# Conformal Invariance of double-dimer loops

Richard Kenyon

Brown University

Monday, March 26, 12

Double-Dimer model



Two independent uniform random dimer coverings



On a surface, a **finite lamination** is an isotopy class of pairwise disjoint non-contractible, non-peripheral simple closed curves.



**Theorem:** Let  $U_{\epsilon} = U \cap \epsilon \mathbb{Z}^2$ .

Let  $z_1, \ldots, z_k$  points in U. For each finite lamination L in  $U \setminus \{z_1, \ldots, z_k\}$ ,  $\Pr_{\epsilon}(L)$  converges and depends only on the conformal type of  $U \setminus \{z_1, \ldots, z_k\}$ . (Ignore peripheral and contractible loops.)

### Single dimer Kasteleyn matrix for $\mathbb{Z}^2$



**Theorem**[Kasteleyn] Let  $K : \mathbb{C}^W \to \mathbb{C}^B$  as above.  $K = (K_{w,b})$  where  $K_{w,b} = 0$  if w, b are not adjacent and otherwise  $K_{w,b} = \{1, i, -1, -i\}$  according to direction. Then  $|\det K|$  is the number of dimer covers.



Kf(w) = f(w+1) - f(w-1) + i(f(w+i) - f(w-i))

$$= \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right)f(w)$$
$$= \frac{\partial}{\partial \overline{z}}f(w)$$

A function in the kernel of K is *discrete analytic*.

### Double dimer model

Let 
$$\mathbb{K} = \begin{pmatrix} 0 & K \\ K^t & 0 \end{pmatrix}$$
. (indexed by *all* vertices).

Then det  $\mathbb{K}$  is the partition function of double-dimer configurations.

Let  $\Omega(G)$  be the set of "double-dimer configurations": coverings of G with even-length loops and doubled edges.

Each configuration in  $\Omega$  with k nontrivial loops comes from  $2^k$  pairs of dimer covers.

## Double dimer model

Now introduce quaternionic (instead of positive real) edge weights.

$$q = a_0 + a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{k} = \begin{pmatrix} a_0 + a_1i & a_2 + a_3i \\ -a_2 + a_3i & a_0 - a_1i \end{pmatrix}$$

$$q^* = a_0 - a_1\hat{i} - a_2\hat{j} - a_3k$$

The weight of  $\omega \in \Omega$  is now defined to be

$$\prod_{\text{cycles}} (m + m^*)$$

where m is the product of the edge weights around the cycle.

Note 
$$(q_1 q_2 \dots q_k)^* = q_k^* \dots q_1^*$$
.

Doubled edges count  $qq^*$ .

Monday, March 26, 12

# **Theorem:** Qdet $\mathbb{K} = \sum_{\Omega} \prod_{\text{cycles}} (m + m^*).$

Here Qdet is the quaternion determinant [Dyson].

It is defined for a quaternion-Hermitian matrix by

$$\operatorname{Qdet} M = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{\substack{\text{cycles } c \text{ of } \sigma \\ \text{sorted and in order}}} m(c)$$

**Theorem [Mehta].** Qdet  $\mathbb{K}_{n \times n} = \sqrt{\det \widetilde{\mathbb{K}}_{2n \times 2n}}$ , where  $\widetilde{\mathbb{K}}$  is the matrix obtained by replacing each quaternion with its  $2 \times 2$  matrix block. Example: put weights  $q^x$  on north edges:



Suppose  $qq^* = 1$ .

Then  $Z(q) = \det \mathbb{K}(q)$  counts loops with weight  $q^{\text{Area}} + (q^*)^{\text{Area}}$ . In particular  $Z(e^{i\theta})$  counts loops with weight  $2\cos(\text{Area}\theta)$ .

#### Another example.



Suppose  $qq^* = 1$ .

Loops surrounding \* have weight  $q + q^*$ .

#### Another example.



Loops around A:  $q_1 + q_1^*$ Loops around B:  $q_2 + q_2^*$ Loops around A and B:  $q_1q_2 + (q_1q_2)^*$ 

We can choose  $q_1, q_2$  so that these three quantities are algebraically independent.

**Lemma** (based on [Fock-Goncharov])

By varying the qs one can extract from det  $\mathbb{K}$  the contribution from any finite lamination.

That is, writing det  $\mathbb{K} = \sum_{L} C_L \prod (m + m^*)$  we have

$$C_L = \int \phi_L \det \mathbb{K} \, dq_1 \dots dq_k.$$



Can one compute  $Z(\mathbf{q}) = \det \mathbb{K}(\mathbf{q})$ ?

#### Theorem:

# $F(\mathbf{q}) := \lim_{\epsilon \to 0} \frac{Z_{\epsilon}(\mathbf{q})}{Z_{\epsilon}(\mathbf{1})} \quad \text{exists and is conformally invariant.}$

#### Proof idea:

Take a path of weights  $\mathbf{q}_t, 0 \leq t \leq 1$ , with  $\mathbf{q}_0 = \mathbf{1}$ .

$$\frac{d}{dt}\log Z_{\epsilon}(\mathbf{q}_t) = \frac{1}{2}\frac{d}{dt}\log\det\tilde{\mathbb{K}}(\mathbf{q}_t)$$

which can be written as a sum along the zippers of the Green's function  $\widetilde{\mathbb{K}}^{-1}(\mathbf{q}_t)$ ... and  $\widetilde{\mathbb{K}}^{-1}(\mathbf{q}_t)$  is a discrete analytic function (depends analytically on the domain).

#### Simple example: $m \times n$ annulus.



n



Then  $Z = \sum_{k} C_k (2 + t^2)^k$  where k counts the number of loops surrounding both A and B.

**Theorem:**  $\mathbb{E}(k) = g(A, B)$ , the Dirichlet Green's function on U.

#### Extensions.

1. Graphs on curved surfaces?

2. Ising model?

3. Spanning tree/CRSF model.  $\checkmark$ 

4. Periodic weights?

# The End