Imaginary Geometry and the Gaussian Free Field

Jason Miller and Scott Sheffield

Microsoft Research and MIT

March 26, 2012

Overview

Part I: Imaginary Geometry and the Gaussian free field

- \blacktriangleright Interpretation of ${\rm SLE}$ as a flow line of a random vector field
- \blacktriangleright Explain how this perspective can be used to study ${\rm SLE}$

Part II: Reversibility results for SLE

- ► Chordal SLE
- ► Space-filling SLE
- ► Whole-plane SLE

Part I: Imaginary Geometry of the Gaussian Free Field

• *h* smooth $[h(x, y) = x^2 + y^2]$

- *h* smooth $[h(x, y) = x^2 + y^2]$
- Vector field e^{ih(x,y)}

• *h* smooth
$$[h(x, y) = x^2 + y^2]$$

- Vector field e^{ih(x,y)}
- A ray of h is a flow line of e^{ih},
 i.e. a solution to

$$\frac{d}{dt}\eta(t)=e^{ih(\eta(t))}$$

•
$$h \text{ smooth } [h(x, y) = x^2 + y^2]$$

- Vector field e^{ih(x,y)}
- A θ-angle ray of h is a flow line of e^{i(h+θ)}, i.e. a solution to

$$\frac{d}{dt}\eta(t)=e^{i(h(\eta(t))+\theta}$$

- $h \text{ smooth } [h(x, y) = x^2 + y^2]$
- Vector field e^{ih(x,y)}
- A θ-angle ray of h is a flow line of e^{i(h+θ)}, i.e. a solution to

 $\frac{d}{dt}\eta(t)=e^{i(h(\eta(t))+\theta)}$

The rays of h vary smoothly and monotonically with θ and are non-intersecting.

- *h* smooth $[h(x, y) = x^2 + y^2]$
- Vector field e^{ih(x,y)}
- A θ-angle ray of h is a flow line of e^{i(h+θ)}, i.e. a solution to

 $rac{d}{dt}\eta(t)=e^{i(h(\eta(t))+ heta)}$

- The rays of h vary smoothly and monotonically with θ and are non-intersecting.
- Plan:
 - Describe the interaction of the rays of the GFF
 - Explain how this can be used to study SLE

The discrete Gaussian free field (DGFF) is a Gaussian random surface model.

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Gaussian measure on functions $h: D \to \mathbf{R}$ for $D \subseteq \mathbf{Z}^2$ and $h|_{\partial D} = \psi$ where
 - Covariance: Green's function for SRW
 - Mean Height: harmonic extension of ψ

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Gaussian measure on functions $h: D \to \mathbf{R}$ for $D \subseteq \mathbf{Z}^2$ and $h|_{\partial D} = \psi$ where
 - Covariance: Green's function for SRW
 - Mean Height: harmonic extension of ψ
- Density with respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\sum_{x\sim y}(h(x)-h(y))^2\right)$$

"Natural perturbation of a harmonic function"

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Gaussian measure on functions $h: D \to \mathbf{R}$ for $D \subseteq \mathbf{Z}^2$ and $h|_{\partial D} = \psi$ where
 - Covariance: Green's function for SRW
 - Mean Height: harmonic extension of ψ
- ▶ Density with respect to Lebesgue measure on **R**^{|D|}:

$$\frac{1}{\mathcal{Z}}\exp\left(-\frac{1}{2}\sum_{x\sim y}(h(x)-h(y))^2\right)$$

- "Natural perturbation of a harmonic function"
- Fine mesh limit: converges to the continuum GFF, the standard Gaussian with respect to the Dirichlet inner product

$$(f,g)_{\nabla} = \int \nabla f(x) \cdot \nabla g(x) dx.$$

Rays of $e^{ih/\chi}$, h GFF, $\chi=3.75~[\kappa=1/4]$

Rays of $e^{ih/\chi}$, h GFF, $\chi \approx$ 2.47 [$\kappa = 1/2$]

