack curve.

$Q=309811509974955984020737569841 a^{6}-1858374937729039544359650269170 a^{5} b-$ $1858374937729039544359650269170 a^{5} c+5883454153820320725807778237007 a^{4} b^{2}+$ $4334397195006546369711336315654 a^{4} b c+5883454153820320725807778237007 a^{4} c^{2}-$ $8669781452132474330937731075356 a^{3} b^{3}-7427079315358238395356762728212 a^{3} b^{2} c-$ $7427079315358238395356762728212 a^{3} b c^{2}-8669781452132474330937731075356 a^{3} c^{3}+$ $5883454153820320725807778237007 a^{2} b^{4}-7427079315358238395356762728212 a^{2} b^{3} c+$ $32797543284281898673568730387594 a^{2} b^{2} c^{2}-7427079315358238395356762728212 a^{2} b c^{3}+$ $5883454153820320725807778237007 a^{2} c^{4}-1858374937729039544359650269170 a b^{5}+$ $4334397195006546369711336315654 a b^{4} c-7427079315358238395356762728212 a b^{3} c^{2}-$ $7427079315358238395356762728212 a b^{2} c^{3}+4334397195006546369711336315654 a b c^{4}-$ $1858374937729039544359650269170 a c^{5}+309811509974955984020737569841 b^{6}-$ $1858374937729039544359650269170 b^{5} c+5883454153820320725807778237007 b^{4} c^{2}-$ $8669781452132474330937731075356 b^{3} c^{3}+5883454153820320725807778237007 b^{2} c^{4}-$ $1858374937729039544359650269170 b c^{5}+309811509974955984020737569841 c^{6}$

