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Overview

Part I: Imaginary Geometry and the Gaussian free field

I Interpretation of SLE as a flow line of a random vector field

I Explain how this perspective can be used to study SLE

Part II: Reversibility results for SLE

I Chordal SLE

I Space-filling SLE

I Whole-plane SLE
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Part I: Imaginary Geometry of the
Gaussian Free Field
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Rays of a Smooth Function

I h smooth [h(x , y) = x2 + y 2]

I Vector field e ih(x,y)

I A of h is a of , i.e. a solution to

d

dt
η(t) =

I The rays of h vary smoothly and
monotonically with θ and are
non-intersecting.

I Plan:

I Describe the interaction of
the rays of the GFF

I Explain how this can be
used to study SLE
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Rays of a Smooth Function

I h smooth [h(x , y) = x2 + y 2]

I Vector field e ih(x,y)

I A θ-angle ray of h is a flow line
of e i(h+θ), i.e. a solution to

d

dt
η(t) = e i(h(η(t))+θ)

I The rays of h vary smoothly and
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The Gaussian Free Field
I The discrete Gaussian free field (DGFF) is a

Gaussian random surface model.

I Gaussian measure on functions h : D → R for
D ⊆ Z2 and h|∂D = ψ where

I Covariance: Green’s function for SRW
I Mean Height: harmonic extension of ψ

I Density with respect to Lebesgue measure on R|D|:

1

Z exp

(
−1

2

∑
x∼y

(h(x)− h(y))2

)

I “Natural perturbation of a harmonic function”

I Fine mesh limit: converges to the continuum GFF,
the standard Gaussian with respect to the Dirichlet
inner product

(f , g)∇ =

∫
∇f (x) · ∇g(x)dx .
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Rays of e ih/χ, h GFF, χ ≈ 31.97 [κ = 1/256]
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Rays of e ih/χ, h GFF, χ ≈ 11.23 [κ = 1/32]
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Rays of e ih/χ, h GFF, χ ≈ 7.88 [κ = 1/16]
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Rays of e ih/χ, h GFF, χ = 3.75 [κ = 1/4]
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Rays of e ih/χ, h GFF, χ ≈ 2.47 [κ = 1/2]
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Rays of e ih/χ, h GFF, χ = 1.5 [κ = 1]
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Rays of e ih/χ, h GFF, χ ≈ 1.02 [κ = 3/2]
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Rays of e ih/χ, h GFF, χ = 0.71 [κ = 2]
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Rays of e ih/χ, h GFF, χ ≈ 2.47 [κ = 1/2]
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Rays of e ih/χ, h GFF, χ ≈ 2.47 [κ = 1/2]
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Background

Existence and uniqueness of couplings (η, h) of a GFF h and η ∼ SLEκ are studied in
the works of Sheffield, Schramm-Sheffield, Dubédat, and Izyurov-Kytöla

New Contributions:

I Developed a robust theory of flow line interaction to make the phenomena observed
in the simulations precise

I General forms of SLE duality — the SLE light cone

I SLEκ(ρ) processes are continuous (even when they hit the boundary)

I Important variant of SLEκ
I The drift for the driving function includes a linear combination of the Loewner

evolution of a collection “force points”

I New reversibility results
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Flow line interaction: monotonicity, merging, and crossing

I x1, x2 boundary points with x1 to the left of x2

I η
x1
θ1

starting at x1 with angle θ1

I η
x2
θ2

starting at x2 with angle θ2

Theorem (M., Sheffield)

I θ1 > θ2 implies ηx1
θ1

is to the left of ηx2
θ2

I θ1 = θ2 implies ηx1
θ1

merges with ηx2
θ2

I θ1 < θ2 implies ηx1
θ1

crosses ηx2
θ2

exactly once

Moreover, ηx1
θ1

given ηx2
θ2

is an SLEκ(ρ).

Generalizes to describe the interaction of any configu-

ration of flow lines with each other and the boundary.
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Continuity SLEκ(ρ)

SLEκ is continuous (κ 6= 8: Rohde-Schramm, κ = 8: Lawler-Schramm-Werner)

Theorem (M., Sheffield)
SLEκ(ρ) processes are continuous.