Rays of $e^{ih/\chi}$, h GFF, $\chi=1.5~[\kappa=1]$

Rays of $e^{ih/\chi}$, h GFF, $\chi=0.71~[\kappa=2]$

Background

Existence and uniqueness of couplings (η, h) of a GFF h and $\eta \sim SLE_{\kappa}$ are studied in the works of Sheffield, Schramm-Sheffield, Dubédat, and Izyurov-Kytöla

New Contributions:

- Developed a robust theory of flow line interaction to make the phenomena observed in the simulations precise
- General forms of SLE duality the SLE light cone
- $SLE_{\kappa}(\rho)$ processes are continuous (even when they hit the boundary)
 - Important variant of SLE_κ
 - The drift for the driving function includes a linear combination of the Loewner evolution of a collection "force points"
- New reversibility results

- x_1, x_2 boundary points with x_1 to the left of x_2
- $\eta_{\theta_1}^{\mathbf{x}_1}$ starting at \mathbf{x}_1 with angle θ_1
- $\eta_{\theta_2}^{\mathbf{x}_2}$ starting at \mathbf{x}_2 with angle θ_2

- x_1, x_2 boundary points with x_1 to the left of x_2
- $\eta_{\theta_1}^{\mathbf{x}_1}$ starting at \mathbf{x}_1 with angle θ_1
- $\eta_{\theta_2}^{\mathbf{x}_2}$ starting at \mathbf{x}_2 with angle θ_2
- Theorem (M., Sheffield)
 - $\theta_1 > \theta_2$ implies $\eta_{\theta_1}^{\mathbf{x}_1}$ is to the left of $\eta_{\theta_2}^{\mathbf{x}_2}$

- x_1, x_2 boundary points with x_1 to the left of x_2
- $\eta_{\theta_1}^{\mathbf{x}_1}$ starting at \mathbf{x}_1 with angle θ_1
- $\eta_{\theta_2}^{\mathbf{x}_2}$ starting at \mathbf{x}_2 with angle θ_2

Theorem (M., Sheffield)

• $\theta_1 > \theta_2$ implies $\eta_{\theta_1}^{\mathbf{x}_1}$ is to the left of $\eta_{\theta_2}^{\mathbf{x}_2}$

• $\theta_1 = \theta_2$ implies $\eta_{\theta_1}^{x_1}$ merges with $\eta_{\theta_2}^{x_2}$

- x_1, x_2 boundary points with x_1 to the left of x_2
- $\eta_{\theta_1}^{\mathbf{x}_1}$ starting at \mathbf{x}_1 with angle θ_1
- $\eta_{\theta_2}^{\mathbf{x}_2}$ starting at \mathbf{x}_2 with angle θ_2

Theorem (M., Sheffield)

- $\theta_1 > \theta_2$ implies $\eta_{\theta_1}^{\mathbf{x}_1}$ is to the left of $\eta_{\theta_2}^{\mathbf{x}_2}$
- $\theta_1 = \theta_2$ implies $\eta_{\theta_1}^{x_1}$ merges with $\eta_{\theta_2}^{x_2}$
- $\theta_1 < \theta_2$ implies $\eta_{\theta_1}^{\mathbf{x}_1}$ crosses $\eta_{\theta_2}^{\mathbf{x}_2}$ exactly once

- \blacktriangleright x₁, x₂ boundary points with x₁ to the left of x₂
- $\eta_{\theta_1}^{\mathbf{x}_1}$ starting at \mathbf{x}_1 with angle θ_1
- $\eta_{\theta_2}^{\mathbf{x}_2}$ starting at \mathbf{x}_2 with angle θ_2

Theorem (M., Sheffield)

• $\theta_1 > \theta_2$ implies $\eta_{\theta_1}^{\mathbf{x}_1}$ is to the left of $\eta_{\theta_2}^{\mathbf{x}_2}$

• $\theta_1 = \theta_2$ implies $\eta_{\theta_1}^{\mathbf{x}_1}$ merges with $\eta_{\theta_2}^{\mathbf{x}_2}$

 $\bullet \ \theta_1 < \theta_2 \ \text{implies} \ \eta_{\theta_1}^{\mathsf{x}_1} \ \text{crosses} \ \eta_{\theta_2}^{\mathsf{x}_2} \ \text{exactly once}$

Moreover, $\eta_{\theta_1}^{\mathbf{x}_1}$ given $\eta_{\theta_2}^{\mathbf{x}_2}$ is an $SLE_{\kappa}(\underline{\rho})$.

