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Dimer modelDouble-

Two independent uniform random dimer coverings
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Long loops.
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z1
z2

z3 z4

non-contractible, non-peripheral simple closed curves.

peripheral

Let z1, . . . , zk points in U . For each finite lamination L in U \ {z1, . . . , zk},

Let U✏ = U \ ✏Z2.

Pr✏(L) converges and depends only on the conformal type of U \{z1, . . . , zk}.

Theorem:

(Ignore peripheral and contractible loops.)

On a surface, a finite lamination is an isotopy class of pairwise disjoint

= homotopic to a puncture
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Single dimer Kasteleyn matrix for Z2
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K = (Kw,b) where Kw,b = 0 if w, b are not adjacent and otherwise

Kw,b = {1, i,�1,�i} according to direction.

Then | detK| is the number of dimer covers.

Theorem[Kasteleyn]
Let K : CW ! CB

as above.

Monday, March 26, 12



1

-1

i -i

1

-1

i -i

1

-1

i -i

1

-1

i -i

1

-1

i -i

1

-1

i-i

Kf(w) = f(w + 1)� f(w � 1) + i(f(w + i)� f(w � i))

=
@

@z̄
f(w)

=

✓
@

@x

+ i

@

@y

◆
f(w)

A function in the kernel of K is discrete analytic.
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Double dimer model

Let K =

✓
0 K
Kt 0

◆
.

Then detK is the partition function of double-dimer configurations.

Let ⌦(G) be the set of “double-dimer configurations”:

coverings of G with even-length loops and doubled edges.

Each configuration in ⌦ with k nontrivial loops comes

from 2

k
pairs of dimer covers.

(indexed by all vertices).
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Double dimer model

The weight of ! 2 ⌦ is now defined to be

where m is the product of the edge weights around the cycle.

Y

cycles

(m+m⇤)

Note (q1q2 . . . qk)⇤ = q⇤k . . . q
⇤
1 .

q = a0 + a1̂ı + a2 ⌘̂+ a3k̂ =

✓
a0 + a1i a2 + a3i
�a2 + a3i a0 � a1i

◆
.

q⇤ = a0 � a1̂ı� a2 ⌘̂� a3k̂

Doubled edges count qq⇤.

Now introduce quaternionic (instead of positive real) edge weights.
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Qdet K =
X

⌦

Y

cycles

(m+m⇤).Theorem:

Here Qdet is the quaternion determinant [Dyson].

It is defined for a quaternion-Hermitian matrix by

where

˜K is the matrix obtained by replacing

each quaternion with its 2⇥ 2 matrix block.

QdetKn⇥n =
q

det eK2n⇥2n,Theorem [Mehta].

QdetM =
X

�2Sn

(�1)�
Y

cycles c of �

m(c)

sorted and in order
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Example: put weights qx on north edges:

Then Z(q) = detK(q) counts loops with weight qArea
+ (q⇤)Area

.

In particular Z(ei✓) counts loops with weight 2 cos(Area ✓).

Suppose qq⇤ = 1.
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q

q

q
*

Loops surrounding ⇤ have weight q + q⇤.

Another example.

Suppose qq⇤ = 1.
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q1 q2

q1 q2

q1 q2
A B

Loops around A: q1 + q⇤1

Loops around B: q2 + q⇤2

Loops around A and B: q1q2 + (q1q2)⇤

We can choose q1, q2 so that these three quantities are algebraically independent.

Another example.
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By varying the qs one can extract from detK
the contribution from any finite lamination.

q1 q2 q3 q4

z1 z2

z3 z4

Lemma (based on [Fock-Goncharov])

CL =

Z
�L detK dq1 . . . dqk.

That is, writing detK =
P

L CL
Q
(m+m⇤) we have

Can one compute Z(q) = detK(q)?
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Theorem:

exists and is conformally invariant.

F (q) := lim
✏!0

Z✏(q)

Z✏(1)

Proof idea:

Take a path of weights qt, 0  t  1, with q0 = 1.

which can be written as a sum along the zippers of

(depends analytically on the domain). ⇤

d

dt
logZ✏(qt) =

1

2

d

dt
log det

˜K(qt)

the Green’s function

eK�1
(qt).. . . and

eK�1
(qt) is a discrete analytic function
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=

1Y

j=1

j odd

(1 + qjX + q2j)2

(1 + qj + q2j)2
.

Simple example: m⇥ n annulus.

Let q = e�n⇡/m.

Then for m even:

m/n

0 loops

1 loop

m

n

2 loops

...
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Take q1 =

✓
1 t
0 1

◆
and q2 =

✓
1 0
t 1

◆
.

Then Z =

P
k Ck(2 + t2)k where k counts the number of loops

surrounding both A and B.

q1 q2

q1 q2

q1 q2
A B

E(k) = g(A,B)
Theorem:

, the Dirichlet Green’s function on U .

Example.

Monday, March 26, 12



Extensions.

1. Graphs on curved surfaces?

2. Ising model?

3. Spanning tree/CRSF model.

4. Periodic weights?

✓
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The End
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