Hausdorff dimension of the ${\rm CLE}$ gasket

Jason Miller Nike Sun David Wilson

Microsoft Research Stanford University

MSRI 27 March 2012

- **1** The O(n) model
- **2** Hausdorff dimension of the CLE gasket
- **3** Exploring a CLE
- 4 Ideas for the lower bound
- 5 An SLE estimate

2 Hausdorff dimension of the CLE gasket

3 Exploring a CLE

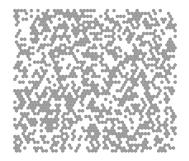
4 Ideas for the lower bound

5 An SLE estimate

G = (V, E) finite hexagon graph;

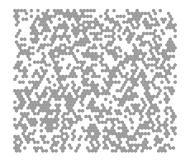
G = (V, E) finite hexagon graph; ω black-white coloring of faces:

G=(V,E) finite hexagon graph; ω black-white coloring of faces:



The ${\cal O}(n)$ model

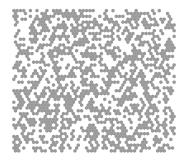
G = (V, E) finite hexagon graph; ω black-white coloring of faces:



Black-white boundaries form loop configuration (outside white)

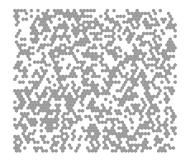
The ${\cal O}(n)$ model

G = (V, E) finite hexagon graph; ω black-white coloring of faces:



Black-white boundaries form loop configuration (outside white) O(n) model:

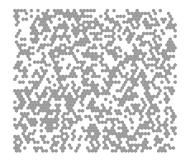
G = (V, E) finite hexagon graph; ω black-white coloring of faces:



Black-white boundaries form loop configuration (outside white) O(n) model: $\mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z$

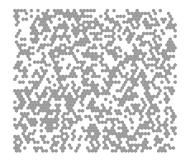
The ${\cal O}(n)$ model

G = (V, E) finite hexagon graph; ω black-white coloring of faces:



Black-white boundaries form loop configuration (outside white) O(n) model: $\mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)} / Z$ $\ell(\omega) =$ number of loops,

G = (V, E) finite hexagon graph; ω black-white coloring of faces:



Black-white boundaries form loop configuration (outside white) O(n) model: $\mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)} / Z$ $\ell(\omega) =$ number of loops, $e(\omega) =$ total length of loops

O(n) model: $\mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z$

O(n) model: $\mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z$ Critical point $x_c \equiv x_c(n) \equiv 1/\sqrt{2 + \sqrt{2 - n}}$ [Nienhuis PRL '82]

 $\begin{array}{l} O(n) \; \operatorname{model:} \; \mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)} / Z \\ \operatorname{Critical point} \; x_c \equiv x_c(n) \equiv 1 / \sqrt{2 + \sqrt{2 - n}} \; [\operatorname{Nienhuis PRL '82}] \\ - \; \operatorname{rigorously proved for} \; n = 0 \; (\mathsf{SAW}) \; [\operatorname{Duminil-Copin-Smirnov '10}] \end{array}$

 $\begin{array}{l} O(n) \; \operatorname{model:} \; \mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z \\ \operatorname{Critical point} \; x_c \equiv x_c(n) \equiv 1/\sqrt{2+\sqrt{2-n}} \; [\operatorname{Nienhuis PRL '82}] \\ - \; \operatorname{rigorously proved for} \; n = 0 \; (\mathsf{SAW}) \; [\operatorname{Duminil-Copin-Smirnov '10}] \\ \operatorname{Conformally invariant scaling limit conjectured for} \; x = x_c \; (\operatorname{dilute}), \\ \; x > x_c \; (\operatorname{dense}) \; [\operatorname{Kager-Nienhuis JSP '04}] \end{array}$

 $\begin{array}{l} O(n) \; \operatorname{model:} \; \mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z \\ \operatorname{Critical point} \; x_c \equiv x_c(n) \equiv 1/\sqrt{2+\sqrt{2-n}} \; [\operatorname{Nienhuis PRL '82}] \\ - \; \operatorname{rigorously proved for} \; n = 0 \; (\mathsf{SAW}) \; [\operatorname{Duminil-Copin-Smirnov '10}] \\ \operatorname{Conformally invariant scaling limit conjectured for} \; x = x_c \; (\operatorname{dilute}), \\ \; x > x_c \; (\operatorname{dense}) \; [\operatorname{Kager-Nienhuis JSP '04}] \end{array}$

FK model on \mathbb{Z}^2 at self-dual point $p=p_{\rm sd}(q)$ corresponds to fully packed loop configurations on medial lattice with weights $n^{\ell(\omega)}$ with $n=\sqrt{q}$