- x_1, x_2 boundary points with x_1 to the left of x_2
- $\eta_{\theta_1}^{\mathbf{x}_1}$ starting at \mathbf{x}_1 with angle θ_1
- $\eta_{\theta_2}^{\mathbf{x}_2}$ starting at \mathbf{x}_2 with angle θ_2

Theorem (M., Sheffield)

• $\theta_1 > \theta_2$ implies $\eta_{\theta_1}^{x_1}$ is to the left of $\eta_{\theta_2}^{x_2}$

• $\theta_1 = \theta_2$ implies $\eta_{\theta_1}^{\mathbf{x}_1}$ merges with $\eta_{\theta_2}^{\mathbf{x}_2}$

• $\theta_1 < \theta_2$ implies $\eta_{\theta_1}^{\mathbf{x}_1}$ crosses $\eta_{\theta_2}^{\mathbf{x}_2}$ exactly once Moreover, $\eta_{\theta_1}^{\mathbf{x}_1}$ given $\eta_{\theta_2}^{\mathbf{x}_2}$ is an $\mathrm{SLE}_{\kappa}(\rho)$.

Generalizes to describe the interaction of any configuration of flow lines with each other and the boundary.

Continuity $SLE_{\kappa}(\underline{\rho})$

 SLE_{κ} is continuous ($\kappa \neq 8$: Rohde-Schramm, $\kappa = 8$: Lawler-Schramm-Werner)

Continuity $SLE_{\kappa}(\underline{\rho})$

 SLE_{κ} is continuous ($\kappa \neq 8$: Rohde-Schramm, $\kappa = 8$: Lawler-Schramm-Werner)

Theorem (M., Sheffield) $SLE_{\kappa}(\rho)$ processes are continuous.

Continuity $SLE_{\kappa}(\underline{\rho})$

 SLE_{κ} is continuous ($\kappa \neq 8$: Rohde-Schramm, $\kappa = 8$: Lawler-Schramm-Werner)

Theorem (M., Sheffield) SLE_{κ}(ρ) processes are continuous.

Proof: (for $SLE_{\kappa}(\rho_1; \rho_2)$ for $\kappa \in (0, 4)$) Let η_{θ} be the flow line with angle θ and fix $\theta_1 > 0 > \theta_2$.

Fact: $\eta_{\theta_1}, \eta_{\theta_2}, \eta_0$ are continuous if they do not hit the boundary. **Reason:** Their law is mutually absolutely continuous with respect to SLE_{κ}.

The law of η_0 given η_{θ_1} and η_{θ_2} is an SLE_{κ}($\rho_1; \rho_2$) process.

SLE Duality

The outer boundary of an ${\rm SLE}_{16/\kappa}$ process is described by a certain ${\rm SLE}_{\kappa}$ process for $\kappa \in (0, 4)$.

Predicted by Duplantier
SLE Duality

The outer boundary of an $SLE_{16/\kappa}$ process is described by a certain SLE_{κ} process for $\kappa \in (0, 4)$.

- Predicted by Duplantier
- ▶ Natural for certain values of κ , i.e. $\kappa = 2$ (LERW) and $16/\kappa = 8$ (UST)

SLE Duality

The outer boundary of an $SLE_{16/\kappa}$ process is described by a certain SLE_{κ} process for $\kappa \in (0, 4)$.

- Predicted by Duplantier
- ▶ Natural for certain values of κ , i.e. $\kappa = 2$ (LERW) and $16/\kappa = 8$ (UST)
- Proved in various forms by Zhan and Dubédat

Flow lines with fixed angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; one direction change.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; two direction changes.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; three direction changes.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; four direction changes.