Proof: (for SLEκ(ρ1; ρ2) for κ ∈ (0, 4))
Let ηθ be the flow line with angle θ and
fix θ1 > 0 > θ2.

Fact: ηθ1 , ηθ2 , η0 are continuous if they
do not hit the boundary.
Reason: Their law is mutually abso-
lutely continuous with respect to SLEκ.

The law of η0 given ηθ1 and ηθ2 is an

SLEκ(ρ1; ρ2) process.
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SLE Duality

The outer boundary of an SLE16/κ process is described by a certain SLEκ process for
κ ∈ (0, 4).

I Predicted by Duplantier

I Natural for certain values of κ, i.e. κ = 2 (LERW) and 16/κ = 8 (UST)

I Proved in various forms by Zhan and Dubédat
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Duality in the Imaginary Geometry: the SLE Light Cone

Flow lines with fixed angle π
2

and −π
2

.
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Duality in the Imaginary Geometry: the SLE Light Cone

Flow lines with angle π
2

and −π
2

; one direction change.
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Duality in the Imaginary Geometry: the SLE Light Cone

Flow lines with angle π
2

and −π
2

; two direction changes.
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Duality in the Imaginary Geometry: the SLE Light Cone

Flow lines with angle π
2

and −π
2

; three direction changes.
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Duality in the Imaginary Geometry: the SLE Light Cone

Flow lines with angle π
2

and −π
2

; four direction changes.
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Duality in the Imaginary Geometry: the SLE Light Cone

Theorem (M., Sheffield): The set of all point accessible by SLEκ flow lines (κ ∈ (0, 4))

with angles restricted in [−π
2
, π

2
] is an SLE16/κ process.
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SLE128 Light Cone
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SLE64(32; 32) Light Cone
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The SLEκ fan
The fan is the set of points accessible by flowing at a fixed angle from x with angle in [−π

2
, π

2
];

η′ an SLE16/κ process from y to x , coupled together using the same GFF.

Theorem (M., Sheffield) The fan is a strict subset of the light cone: the probability that
the fan contains η′(τ ′) for any η′ stopping time τ ′ is zero.

Theorem (M., Sheffield) The fan is a deterministic function of η′
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Whole-plane theory

There is a whole-plane version of the theory (M., Sheffield). Flow lines are whole-plane

SLEκ(ρ) processes.
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Whole-plane theory

There is a whole-plane version of the theory (M., Sheffield). Flow lines are whole-plane

SLEκ(ρ) processes. Same interaction rules. Versions of the light cone and duality.
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Space-filling SLE

Flow lines with angle π
2

and −π
2

; one initial point.

Theorem (M., Sheffield) This is a

continuous curve; a space-filling analog of SLE. It traces the outer boundary of the

CLEκ exploration tree.
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Space-filling SLE

Flow lines with angle π
2

and −π
2

; two initial points.

Theorem (M., Sheffield) This is a

continuous curve; a space-filling analog of SLE. It traces the outer boundary of the

CLEκ exploration tree.
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Space-filling SLE

Flow lines with angle π
2

and −π
2

; three initial points.

Theorem (M., Sheffield) This is a
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Space-filling SLE

Flow lines with angle π
2

and −π
2

; four initial points.

Theorem (M., Sheffield) This is a

continuous curve; a space-filling analog of SLE. It traces the outer boundary of the

CLEκ exploration tree.
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Space-filling SLE

Flow lines with angle π
2

and −π
2

; five initial points.

Theorem (M., Sheffield) This is a

continuous curve; a space-filling analog of SLE. It traces the outer boundary of the

CLEκ exploration tree.
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Space-filling SLE

Flow lines with angle π
2

and −π
2

; six initial points.

Theorem (M., Sheffield) This is a

continuous curve; a space-filling analog of SLE. It traces the outer boundary of the

CLEκ exploration tree.
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Space-filling SLE

Flow lines with angle π
2

and −π
2

; seven initial points.

Theorem (M., Sheffield) This is a

continuous curve; a space-filling analog of SLE. It traces the outer boundary of the

CLEκ exploration tree.

