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We will describe desirable properties of SLE and come back to an actual definition later. One
valuable feature of this perspective is that we can extend the definition to contexts other than the
usual one.

We begin by setting some parameter definitions. Let κ ∈ (0, 4], and define d = 1 + κ/8 and
b = (6 − κ)/(2κ) (boundary scaling exponent) and b̃ = b(κ − 2)/4 (bulk scaling exponent) and
c = b(3κ− 8) (central charge).

z

w
D

We would like to define a measure µD(z,w) on simple curves connecting z and w in D. These
points can be anywhere in D. If z is a boundary point, we insist that the boundary be smooth
in a neighborhood of z. We say z is a smooth point if z is interior or on the boundary (and the
boundary is smooth there). We define

ΨD(z,w) = |µD(z,w)|,

a (normalized) partition function. If the total mass is positive and finite, then we can define a
probability measure µ# by normalization

µD(z,w) = ΨD(z,w)µ
#
D(z,w),

We would like these measure to be supported on curves of dimension d.

The most important property we would like µ to have is conformal covariance. The notation b̂
means b or b̃.
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f ◦ µD(z,w) = |f ′(z)|b̂|f ′(w)|b̂µf(D)(f(z), f(w))
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The d-dimensional length of f◦γ is

∫tγ
0 |f ′(γ(s)|d ds. This is sometimes called “natural length.” It’s

called natural because it’s what you would expect to get from discrete models by considering the
number of steps and scaling appropriately. Note that the conformal covariance rule is really two
properties in one: it specifies conformal invariance of the probability measure as well as giving the
scaling rule of the partition function.

The second property we would like is the domain Markov property. We would like that µ#
D(z,w)

given γt to be µD\γt(γ(t), w).
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Reversibility is the property that µD(z,w) is obtained from the reverse of µD(z,w).

Boundary perturbation (generalized restriction). Suppose we have D1 ⊂ D. Then

dµD1(z,w)

dµD(z,w)
=
[
emD(γ,D\D1)

]c/2
,

D \D1

z

w

where mD(γ,D\D1) is the Brownian loop measure of loops in D that intersect both γ and D\D1.
Recall that the Brownian loop measure in D is a conformally invariant measure on collections of
loops in D which satisfies the restriction property: the law of the loops in D contained in D ′ ⊂ D
is the Brownian loop measure in D ′.

The Radon-Nikodym derivative above is conformally invariant with respect to conformal transfor-
mations of the larger domain (and not the smaller domain).

Remark for those who might appreciate it (this is not precise, but can be made so in certain special
cases):

emD =

detD
detD\γ

detD1
detD1\γ
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Relation to previous work: Oded’s construction gives µ#

D in the case that D is simply connected
and at most one of z,w is interior. In this case, defining

ΨD(z,w) = HD(z,w)
b,

where HD is the Green’s function, gives us the remaining properties.

[Disclaimer prompted by question: this is not the only reasonable way to define SLE in multiply
connected domains.]

[Question: do these formulas refer to Euclidean metrics? Yes. Would it work for hyperbolic metrics
too? Pretty much, yes.]

Many things are known about the natural parametrization; for example it is invariant under per-
turbation of the domain. It has not been proved that this parameterization is reversible.

How might one define SLE in multiply-connected domains?

Proposition 1. There is a unique extension ΨD(z,w) satisfying all these rules.

Idea of proof. Use the Radon-Nikodym derivative. Some things come easily, like conformal covari-
ance and the domain Markov property. What is more difficult is showing that ΨD(z,w) <∞.

γ

Example. Consider SLEκ from 0 to ∞ in H \ {holes}. We would like for the law of this path to be
absolutely continuous with respect to usual SLE (without the holes). We get

dµD
dµH

= (loop term)[ratio of partition functions],

where the loop term accounts for the change in the Brownian loop measure (incorporating those
loops intersecting both the holes and the path). The thing we need to get this to work is smoothness
of ΨD(z,w), which is not so easy to show either.
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Annulus SLE (crossing) - Work by Dapeng Zhan. We’d like to define µ#
Ar
(1, e−r+ix). If we could

define radial SLE from an interior point to a boundary point, then annulus SLE would be the
measure one obtains by conditioning on the path of an inside-out radial SLE from 0 to a positive
stopping time and considering the law of the rest of the path.

eiz

0

x + ir

z

w

Since the strip is simply connected, we can use the correspondence given by z 7→ eiz between the
strip and the annulus. There are a couple of issues to watch out for: some of the Brownian loops
in the annulus have nonzero winding number around the inside. This just contributes an overall
factor, since each of these loops hits the SLE path from the inside to the outside (this is topologically
necessary). The other issue is that each loop in the annulus has infinitely many preimages in the
strip. For this we have to choose a preimage for each loop and weight, on the strip side, by “bad
loops” which intersect translates of the chosen preimage. Then

dµAr(z,w)

dµSr(0, x+ ir)
(γ) = ϕ(r)ΨSr(0, x+ ir) exp

(c
2
m(bad loops)

)
.

It turns out that we can get smoothness in this setup, though it takes some work.

bad loop

preimages of part of SLE path

One further example: Consider radial SLE from 0 to z in the disk. Then

dµD(0, z)

d(whole plane SLE)
= (loop term)(partition function ratio),
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where the loop term is tricky because the measure of the set of loops intersecting both γ[0, τ] and
∂D is infinite, so it has to be normalized appropriately.

Question: Can we treat the holes differently, as would be appropriate from a conformal field theory
point of view?

Answer: Possibly, but we haven’t done it.

Question: Can we define annulus SLE from z to w by just passing to the universal cover and
summing the SLE paths from the preimages of z to w?

Answer: The issue is that we have to condition on the loops not self-intersecting on the annulus
side. Also, we have to weight by the number of bad loops, which are ones that first intersect a
translate of the curve (i.e., a different preimage) instead of the curve.