Theorem (M., Sheffield): The set of all point accessible by SLE_{κ} flow lines ($\kappa \in (0, 4)$) with angles restricted in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is an $SLE_{16/\kappa}$ process.

${\rm SLE}_{128}$ Light Cone

${\rm SLE}_{64}(32;32)$ Light Cone

The SLE_{κ} fan

The fan is the set of points accessible by flowing at a fixed angle from x with angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; η' an $\text{SLE}_{16/\kappa}$ process from y to x, coupled together using the same GFF.

The SLE_{κ} fan

The fan is the set of points accessible by flowing at a fixed angle from x with angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; η' an SLE_{16/ κ} process from y to x, coupled together using the same GFF.

Theorem (M., Sheffield) The fan is a strict subset of the light cone: the probability that the fan contains $\eta'(\tau')$ for any η' stopping time τ' is zero.

The SLE_{κ} fan

The fan is the set of points accessible by flowing at a fixed angle from x with angle in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; η' an $\text{SLE}_{16/\kappa}$ process from y to x, coupled together using the same GFF.

Theorem (M., Sheffield) The fan is a strict subset of the light cone: the probability that the fan contains $\eta'(\tau')$ for any η' stopping time τ' is zero. **Theorem** (M., Sheffield) The fan is a deterministic function of η'

There is a whole-plane version of the theory (M., Sheffield). Flow lines are whole-plane $SLE_{\kappa}(\rho)$ processes.

There is a whole-plane version of the theory (M., Sheffield). Flow lines are whole-plane $SLE_{\kappa}(\rho)$ processes. Same interaction rules.

There is a whole-plane version of the theory (M., Sheffield). Flow lines are whole-plane $SLE_{\kappa}(\rho)$ processes. Same interaction rules.

There is a whole-plane version of the theory (M., Sheffield). Flow lines are whole-plane $SLE_{\kappa}(\rho)$ processes. Same interaction rules. Versions of the light cone and duality.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; one initial point.

Space-filling SLE

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; one initial point.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; two initial points.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; two initial points.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; three initial points.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; three initial points.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; four initial points.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; five initial points.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; six initial points.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; seven initial points.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; eight initial points.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; nine initial points.

Flow lines with angle $\frac{\pi}{2}$ and $-\frac{\pi}{2}$; ten initial points.

Three thousand subdivisions.

Three thousand subdivisions. Theorem (M., Sheffield) This is a continuous curve; a space-filling analog of SLE. It traces the outer boundary of the CLE_{κ} exploration tree.

Part II: Reversibility

Reversibility

An SLE_κ η from x to y is said to be reversible if the time-reversal of η (parameterized in the reverse direction) has the law of an SLE_κ from y to x.

Reversibility

- An SLE_κ η from x to y is said to be reversible if the time-reversal of η (parameterized in the reverse direction) has the law of an SLE_κ from y to x.
- ▶ Not obvious from the definition of SLE.

Reversibility

- An SLE_κ η from x to y is said to be reversible if the time-reversal of η (parameterized in the reverse direction) has the law of an SLE_κ from y to x.
- Not obvious from the definition of SLE.
- Holds for $\kappa = 2, 3, 4, 16/3, 6, 8$ since for these values it is the scaling limit of discrete models with reversibility built in.

Many of the random interfaces which are known or believed to converge to SLE are reversible, in the sense that the reversed path has the same law as the original path (with respect to a slightly modified setup). This motivates the following problem from [76].

Problem 7.3. Let γ be the chordal SLE_{κ} path, where $\kappa \leq 8$. Prove that up to reparametrization, the image of γ under inversion in the unit circle (that is, the map $z \mapsto 1/\overline{z}$) has the same law as γ itself.

Oded Schramm, 2006 ICM proceedings

Reversibility for $\kappa \in (0, 4]$

Theorem (Zhan)

 ${\rm SLE}_{\kappa}$ is reversible for $\kappa \in (0, 4]$.

Reversibility for $\kappa \in (0, 4]$

Theorem (Zhan)

 ${\rm SLE}_{\kappa}$ is reversible for $\kappa \in (0, 4]$.

