
Hausdorff dimension of the CLE gasket
Nike Sun

MSRI workshop on conformal invariance and statistical mechanics
Lecture notes, 3:30 pm, March 27, 2012

Notes taken by Samuel S Watson

For motivation, we discuss the O(n) loop model. Consider a finite hexagon graph with faces
colored black or white. We define a model for which a configuration ω has P(ω) = n`(ω)xe(ω). A
conformally invariant scaling limit is conjectured when x = xc = 1/

√
2+
√
2− n.

What should the limit of such a loop configuration be?

Well, if we take all black faces on one boundary arc and all white faces on the complement, then
we should get a chordal SLE(κ) curves.

The analogous construction with monochromatic boundary conditions is the conformal loop en-
semble, which is a random collection of non-crossing loops. The extreme values of κ for CLEκ are
8/3 and 8. The gasket is the set of all points surrounded by no loops.

Theorem 1. The Hausdorff dimension of the CLE gasket is given by

2−
(8− κ)(3κ− 8)

32κ
.

This theorem was proved in several parts, with the upper bound coming from one paper, and the
matching lower bounds come from two different papers with different techniques for different ranges
of κ.

The fractal dimension of each loop is 1 + κ
8 , so the gasket dimension has to be larger (and in fact

is strictly larger) than this expression.

We may define a discrete exploration process that traces out the loops in an O(n) model, targeted
toward a fixed point v in the graph. The analogous construction in the continuum setting is a
bit tricky because chordal SLE is not defined from a boundary point to the same boundary point.
To handle this, we introduce a coordinate change which gives us a “force point,” and makes our
exploration process an SLEκ(κ− 6). The angle θt between the driving function and the force point
evolves according to the SDE

dθt =
√
κdBt +

κ− 4

2
cot(θt/2)dt,

when θt is not at an integer multiple of 2π. We define the SLEκ(κ− 6) process using an instanta-
neously reflected version of this diffusion.

We can couple together a collection of these branching processes targeted at all the points in the
domain, and these processes agree until the first time at which their targets are separated. We use
this exploration tree to form the loops in our CLE loop model.
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CLEκ for κ ≤ 4 has an equivalent definition as the outer boundary of a Brownian loop soup
(Sheffield and Werner, 2010), and the SLEκ(κ − 6) processes are continuous curves (Miller and
Sheffield, 2012).

The probability that z is within ε of the gasket is asymptotic to εα, where α(κ) is the fraction
given in the original theorem statement. This gives an upper bound by a first-moment method.

For a lower bound, we use a Hausdorff dimension “black box” theorem which involves a second-
moment hypothesis. This hypothesis essentially asserts that two events Ez and Ew are correlated
down to scale |z−w| and independent for subsequent scales. This comes naturally if we have some
tree structure for our events.

The challenge is how to define the events Ejz, and how to obtain a tree structure. The key idea is to
use the clockwise loops rather than the counterclockwise loops (in the exploration tree) to define
the tree structure. The event E01 is that we reach e−β+∆ without forming a CCW loop around 0,
and then make a clockwise loop before reaching distance e−β. To estimate the probability of this,
we uniformize by gτ1 , where τ1 is the first time we hit e−(β−δ).

To estimate what happens in Stage 2, we consider some idealized curve going around the annulus,
and figure out that there’s a positive probability that the driving function stays near the driving
function corresponding to the idealized curve.

Finally, we need to show that there’s a positive probability that the loop is closed once it gets close
to being closed. This follows from Beurling estimates.


