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Self avoiding walks

How many ways to walk from A to B without retracing?



Discrete holomorphicity and critical boundary fugacity for the O(n) model on the honeycomb lattice

Let cn be the number of SAWs of length n.

Theorem[antiquity]:

logµ = lim
n!1

1
n

log cn exists

Based on simple concatenation arguments.

Conjecture[Nienhuis 1982]:

µ =

q
2 +

p
2

Based on Coulomb gas and renormalisation.

Theorem[Duminil-Copin and Smirnov 2010]:

µ =

q
2 +

p
2.

Using “discrete parafermions” (and integrability?).
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Discrete parafermion

a

z

Figure: A configuration �
on a finite domain.

F (z) =
X

�(a!z)

e�i�W (�(a!z))x`y⌫nc

`: length of the walk
⌫: contacts with the boundary
n: weight of closed loop (n = 0 is SAW)
W : winding angle
�: spin
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Discrete holomorphicity

Lemma (Smirnov)
For n 2 [�2, 2], set n = 2 cos ✓ with ✓ 2 [0,⇡]. Then for

� =
⇡ + 3✓

4⇡
, x�1 = 2 cos

✓
⇡ � ✓

4

◆
=

q
2 +

p
2 � n,

the parafermion F with y = 1 satisfies the following relation for every vertex
v:

(p � v)F (p) + (q � v)F (q) + (r � v)F (r) = 0,

where p, q, r are the mid-edges of the three edges adjacent to v.

This is a discrete Cauchy integral ) F (z) is pre-holomorphic.
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Proof of Lemma

The two ways of grouping the configurations which end at mid-edges p, q, r
adjacent to vertex v .

Left: configurations which visit all three mid-edges
Right: configurations which visit one or two of the mid-edges
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Proof of Lemma

Let
� = e�i�⇡/3, j = e2i⇡/3.

The three contributions on the left add up to zero if

�j̄�4 � j�̄4 � n = 0.

This equation determines the possible values of the parameter �.
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Proof of Lemma

The three contributions on the right add up to zero if

�1 � xj�̄� x j̄� = 0.

which leads to
x�1 = 2 cos

⇣⇡
3
(� � 1)

⌘
.
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Finite lattice identity

↵ �

"

"̄

a
2L

T
Let us define the following generating functions:

AT ,L(x , y) =
X

�⇢ST ,L
a!↵\{a}

x`y⌫nc ,

BT ,L(x , y) =
X

�⇢ST ,L
a!�

x`y⌫nc ,

ET ,L(x , y) =
X

�⇢ST ,L
a!"["̄

x`y⌫nc ,

For the special values of y = 1 and x = xcritical, Smirnov’s parafermion
implies

1 = cos( 3⇡
8 )A⇤

T ,L(x)+cos(⇡4 )E
⇤
T ,L(x)+B⇤

T ,L(x), A⇤
T ,L = AT ,L/ZT ,L.

This important identity provides a bound for AT := limL!1 AT ,L, BT and ET .
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Sketch of proof x�1
critical =

p
2 +

p
2 for n = 0

For x < xc:

BT (x) <
✓

x
xc

◆T

BT (xc) ) Z (x) < 2
Y

T

(1 + BT (x))2 < 1.

Consider walks in AT+1 that touch the r.h.s. boundary at least once.
These are bounded by products of bridges:

AT+1 � AT  xcBT BT+1

With ET = 0 and the important identity this implies

cos( 3⇡
8 )xcB2

T+1 + BT+1 � BT )

BT (xc) �
const

T
) Z (xc) �

X

T

BT (xc) = 1.
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Integrability
The O(n) model on the honeycomb lattice is a solvable lattice model

The R-matrix satisfies the Yang-Baxter equation. . .

exactly when

x�1 =

q
2 +

p
2 � n Nienhuis’ and Smirnov’s value

Is there a relationship between integrability and Smirnov’s condition?

More examples are known (Cardy, Ikhlef, Fendley).
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Boundaries, y 6= 1

↵ �

"

"̄

a
2L

T

For n = 2 cos ✓, Smirnov’s parafermion implies

1 = cos( 3(⇡�✓)
4 )A⇤

T ,L(xc, y) + cos(⇡�✓
2 )E⇤

T ,L(xc, y) +
y⇤ � y

y(y⇤ � 1)
B⇤

T ,L(xc, y),

with
y⇤x2

c = (2 � n)�1/2, A⇤
T ,L = AT ,L/ZT ,L.
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Sketch of proof for y 6= 1
At the boundary:

j̄�+ xcyj�2 + xcy = �(y � 1)̄j�,

j�̄+ xcy j̄�̄2 + xcy = �(y � 1)j�̄.

Summing over all vertices leads to

B⇤
T ,L(xc) !

✓
1 � y � 1

2yx2
c

◆
B⇤

T ,L(xc, y) =
y⇤ � y

y(y⇤ � 1)
B⇤

T ,L(xc, y),
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Comments

The value y = y⇤ is precisely a solution of the Reflection Equation
(boundary Yang-Baxter)!

For y = y⇤ the term involving B vanishes:

1 = cos( 3(⇡�✓)
4 )A⇤

T ,L(xc, y) + cos(⇡�✓
2 )E⇤

T ,L(xc, y) +
y⇤ � y

y(y⇤ � 1)
B⇤

T ,L(xc, y),

Hence B can no longer be bounded by this identity ) surface phase
transition (adsorption of SAW on the boundary)
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Sketch of proof for n = 0
In the limit L ! 1:

1 = c↵AT (xc, y) +
y⇤ � y

y(y⇤ � 1)
BT (xc, y),

implies that for T ! 1

B(xc, y) =
y(y⇤ � 1)

y⇤ � y
(1 � c↵A(xc)), A(xc, y) = A(xc).