Theorem (Dubédat, Zhan)

Non-boundary intersecting $SLE_{\kappa}(\rho)$ is reversible for $\kappa \in (0, 4]$.

Reversibility for $\kappa \in (0, 4]$

Theorem (Zhan)

 ${\rm SLE}_{\kappa}$ is reversible for $\kappa \in (0, 4]$.

Theorem (Dubédat, Zhan)

Non-boundary intersecting $SLE_{\kappa}(\rho)$ is reversible for $\kappa \in (0, 4]$.

Theorem (M., Sheffield)

 $SLE_{\kappa}(\rho_1; \rho_2)$ processes are reversible for $\kappa \in (0, 4]$, even when they intersect the boundary.

- Based on imaginary geometry techniques
- ▶ New proof for SLE_{κ} , $\kappa \in (0, 4]$
- Description of the time reversal of SLE_κ(ρ) processes

• $\eta \sim \text{SLE}_{\kappa}$ from x to y in D

- $\eta \sim \text{SLE}_{\kappa}$ from x to y in D
- au a reverse stopping time for η

- $\eta \sim \text{SLE}_{\kappa}$ from x to y in D
- $\blacktriangleright \ \tau$ a reverse stopping time for η
- Pretend η|_{[τ,∞)} is a GFF flow line and compute the conditional law of η|_[0,τ]

- $\eta \sim \text{SLE}_{\kappa}$ from x to y in D
- au a reverse stopping time for η
- Pretend η|_{[τ,∞)} is a GFF flow line and compute the conditional law of η|_[0,τ]
- ▶ It is $SLE_{\kappa}(\kappa 4; \kappa 4)$ in $D_{\tau} \equiv D \setminus \eta([\tau, \infty))$ conditioned to exit at $\eta(\tau)$

- $\eta \sim \text{SLE}_{\kappa}$ from x to y in D
- au a **reverse** stopping time for η
- Pretend η|_(τ,∞) is a GFF flow line and compute the conditional law of η|_[0,τ]
- ▶ It is $SLE_{\kappa}(\kappa 4; \kappa 4)$ in $D_{\tau} \equiv D \setminus \eta([\tau, \infty))$ conditioned to exit at $\eta(\tau)$
- ▶ Fact: This implies $\eta|_{[0,\tau]}$ an SLE_{κ} from x to $\eta(\tau)$ in D_{τ} .

- $\eta \sim \text{SLE}_{\kappa}$ from x to y in D
- $\blacktriangleright \ \tau$ a reverse stopping time for η
- Pretend η|_{[τ,∞)} is a GFF flow line and compute the conditional law of η|_[0,τ]
- ▶ It is $SLE_{\kappa}(\kappa 4; \kappa 4)$ in $D_{\tau} \equiv D \setminus \eta([\tau, \infty))$ conditioned to exit at $\eta(\tau)$
- ▶ Fact: This implies $\eta|_{[0,\tau]}$ an SLE_{κ} from x to $\eta(\tau)$ in D_{τ} .
- Schramm's conformal-Markov characterization implies that the time-reversal of η is an SLE_κ.

- $\eta \sim \text{SLE}_{\kappa}$ from x to y in D
- au a **reverse** stopping time for η
- Pretend η|_{[τ,∞)} is a GFF flow line and compute the conditional law of η|_[0,τ]
- ▶ It is $SLE_{\kappa}(\kappa 4; \kappa 4)$ in $D_{\tau} \equiv D \setminus \eta([\tau, \infty))$ conditioned to exit at $\eta(\tau)$
- ▶ Fact: This implies $\eta|_{[0,\tau]}$ an SLE_{κ} from x to $\eta(\tau)$ in D_{τ} .
- Schramm's conformal-Markov characterization implies that the time-reversal of η is an SLE_κ.
- Proof for SLE_κ(ρ) uses analogous characterization for single-force-point SLE_κ(ρ) (M., Sheffield)