Jason Miller and Scott Sheffield (MSR and MIT) Imaginary Geometry and the Gaussian Free Field March 26, 2012 17 / 34



Space-filling SLE

Flow lines with angle π
2

and −π
2

; eight initial points.

Theorem (M., Sheffield) This is a

continuous curve; a space-filling analog of SLE. It traces the outer boundary of the

CLEκ exploration tree.
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Space-filling SLE

Flow lines with angle π
2

and −π
2

; nine initial points.

Theorem (M., Sheffield) This is a

continuous curve; a space-filling analog of SLE. It traces the outer boundary of the

CLEκ exploration tree.

Jason Miller and Scott Sheffield (MSR and MIT) Imaginary Geometry and the Gaussian Free Field March 26, 2012 17 / 34



Space-filling SLE

Flow lines with angle π
2

and −π
2

; ten initial points.

Theorem (M., Sheffield) This is a

continuous curve; a space-filling analog of SLE. It traces the outer boundary of the

CLEκ exploration tree.
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Space-filling SLE

Three thousand subdivisions.

Theorem (M., Sheffield) This is a continuous curve; a

space-filling analog of SLE. It traces the outer boundary of the CLEκ exploration tree.
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Part II: Reversibility
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Reversibility

I An SLEκ η from x to y is said to be reversible if the
time-reversal of η (parameterized in the reverse direction)
has the law of an SLEκ from y to x .

I Not obvious from the definition of SLE.

I Holds for κ = 2, 3, 4, 16/3, 6, 8 since for these values it is
the scaling limit of discrete models with reversibility built in.

D

x

y
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Oded Schramm, 2006 ICM proceedings
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Reversibility for κ ∈ (0, 4]

Theorem (Zhan)
SLEκ is reversible for κ ∈ (0, 4].

Theorem (Dubédat, Zhan)
Non-boundary intersecting SLEκ(ρ) is reversible for κ ∈ (0, 4].

Theorem (M., Sheffield)
SLEκ(ρ1; ρ2) processes are reversible for κ ∈ (0, 4], even when they intersect the
boundary.

I Based on imaginary geometry techniques

I New proof for SLEκ, κ ∈ (0, 4]

I Description of the time reversal of SLEκ(ρ) processes

Jason Miller and Scott Sheffield (MSR and MIT) Imaginary Geometry and the Gaussian Free Field March 26, 2012 21 / 34



Reversibility for κ ∈ (0, 4]

Theorem (Zhan)
SLEκ is reversible for κ ∈ (0, 4].

Theorem (Dubédat, Zhan)
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Proof of the reversibility of SLEκ for κ ∈ (0, 4]

I η ∼ SLEκ from x to y in D

I τ a reverse stopping time for η

I Pretend η|[τ,∞) is a GFF flow line and compute
the conditional law of η|[0,τ ]

I It is SLEκ(κ− 4;κ− 4) in Dτ ≡ D \ η([τ,∞))
conditioned to exit at η(τ)

I Fact: This implies η|[0,τ ] an SLEκ from x to
η(τ) in Dτ .

I Schramm’s conformal-Markov characterization
implies that the time-reversal of η is an SLEκ.

I Proof for SLEκ(ρ) uses analogous
characterization for single-force-point SLEκ(ρ)
(M., Sheffield)

I SLEκ(ρ1; ρ2) follows using flow line tricks and a
classification of “bi-chordal” SLE configurations

x

y

η

η(τ )

x

y

η

η(τ )

x

y

η

η(τ )
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y
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Corollary: the fan is “reversible”
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Reversibility of SLEκ for κ ∈ (4, 8)
Theorem (M., Sheffield)
SLEκ processes are reversible for κ ∈ (4, 8).

More generally, SLEκ(ρ1; ρ2) processes are reversible for ρ1, ρ2 ≥ κ
2
− 4 and are

non-reversible if min(ρ1, ρ2) < κ
2
− 4.

I κ
2
− 4 is the critical threshold for these processes to be boundary filling

Important consequence:

I The CLEκ processes (loop version of
SLEκ) are well defined for κ ∈ (4, 8).

I (Recently proved by Sheffield-Werner
for κ ∈ (8/3, 4] using loop soups).

