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Recall that the Gaussian free field is a random distribution with Gaussian weight exp(−1/2(h, h)∇].
Another perspective is that h is a collection of Gaussian random variables (h, f)∇ with covariance

E(h, f1)∇(h, f2)∇ = (f1, f2)∇

In physics, LQG has a broader meaning, but here we take the cosmological constant equal to 0. So
for us, LQG refers (heuristically) to

dµ = eγhd2z,

where d2z is the area measure. See the slides for an animation of what a quantum suface looks like.

We consider circle averages hε(z) (the average of the field on a circle of radius ε), and we will need
the GFF with free boundary conditions. This is because we want to define half-circle averages
h̃ε(z) for z ∈ ∂D.

The variance of hε(z) is log(C(z,D)/ε), where C(z,D) is the conformal radius of D viewed from z.
Thus

Eeγhε(z) =
(
C

ε

)γ2/2
This observation motivates the definition of quantum area measure:

Proposition 1. dµε := exp(γhε(z))εγ
2/2 d2z converges as ε→ 0 when γ < 2.

Proposition 2. The boundary area measure dµ̃ε := exp
(
γ
2 h̃ε(z)

)
εγ
2/4 d2z converges as ε→ 0 when

γ < 2.

We denote these two measures by eγhd2z and e
γh̃
2 d2z.

The pictures in the slides show a picture of the random geometry in which each cell has approxi-
mately the same quantum area.

The d-dimensional Euclidean or quantum measure of planar fractal sets is characterized by scaling
properties.

If X ⊂ D ⊂ C, then the d-dimensional Euclidean fractal measure of X is multiplied by |b|2−2x, where
x is the Euclidean scaling weight, defined by d = 2− 2x.

If X is a fractal subset of a random surface S = (D,h) (where D is the domain in which the field
lives and h is the function described before, giving the area measure). The quantum fractal measure
of X is multiplied by |b|2−2∆, where ∆ is the quantum scaling weight.
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There is a conformal invariance of Liouville Quantum Gravity. If ψ : D → ψ(D) is a conformal
map, then

ψ(D,h) := (ψ(D), h ◦ψ−1 −Q log |ψ ′|,

where Q = γ/2+ 2/γ. This comes from a usual Lebesgue change of measure as well as a quantum
factor to the γ2/2.

The Knizhnik, Polyakov, Zamolodchikov (KPZ) relation

x = (γ2/4)∆2 + (1− γ2/4)∆

can equivalently be written
d = αQ− α2/2.

where α = γ(1 − ∆). This relation has several heuristic derivations due to various physicists, and
it was finally proved by Scott Sheffield and BD.

Couplings between the GFF and SLE have been described by Dubedat, Sheffield, and BD. We may
define the reverse SLE conformal map which sends z ∈ H to w ∈ H \ η. It satisfies a certain ODE,
and we think of it as “zipping up.”

We may define a process ht(z) associated with a point z in the upper half-plane which gives the
harmonic exposure of one side of the curve when viewed from z, plus Q log f ′t(z). This process is a
martingale for a particular choice of Q.

It turns out that the conditional law of h given ft is just another Gaussian free field in H \ η[0, t]
with appropriate boundary conditions. To see why this works, we can find the covariation of the
process ht(0) in terms of the free-boundary Green’s function on H. It turns out that

Gt(y, z) + 〈ht(y), ht(z)〉 = G0(y, z),

which motivates the equality in law of the GFF and the GFF obtained from first sampling SLE, as
stated previously. The pair (H, h̃ ◦ ft+ht) descries the same random surface as the pair (H \ηt, h).
Thus the usual transformation law for h gives us a way to understand the GFF/SLE coupling.

Similarly, the conditional law of eγh(z) given ft is equal in law to eγh(w)d2w (conformal invariance).

When γ ≤ 2, the KPZ prediction γ =
√
25−c−

√
1−c√

6
for the central charge of the SLE’s CFT coupled

to gravity. If γ > 2, we cannot construct LQG as we have done here. However, it can be constructed,
and the resulting area measure is singular (some points carry positive mass).

Conformal welding refers to gluing SLE paths together in a boundary length preserving way. Ex-
ponential martingales yield SLE quantum measures:

E[eαh|ft] = exp
(
αh−

α2

2
〈h〉t

)
.

The expected length of an infinite SLE η̃ in D is given by

ν(D) =

∫
D

G(z)d2z,
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where G(z) = |z|a|| Imb|2.

Quantum length is defined similarly. We set

νQ(D,h) :=

∫
D

eαh(z)G(z)d2z,

where α is chosen appropriately so that there are nice martingale properties. We can think of h
as having been “turned on,” i.e., the previous case is just this one with h ≡ 0. This value of α is√
κ/2. The exponential martingale allows us to study what happens as we “zip up” the boundary.

E[νQ(D,h)|ft] =
∫
D

Mα
t (z)G(z)d

2(z),

which is like the formula we had before but with an extra Mα
t (z) showing up.

Open problems:

Show that random planar graphs converge in the fine mesh limit to Liouville Quantum Gravity.
We could also consider gluing along several SLE paths at the same time, and we can also think
about duality, wherein we consider quantum bubbles/foam. Finally, and perhaps most famously,
we can ask about the relationship between geodesics and random metrics in the discrete setting
and corresponding limits in the continuum setting.

Question: What parametrization tools are used?

Answer: Only Vincent Beffara’s and a couple of different papers by Lawler and collaborators.

Question: If we could define this as a metric space, what would be the Hausdorff dimension?

Answer: When γ =
√
8/3, the dimension is 4.