- $\eta \sim \text{SLE}_{\kappa}$ from x to y in D
- $\blacktriangleright \ \tau$ a reverse stopping time for η
- Pretend η|_(τ,∞) is a GFF flow line and compute the conditional law of η|_[0,τ]
- ► It is $SLE_{\kappa}(\kappa 4; \kappa 4)$ in $D_{\tau} \equiv D \setminus \eta([\tau, \infty))$ conditioned to exit at $\eta(\tau)$
- ▶ Fact: This implies $\eta|_{[0,\tau]}$ an SLE_{κ} from x to $\eta(\tau)$ in D_{τ} .
- Schramm's conformal-Markov characterization implies that the time-reversal of η is an SLE_κ.
- Proof for SLE_κ(ρ) uses analogous characterization for single-force-point SLE_κ(ρ) (M., Sheffield)
- SLE_κ(ρ₁; ρ₂) follows using flow line tricks and a classification of "bi-chordal" SLE configurations

Corollary: the fan is "reversible"

Reversibility of SLE_{κ} for $\kappa \in (4, 8)$

Theorem (M., Sheffield)

 SLE_{κ} processes are reversible for $\kappa \in (4, 8)$.

More generally, $SLE_{\kappa}(\rho_1; \rho_2)$ processes are reversible for $\rho_1, \rho_2 \geq \frac{\kappa}{2} - 4$ and are non-reversible if $\min(\rho_1, \rho_2) < \frac{\kappa}{2} - 4$.

Reversibility of SLE_{κ} for $\kappa \in (4, 8)$ Theorem (M., Sheffield)

SLE_{κ} processes are reversible for $\kappa \in (4, 8)$.

More generally, $SLE_{\kappa}(\rho_1; \rho_2)$ processes are reversible for $\rho_1, \rho_2 \geq \frac{\kappa}{2} - 4$ and are non-reversible if $\min(\rho_1, \rho_2) < \frac{\kappa}{2} - 4$.

 $\blacktriangleright \frac{\kappa}{2} - 4$ is the critical threshold for these processes to be boundary filling

Reversibility of SLE_{κ} for $\kappa \in (4, 8)$

Theorem (M., Sheffield)

 SLE_{κ} processes are reversible for $\kappa \in (4, 8)$.

More generally, $SLE_{\kappa}(\rho_1; \rho_2)$ processes are reversible for $\rho_1, \rho_2 \geq \frac{\kappa}{2} - 4$ and are non-reversible if $\min(\rho_1, \rho_2) < \frac{\kappa}{2} - 4$.

• $\frac{\kappa}{2}$ – 4 is the critical threshold for these processes to be boundary filling

Important consequence:

- The CLE_κ processes (loop version of SLE_κ) are well defined for κ ∈ (4,8).
- (Recently proved by Sheffield-Werner for κ ∈ (8/3, 4] using loop soups).

(CLE₆ simulation due to David Wilson)

• $\eta \sim \text{SLE}_{\kappa}$ from x to y in D

- $\eta \sim \text{SLE}_{\kappa}$ from x to y in D
- Left and right boundaries of η are SLE_{16/κ}(ρ₁; ρ₂). Know how to reverse!

- $\eta \sim \text{SLE}_{\kappa}$ from x to y in D
- Left and right boundaries of η are SLE_{16/κ}(ρ₁; ρ₂). Know how to reverse!
- ▶ η given η_L and η_R is a boundary filling SLE_{κ}($\frac{\kappa}{2} - 4$; $\frac{\kappa}{2} - 4$) in each of the bubbles between η_L and η_R

- $\eta \sim \text{SLE}_{\kappa}$ from x to y in D
- Left and right boundaries of η are SLE_{16/κ}(ρ₁; ρ₂). Know how to reverse!
- η given η_L and η_R is a boundary filling SLE_κ(^κ/₂ − 4; ^κ/₂ − 4) in each of the bubbles between η_L and η_R
- Suffices to show SLE_κ(^κ/₂ − 4; ^κ/₂ − 4) processes are reversible

