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What are we describing?

Two isomorphic 1D gapless systems, prepared at different temperatures, 
put into contact.

TrTl

0-R/2 +R/2

Heat/Energy flow on domain of size = v t0

to

Aim: properties of the (hopefully) steady flow across/near the contact.
Need: R >> v to >> observation domain.

Gapless systems = CFT with central charge c.
Non equilibrium CFT.



Heat flow/transfer.

= heat transferred during time duration t in the  stationary regime∆tQ

1) Mean heat current:

〈J〉 =
cπ

12! k2
B(T 2

l − T 2
r )

Universal : independent of microscopic data

J = −∂t(∆tQ)

Let h and p be the energy and momentum densities: ∂th + ∂xp = 0.
Q =

∫
x<0 dx h(x) is the energy on the left and 〈J〉 = 〈p〉.

(In the steady state)



2) Heat transfer large deviation function

F (λ) := lim
t→∞

t−1 log〈eiλ∆tQ〉

F (λ) =
cπ

12!

( iλ

βr(βr − iλ)
− iλ

βl(βl + iλ)

)

Let 

Definition of probability distribution of charge transfer done using quantum rules for 
measurements. 

Universal!
Satisfies the (expected) fluctuation relation:

The fluctuation relation relates the probabilities Pt(θ) and Pt(−θ) of opposite
heat transfers ∆tQ = ±tθ across the interface:

e−tβlθ Pt(θ)dθ = e−tβrθ Pt(−θ)dθ.

F (i(βl − βr)− λ) = F (λ)

F is fully determined by the fluctuation relation plus a factorization property 
(see below) and the leading term (heat current).



Plan:

-- The steady state.
-- Heat transfer and its (quantum) statistics.
-- A (classical) Poissonian interpretation.



How to prepare the stationary state?

0-R/2 +R/2 to

Two dynamics: H0 = Hl + Hr

H
Before contact
After contact

At time −t0 , Gibbs states: ρ0 ∝ e−βlHl ⊗ e−βrHr

At time 0, ρ = e−it0H ρ0 e+it0H
, evolution with the H dynamics

If the limit exists (see below) lim
R!t0→+∞

e−it0H ρ0 e+it0H
is stationary.

We shall argue that it factorizes on left/right movers.



An heuristic description
Since the initial Gibbs state commutes with the Ho dymanics

e−it0H ρ0 e+it0H = e−it0He+itoHo ρ0 e−itoHoe+it0H

Thus, after having (formally) taken the large time limit:

ρstat = S ρ0 S−1

Right movers are at temperature Tl.
Left movers are at temperature Tr. ρstat = ρ+(Tl)⊗ ρ−(Tr)

The far left/right parts of the two sub-systems serve as effective reservoirs 
(for R large) which are different temperatures.

cf. Ruelle.

with S the scattering matrix.



Field theory construction of the stationary state.

Start from the definition of the (would be) stationary measure:

lim
R!to→∞

〈
∏

j

φ(j)
+ (xj , to)φ

(j)
− (yj , to)〉ρo

In CFT, the energy and momentum (chiral) densities are expressed in 
terms of their chiral component whose modes are the Virasoro generators:

Before: reflection After: transmission

For any given xj , yj there are R! to large enough such that xj−to ∈ [−R/2, 0]
and yj + to ∈ [0, R/2], so that the left/right movers have been moved into the
two sub-systems.

For large R, correlations of pure left/right movers are translation invariants.
Thus, the stationary measure exists (at least when acting on h-densities).
It is factorized on left/right movers.

The Ho and H dynamics differ by the boundary conditions:
Alternative: 
CFTs coupled with 
different defects.h±(0−) = h±(0+)h+(0±) = h−(0±)

h = h+ + h−, p = h+ − h−, with h±(x, t) = h±(x∓ t)

〈
∏

j

φ(j)
+ (xj − to)〉ρl

o
〈
∏

j

φ(j)
− (yj + to)〉ρr

o
. for φ± = h± or Id



Heat current.
Consider Q = half the energy difference in the two sub-systems.

     

The time evolution is that of the coupled system (H dynamics).
(the energy passes through the origin but is reflected at the extreme boundaries):

Q(t) = Q +
∫ t

0
dx (h−(x)− h+(−x))

The mean heat current is: J = 〈h+(−t) − h−(t)〉stat

The mean is computed as for finite size effect:

〈J〉 =
cπ

12! k2
B(T 2

l − T 2
r )

Recall, that on left or right movers:
and hl,r

+ (x) =
2π

R2
T l,r

R (x) with  T l,r
R (x) := − c

24
+

∑

n∈Z

Ll,r
n e−2πinx/R

ρstat ∝ e−βl
2π
R L0 or e−βr

2π
R L0

Q(t) :=
1
2
(H l(t)−Hr(t)) with

H l(t) =
∫ 0

−R/2
dx h(x, t)

Hr(t) =
∫ +R/2

0
dx h(x, t)



Heat transfer and its large deviation function.
Defined by a two-step measurements: 
(i) measure charge/energy Q at time 0, find qo with probability;
-- let the system evolves during time t;
(ii) measure again the charge/energy Q find q with probability:

The energy/heat transferred is q-qo. Its generating function is:

Pt(q, q0) = Tr(Pqe
−itHPq0ρstatPq0e

itHPq)

〈eiλ∆tQ〉 :=
∑

q,q0

eiλ(q−q0) Pt(q, q0)

This admits an integral representation, 〈eiλ∆tQ〉 =
∫

dµ

2π
Zt(λ, µ) with

Since the stationary measure factorizes, this factorizes. 
To compute the large time behavior of each factor is reduced to a computation in CFT 
(via Virasoro algebra) ==> the announced formula.

And, factorization and the expected fluctuation relation, 
determines the large deviation function (without computation).

Zt(λ, µ) := 〈e−i( λ
2−µ)QeiλQ(t)e−i( λ

2 +µ)Q〉stat



Classical Poissonian interpretation.

F (λ) =
cπ

12!

( iλ

βr(βr − iλ)
− iλ

βl(βl + iλ)

)

This large deviation function admits a decomposition as sum of Poisson 
processes (as the Levy-Kintchin decomposition for infinitely divisible processes)

Recall: F (λ) := lim
t→∞

t−1 log〈eiλ∆tQ〉

F (λ) = F r(λ)− F l(−λ) with

with measure/intensity dνl,r(ε) =
cπ

12! e−βl,rε dε(ε > 0)

F l,r(λ) =
∫

dνl,r(ε) (eiλε − 1)

The (quantum) large deviation coincides with that of (classical) Poisson processes:

E[eiλEt ] = exp[tF (λ)] with dEt =
∫

ε[dNr
t (ε)− dN l

t(ε)]

The jumps of the process are in correspondence with the transfers of energy 
quanta (particles) across the junction. 
The intensity (= probability of transfer during dt) are proportional to the 
Boltzmann weight: e−βl,rεdεdt



Last comments.

Thank you.

The complete probability distribution of heat transfer is universal 
(e.g. independent of v and other microscopic data).

Quite surprising/interesting: the (quantum) large deviation function admits a 
(classical) Poisson representation with a nice (universal?) interpretation.

Generalization? 
-- with non-trivial/non-topological defects (reflection/transmission)
-- meaning (classical or not?) of the probability distribution of 
charge transfer if two non-commuting charges are measured?


