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A dimer cover is a planar graph (a finite subset of Z2 for this talk) with a collection of disjoint
edges spanning the vertices of the graph. The uniform dimer model is a random dimer model in
which we simply choose uniformly at random from the set of all dimer covers.

The double dimer model is two independent copies of the dimer model superimposed. Some edges
are doubled, and the edges which are not doubled are part of some loop.

Our goal is to understand the structure of these loops, in particular the long ones.

There are conjectures about the conformal invariance of these loops and their relation to CLE4.
We can’t prove the relation to SLE, but we will say something about conformal invariance.

On a surface, a finite lamination is a collection of simply curves which are pairwise disjoint and
non-peripheral (not homotopic to a puncture), modulo isotopy (meaning homotopy equivalence,
loop-wise).

Let U be a planar domain, and let Uε = U ∩ εZ2. Let z1, . . . , zk be points in U. For each
finite lamination L in U \ {z1, . . . , zk}, Prε(L) converges and depends only the conformal type of
U \ {z1, . . . , zk}.

Here we are considering only those loops in the double-dimer model which are non-contractible and
non-peripheral, and asking about the resulting finite lamination L.

We consider only non-peripheral loops so that we don’t have to deal with infinitely many loops
surrounding a point; an alternative is to remove disks instead of points.

Single dimer Kasteleyn matrix for Z2: we associate to a lattice ⊂ Z2 a collection of edge weights
in {±1,±i} (see figure), and let K = K(w,b) be the matrix which is 0 when w,b are not adjacent,
and the weight of the edge if w and b are adjacent. Then |detK| is the number of dimer covers of
the graph (Kasteleyn’s theorem).

We define
Kf(w) = f(w+ 1) − f(w− 1) + if(w+ i) − if(w− i),

which is a discrete ∂̄ operator. So a function in the kernel of the Kastelyn matrix can be called
discrete analytic.

To extend Kasteleyn’s theorem to the double dimer model, we just need to square the determinant
of K (product of partition functions).

K =

(
0 K

Kt 0

)
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Then detK is the number of double-dimer covers.

Let Ω(G) be the set of double-dimer configurations (sets of loops and doubled edges). The number
of ways a configuration with k loops may arise from two single dimer models is 2k, so we can think
of the double dimer model as a non-uniform measure on Ω(G).

We now introduce quaternionic edge weights q = a0+a1î+a2ĵ+a3k̂ and q∗ = a0−a1î−a2ĵ−a3k̂.
The weight of ω ∈ Ω is defined to be

∏
cycles(m+m∗), where m is the product of the edge weights

around the cycle. To be more precise, we associate each edge with a natural direction (black to
white, say), and as we go around the cycle, we multiply by q if we go in the same direction as the
arrow and by q∗ if we’re going in the opposite direction. Note that this does not depend on the
vertex at which we start, since (q1q2)

∗ = q∗2q
∗
1. Doubled edges count as qq∗.

Theorem 1.
Qdet K =

∑
Ω

∏
cycles

(m+m∗).

Here Qdet is the quaternionic determinant (Dyson):

Qdet M =
∑
σ∈Sn

(−1)σ
∏

cycles c of σ,sorted and in order
m(c)

Note that the order matters here, so we have to choose some canonical way of ordering cycles (the
cycle involving 1, the cycle involving the 2 (unless 2 is in 1’s cycle), and so on).

Theorem 2.
QdetKn×n =

√
det K̃2n×2n,

where K̃2n×2n is obtained by replacing each quaternion with a 2 × 2 complex matrix representing
it.

Example 1. Put weights qx on north-going edges, where x is the x-coordinate in lattice units.

Then Z(q) = detK(q) counts loops with weight qArea + (q∗)Area. In particular Z(eiθ) counts loops
with weight 2 cos(θArea).

Example 2. Put weights q on a set of edges intersecting a particular straight line path (zipper) from
an interior point z to ∞. This gives us a way to think about the topology of loops, because loops
surrounding z have weight q+ q∗. We can actually use this to compute the generating function of
the number of loops surrounding z.

We can extend this to two interior points, because loops surrounding A gets weight q1+q∗1, a loop
surrounding B gets weight q2 + q∗2, and loops surrounding both get weight q1q2 + (q1q2)

∗. These
three expressions are algebraically independent, so we can extract from the partition function the
generating function for the triple (X, Y, Z) of the number of loops surrounding A, B, and A & B.

Lemma: (based on Fock-Goncharov) By varying the q’s, one can extract from detK the contribution
from any finite lamination.
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This lemma says that, in principle, we may compute for each finite lamination and each graph, the
probability that this lamination arises from our double dimer model. The question remains how
well we can do these approximations, however, because we want to have something explicit enough
to take ε→ 0.

Theorem 3. F(q) = limε→0 Zε(q)/Zε(1) exists and is conformal invariant.

Proof idea. Take a path of weights qt for t ∈ [0, 1], with q0 = 1. Then

d

dt
logZε(qt) =

1

2

d

dt
log det K̃(qt),

which can be written as a sum along the zippers of the Green’s function K̃−1(qt), and it’s a
discrete analytic function. The main difficulty is the convergence of discrete analytic functions to
corresponding analytic functions. The key here is to work with boundary conditions which are nice
enough to make this possible.

Example. m×n annulus. We can graph the probability of having k loops around the inner annulus
as a function of m/n, for each k (see figure).

Example. q1 =
(
1 t

0 1

)
and q2 =

(
1 0

t 1

)
. Then loops surrounding just A or B have weight 2

like most other loops, so Z just counts the loops surrounding both A and B:

Z =
∑
k

Ck(2+ t
2)k.

Theorem 4. Ek = g(A,B), where g is the Dirichlet Green’s function.

Extensions:

Can we do this on curved surfaces?

Is there a corresponding version for the Ising model?

Spanning tree/CRSF model - here there are some results.

Question: Is there a closed form for F(q)?

Answer: I don’t think so. One approach to show convergence to CLE4 is to compute a corresponding
differential equation for the F coming from CLE4, and show that the PDEs are the same.

Question: Are there closed-form formulas for certain special-case domains?

Answer: Possibly.
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Question: What conditions on the boundary are required for this result?

Answer: “Temperleyan.”

Question: Is it possible that no dimer covers exist, even for small ε > 0?

Answer: This is a point which was concealed by brushing over the boundary conditions (which are
quite a mess), but with appropriate boundary conditions, they always exist.