• $\eta \sim \text{SLE}_{\kappa}(\frac{\kappa}{2}-4;\frac{\kappa}{2}-4)$ from ∞ to $-\infty$ in $\mathbb{R} \times [0,1]$

- Fix $z \in \mathbf{R}$; then η hits z wp 1 since η boundary filling
- η_z^P the outer boundary of η before hitting z;

- $\eta \sim \text{SLE}_{\kappa}(\frac{\kappa}{2}-4;\frac{\kappa}{2}-4)$ from ∞ to $-\infty$ in $\mathbf{R} \times [0,1]$
- ▶ Fix $z \in \mathbf{R}$; then η hits z wp 1 since η boundary filling
- ▶ η_z^P the outer boundary of η before hitting z; η_z^F the outer boundary after hitting z

- $\eta \sim \text{SLE}_{\kappa}(\frac{\kappa}{2} 4; \frac{\kappa}{2} 4)$ from ∞ to $-\infty$ in $\mathbf{R} \times [0, 1]$
- Fix $z \in \mathbf{R}$; then η hits z wp 1 since η boundary filling
- ▶ η_z^P the outer boundary of η before hitting z; η_z^F the outer boundary after hitting z
- Main lemma: Law of (η_z^P, η_z^F) is reflection invariant
 - Reduces to SLE_{16/κ}(ρ₁; ρ₂) reversibility by flow line tricks

- $\eta \sim \text{SLE}_{\kappa}(\frac{\kappa}{2}-4;\frac{\kappa}{2}-4)$ from ∞ to $-\infty$ in $\mathbf{R} \times [0,1]$
- ▶ Fix $z \in \mathbf{R}$; then η hits z wp 1 since η boundary filling
- ▶ η_z^P the outer boundary of η before hitting z; η_z^F the outer boundary after hitting z
- Main lemma: Law of (η_z^P, η_z^F) is reflection invariant
 - Reduces to SLE_{16/κ}(ρ₁; ρ₂) reversibility by flow line tricks
- Fact: Law of η given (η_z^P, η_z^F) in each complementary component is an $SLE_{\kappa}(\frac{\kappa}{2}-4; \frac{\kappa}{2}-4)$

- $\eta \sim \text{SLE}_{\kappa}(\frac{\kappa}{2} 4; \frac{\kappa}{2} 4)$ from ∞ to $-\infty$ in $\mathbf{R} \times [0, 1]$
- ▶ Fix $z \in \mathbf{R}$; then η hits z wp 1 since η boundary filling
- ▶ η_z^P the outer boundary of η before hitting z; η_z^F the outer boundary after hitting z
- Main lemma: Law of (η_z^P, η_z^F) is reflection invariant
 - Reduces to SLE_{16/κ}(ρ₁; ρ₂) reversibility by flow line tricks
- Fact: Law of η given (η_z^P, η_z^F) in each complementary component is an $SLE_{\kappa}(\frac{\kappa}{2}-4; \frac{\kappa}{2}-4)$
- lterating implies that one can construct a coupling $(\eta, \tilde{\eta})$ where $\tilde{\eta}$ is an $SLE_{\kappa}(\frac{\kappa}{2} 4; \frac{\kappa}{2} 4)$ from $-\infty$ to ∞ so that the time-reversal of $\tilde{\eta}$ is η

Reversibility of ${\rm SLE}_\kappa$ for $\kappa\geq 8$

The time-reversal of an SLE_{κ} is not an SLE_{κ} for $\kappa > 8$ (Rohde-Schramm).

Reversibility of ${\rm SLE}_{\kappa}$ for $\kappa \geq 8$

Theorem (M., Sheffield) $SLE_{\kappa}(\frac{\kappa}{4}-2;\frac{\kappa}{4}-2)$ is reversible for $\kappa \geq 8$.

Reversibility of SLE_{κ} for $\kappa \geq 8$

Theorem (M., Sheffield) $SLE_{\kappa}(\frac{\kappa}{4}-2;\frac{\kappa}{4}-2)$ is reversible for $\kappa \geq 8$. The time-reversal of ordinary SLE_{κ} is an $SLE_{\kappa}(\frac{\kappa}{2}-4;\frac{\kappa}{2}-4)$.