1 � c↵A(xc) > 0. This implies that

B(xc, y) =
const
y⇤ � y

.

1 � c↵A(xc) = 0. This implies that B(xc, y) = 0 for y < y⇤. Now use the
combinatorial inequality:

AT+1(xc, y)� AT (xc, 1)  xcBT (xc, 1)BT+1(xc, y).

which implies

BT+1(xc, y⇤) � 1
c↵xc

.
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Extension off criticality; exponents
It is possible to relax the condition on x :

(p � v)F (p) + (q � v)F (q) + (r � v)F (r) = (1 � x
xc
)F (v).

Let
eF�(x) = ei�̃W (�)x |�|nc� .

Summing over all vertices of a domain ⌦ one obtains, with �̃ = 1 � �:
X

�:a!@⌦

eF�(x) + (1 � x/xc)
X

�:a!⌦\@⌦

eF�(x) = Z⌦(x)

This can be used to express the winding angle exponent to surface
exponents.
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Winding angle
Proposition

Let P(✓, `) be the prob. dens. function for winding angles of walks of length `.
Then X

✓

ei�̃✓P(✓, `) ⇠ const ⇥ `�11��1+1.

The exponents �1 and �11 are defined by

�1(x) ⇠ const ⇥ (1 � x/xc)
��1 ,

�11(x) ⇠ 1 + const ⇥ (1 � x/xc)
��11 .

�1(x): walks starting at the surface and ending somewhere in the bulk,
�11(x): walks starting and ending at the surface.
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Sketch of proof
Define G✓,⌦(x) to contain only walks with winding angle ✓:

G✓,⌦(x) =
X

�:a!⌦\@⌦
W (�)=✓

x |�|nc(�).

Define H⌦(x) to contain all walks ending on the boundary (these have
winding angle associated to the boundary):

H⌦(x) =
X

�:a!@⌦

ei�̃W (�)x |�|nc(�),

The off-critical identity is then written as

H⇤
⌦(x) + (1 � x/xc)

X

✓

ei�̃✓G⇤
✓,⌦(x) = 1.
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Winding angle exponent
Asume the existence of �1 such that

X

✓

G⇤
✓(x) / �1(x) ⇠ const ⇥ (1 � x/xc)

��1 .

Assume the existence of �11 such that

H⇤(x) / �11(x) ⇠ 1 + const ⇥ (1 � x/xc)
��11 .

The off-critical identity implies now that
X

✓

ei�̃✓G⇤
✓(x) / const ⇥ (1 � x/xc)

��11�1.

P
✓ ei�̃✓G⇤

✓(x)P
✓ G⇤

✓(x)
⇠ const ⇥ (1 � x/xc)

��11+�1�1.

End of proof.
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Conjecture
From Duplantier and Saleur (CFT for winding angle distrib. on the cylinder)

X

✓

ei�̃✓P(✓, `) ⇠ `�!,

with

! = ⌫�̃/2 =
�̃2

2(4 � )
.

Hence

��11 + �1 � 1 = ! =
9
8
(2 � )2

(4 � )
.

This is in agreement with independent predictions (Bray & Moore, Nienhuis,
Cardy):

�1 =
2 + 12� 12

8(4 � )
, �11 = �2(3 � )

(4 � )
.

We also have results for wedge exponents in a wedge with angle ↵.



Discrete holomorphicity and critical boundary fugacity for the O(n) model on the honeycomb lattice

Conjecture
From Duplantier and Saleur (CFT for winding angle distrib. on the cylinder)

X

✓

ei�̃✓P(✓, `) ⇠ `�!,

with

! = ⌫�̃/2 =
�̃2

2(4 � )
.

Hence

��11 + �1 � 1 = ! =
9
8
(2 � )2

(4 � )
.

This is in agreement with independent predictions (Bray & Moore, Nienhuis,
Cardy):

�1 =
2 + 12� 12

8(4 � )
, �11 = �2(3 � )

(4 � )
.

We also have results for wedge exponents in a wedge with angle ↵.



Discrete holomorphicity and critical boundary fugacity for the O(n) model on the honeycomb lattice

Conjecture
From Duplantier and Saleur (CFT for winding angle distrib. on the cylinder)

X

✓

ei�̃✓P(✓, `) ⇠ `�!,

with

! = ⌫�̃/2 =
�̃2

2(4 � )
.

Hence

��11 + �1 � 1 = ! =
9
8
(2 � )2

(4 � )
.

This is in agreement with independent predictions (Bray & Moore, Nienhuis,
Cardy):

�1 =
2 + 12� 12

8(4 � )
, �11 = �2(3 � )

(4 � )
.

We also have results for wedge exponents in a wedge with angle ↵.



Discrete holomorphicity and critical boundary fugacity for the O(n) model on the honeycomb lattice

N. Beaton, J. de Gier and A.J. Guttmann,
The critical fugacity for surface adsorption of SAW on the honeycomb lattice
is 1 +

p
2,

accepted in Comm. Math. Phys.; arXiv:1109.0358.

A. Elvey Price, J. de Gier, A.J. Guttmann and A. Lee,
Off-critical parafermions and the winding angle distribution of the O(n) model,
arXiv:1203.2959.


