Colloids, Lattice Gasses, and Other Models with Hard Constraints

Dana Randall

Georgia Institute of Technology

Colloids are binary mixtures of molecules with one type of molecule suspended in another where all non-overlapping arrangements are equally likely. It is believed that at low density typical configurations will be well-mixed throughout, while at high density they will separate into clusters, suggesting a phase transition occurs as the density of both types of molecules increases. In this talk we will discuss various strategies for sampling configurations of non-overlapping particles including lattice gasses and colloids in order to gain empirical evidence of this conjecture. Then we will show how to characterize the two phases for a general family of "interfering colloid models" by demonstrating that they exhibit a "clustering property" at high density and not at low density. The clustering property holds when there is a region with very high area to perimeter ratio and very high density of one type of molecule. A special case of interfering colloids is mixtures of squares and diamonds on \$Z^2,\$ which correspond to the Ising model at fixed magnetization.