Summary of reversibility results for chordal ${\rm SLE}_\kappa$

 $SLE_{\kappa}(\rho)$ processes are reversible when ρ is either in the grey region or dashed lines.

- Theorem (M., Sheffield) Whole-plane SLE_κ(ρ) processes for κ ∈ (0,4] and ρ > −2 have time-reversal symmetry.
 - Proved for $\kappa \in (0, 4]$ and $\rho = 0$ by Zhan

- Theorem (M., Sheffield) Whole-plane SLE_κ(ρ) processes for κ ∈ (0,4] and ρ > −2 have time-reversal symmetry.
 - Proved for $\kappa \in (0, 4]$ and $\rho = 0$ by Zhan
- Idea Use whole-plane classification of bi-chordal SLE to reduce the result to the chordal case.

- Theorem (M., Sheffield) Whole-plane SLE_κ(ρ) processes for κ ∈ (0, 4] and ρ > −2 have time-reversal symmetry.
 - Proved for $\kappa \in (0, 4]$ and $\rho = 0$ by Zhan
- Idea Use whole-plane classification of bi-chordal SLE to reduce the result to the chordal case.
- Theorem (M., Sheffield) Whole-plane $SLE_{\kappa}(\rho)$ processes for $\kappa \in (4, 8)$ and $\rho \geq \frac{\kappa}{2} 4$ have time-reversal symmetry.
 - ▶ $\rho = \frac{\kappa}{2} 4$ is the critical threshold where the process fills its own outer boundary

- Theorem (M., Sheffield) Whole-plane SLE_κ(ρ) processes for κ ∈ (0,4] and ρ > −2 have time-reversal symmetry.
 - Proved for $\kappa \in (0, 4]$ and $\rho = 0$ by Zhan
- Idea Use whole-plane classification of bi-chordal SLE to reduce the result to the chordal case.
- Theorem (M., Sheffield) Whole-plane $SLE_{\kappa}(\rho)$ processes for $\kappa \in (4, 8)$ and $\rho \geq \frac{\kappa}{2} 4$ have time-reversal symmetry.
 - ▶ $\rho = \frac{\kappa}{2} 4$ is the critical threshold where the process fills its own outer boundary
- ▶ Idea Use duality and (0,4) reversibility to reduce to the chordal setting

- Theorem (M., Sheffield) Whole-plane SLE_κ(ρ) processes for κ ∈ (0,4] and ρ > −2 have time-reversal symmetry.
 - Proved for $\kappa \in (0, 4]$ and $\rho = 0$ by Zhan
- Idea Use whole-plane classification of bi-chordal SLE to reduce the result to the chordal case.
- Theorem (M., Sheffield) Whole-plane $SLE_{\kappa}(\rho)$ processes for $\kappa \in (4, 8)$ and $\rho \geq \frac{\kappa}{2} 4$ have time-reversal symmetry.
 - $\blacktriangleright \ \rho = \frac{\kappa}{2} 4$ is the critical threshold where the process fills its own outer boundary
- ▶ Idea Use duality and (0, 4) reversibility to reduce to the chordal setting
- Theorem (M., Sheffield) Space-filling SLE_κ(ρ₁; ρ₂) processes for κ ∈ (4,∞) have time-reversal symmetry for ρ ∈ (-2, ^κ/₂ 2)
 - Process is not defined for $\rho \geq \frac{\kappa}{2} 2$
We have used the $\operatorname{SLE}/\mathsf{GFF}$ coupling to establish

- 1. Continuity and transience (chordal, radial, whole-plane $SLE_{\kappa}(\rho)$),
- 2. Duality and path decompositions (light cone, space-filling SLE),
- 3. Reversibility (chordal, whole-plane, and space-filling) for all κ values.

The ${\rm SLE}_{8/3}$ fan is reversible

SLE_6 is reversible

The ${\rm SLE}_6$ and the ${\rm SLE}_{8/3}$ fan are not jointly reversible