(CLE6 simulation due to David Wilson)
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Proof of the reversibility of SLEκ for κ ∈ (4, 8), Part I

I η ∼ SLEκ from x to y in D

I Left and right boundaries of η are
SLE16/κ(ρ1; ρ2). Know how to reverse!

I η given ηL and ηR is a boundary filling
SLEκ(κ

2
− 4; κ

2
− 4) in each of the bubbles

between ηL and ηR

I Suffices to show SLEκ(κ
2
− 4; κ

2
− 4) processes

are reversible

x

y

x

y

ηL

ηR
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Proof of the reversibility of SLEκ for κ ∈ (4, 8), Part II

z

∞−∞

I η ∼ SLEκ(κ
2
− 4; κ

2
− 4) from ∞ to −∞ in R× [0, 1]

I Fix z ∈ R; then η hits z wp 1 since η boundary filling

I ηPz the outer boundary of η before hitting z;

ηFz the outer boundary after hitting z

I Main lemma: Law of (ηP
z , η

F
z ) is reflection invariant

I Reduces to SLE16/κ(ρ1; ρ2) reversibility by flow line tricks

I Fact: Law of η given (ηP
z , η

F
z ) in each complementary component is an SLEκ(κ

2
− 4; κ

2
− 4)

I Iterating implies that one can construct a coupling (η, η̃) where η̃ is an
SLEκ(κ

2
− 4; κ

2
− 4) from −∞ to ∞ so that the time-reversal of η̃ is η
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Proof of the reversibility of SLEκ for κ ∈ (4, 8), Part II

∞−∞

z

ηPz
ηFz

I η ∼ SLEκ(κ
2
− 4; κ

2
− 4) from ∞ to −∞ in R× [0, 1]

I Fix z ∈ R; then η hits z wp 1 since η boundary filling

I ηPz the outer boundary of η before hitting z; ηFz the outer boundary after hitting z

I Main lemma: Law of (ηP
z , η

F
z ) is reflection invariant
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Reversibility of SLEκ for κ ≥ 8

The time-reversal of an SLEκ is not an SLEκ for κ > 8 (Rohde-Schramm).

The

time-reversal of ordinary SLEκ is an SLEκ(κ
2
− 4; κ

2
− 4).
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Reversibility of SLEκ for κ ≥ 8

Theorem (M., Sheffield) SLEκ(κ
4
− 2; κ

4
− 2) is reversible for κ ≥ 8.

The time-reversal

of ordinary SLEκ is an SLEκ(κ
2
− 4; κ

2
− 4).
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Summary of reversibility results for chordal SLEκ

SLEκ(ρ) processes are reversible when ρ is either in the grey region or dashed lines.

0

2

4

3

1

−1

−2

ρi

4
κ

κ/2−4

κ/4−2

31 20

(8, 0)

Boundary filling

reflection invariant
Outer boundary is

Threshold for existence
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More reversibility results

I Theorem (M., Sheffield) Whole-plane SLEκ(ρ) processes for κ ∈ (0, 4] and ρ > −2
have time-reversal symmetry.

I Proved for κ ∈ (0, 4] and ρ = 0 by Zhan

I Idea Use whole-plane classification of bi-chordal SLE to reduce the result to the
chordal case.

I Theorem (M., Sheffield) Whole-plane SLEκ(ρ) processes for κ ∈ (4, 8) and
ρ ≥ κ

2
− 4 have time-reversal symmetry.

I ρ = κ
2
− 4 is the critical threshold where the process fills its own outer

boundary

I Idea Use duality and (0, 4) reversibility to reduce to the chordal setting

I Theorem (M., Sheffield) Space-filling SLEκ(ρ1; ρ2) processes for κ ∈ (4,∞) have
time-reversal symmetry for ρ ∈ (−2, κ

2
− 2)

I Process is not defined for ρ ≥ κ
2
− 2
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Summary

We have used the SLE/GFF coupling to establish

1. Continuity and transience (chordal, radial, whole-plane SLEκ(ρ)),

2. Duality and path decompositions (light cone, space-filling SLE),

3. Reversibility (chordal, whole-plane, and space-filling) for all κ values.
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The SLE8/3 fan is reversible
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SLE6 is reversible
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The SLE6 and the SLE8/3 fan are not jointly reversible
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