 $\begin{array}{l} O(n) \; \operatorname{model:} \; \mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z \\ \operatorname{Critical point} \; x_c \equiv x_c(n) \equiv 1/\sqrt{2+\sqrt{2-n}} \; [\operatorname{Nienhuis PRL '82}] \\ - \; \operatorname{rigorously proved for} \; n = 0 \; (\mathsf{SAW}) \; [\operatorname{Duminil-Copin-Smirnov '10}] \\ \operatorname{Conformally invariant scaling limit conjectured for} \; x = x_c \; (\operatorname{dilute}), \\ \; x > x_c \; (\operatorname{dense}) \; [\operatorname{Kager-Nienhuis JSP '04}] \end{array}$

FK model on \mathbb{Z}^2 at self-dual point $p = p_{sd}(q)$ corresponds to fully packed loop configurations on medial lattice with weights $n^{\ell(\omega)}$ with $n = \sqrt{q}$ — proved to be critical for $q \ge 1$ [Beffara-Duminil-Copin PTRF '11]

 $\begin{array}{l} O(n) \; \operatorname{model:} \; \mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z \\ \operatorname{Critical point} \; x_c \equiv x_c(n) \equiv 1/\sqrt{2+\sqrt{2-n}} \; [\operatorname{Nienhuis PRL '82}] \\ - \; \operatorname{rigorously proved for} \; n = 0 \; (\mathsf{SAW}) \; [\operatorname{Duminil-Copin-Smirnov '10}] \\ \operatorname{Conformally invariant scaling limit conjectured for} \; x = x_c \; (\operatorname{dilute}), \\ \; x > x_c \; (\operatorname{dense}) \; [\operatorname{Kager-Nienhuis JSP '04}] \end{array}$

FK model on \mathbb{Z}^2 at self-dual point $p = p_{sd}(q)$ corresponds to fully packed loop configurations on medial lattice with weights $n^{\ell(\omega)}$ with $n = \sqrt{q}$ — proved to be critical for $q \ge 1$ [Beffara-Duminil-Copin PTRF '11]

Conjectured to have same scaling limit as dense $O(n = \sqrt{q})$

 $\begin{array}{l} O(n) \; \operatorname{model:} \; \mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z \\ \operatorname{Critical point} \; x_c \equiv x_c(n) \equiv 1/\sqrt{2+\sqrt{2-n}} \; [\operatorname{Nienhuis PRL '82}] \\ - \; \operatorname{rigorously proved for} \; n = 0 \; (\mathsf{SAW}) \; [\operatorname{Duminil-Copin-Smirnov '10}] \\ \operatorname{Conformally invariant scaling limit conjectured for} \; x = x_c \; (\operatorname{dilute}), \\ \; x > x_c \; (\operatorname{dense}) \; [\operatorname{Kager-Nienhuis JSP '04}] \end{array}$

FK model on \mathbb{Z}^2 at self-dual point $p = p_{sd}(q)$ corresponds to fully packed loop configurations on medial lattice with weights $n^{\ell(\omega)}$ with $n = \sqrt{q}$ — proved to be critical for $q \ge 1$ [Beffara-Duminil-Copin PTRF '11] Conjectured to have same scaling limit as dense $O(n = \sqrt{q})$

Two natural questions:

 $\begin{array}{l} O(n) \; \operatorname{model:} \; \mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z \\ \operatorname{Critical point} \; x_c \equiv x_c(n) \equiv 1/\sqrt{2+\sqrt{2-n}} \; [\operatorname{Nienhuis PRL '82}] \\ - \; \operatorname{rigorously proved for} \; n = 0 \; (\mathsf{SAW}) \; [\operatorname{Duminil-Copin-Smirnov '10}] \\ \operatorname{Conformally invariant scaling limit conjectured for} \; x = x_c \; (\operatorname{dilute}), \\ \; x > x_c \; (\operatorname{dense}) \; [\operatorname{Kager-Nienhuis JSP '04}] \end{array}$

FK model on \mathbb{Z}^2 at self-dual point $p = p_{sd}(q)$ corresponds to fully packed loop configurations on medial lattice with weights $n^{\ell(\omega)}$ with $n = \sqrt{q}$ — proved to be critical for $q \ge 1$ [Beffara-Duminil-Copin PTRF '11] Conjectured to have same scaling limit as dense $O(n = \sqrt{q})$

Two natural questions: Sense of convergence?

 $\begin{array}{l} O(n) \; \operatorname{model:} \; \mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z \\ \operatorname{Critical point} \; x_c \equiv x_c(n) \equiv 1/\sqrt{2+\sqrt{2-n}} \; [\operatorname{Nienhuis PRL '82}] \\ - \; \operatorname{rigorously proved for} \; n = 0 \; (\mathsf{SAW}) \; [\operatorname{Duminil-Copin-Smirnov '10}] \\ \operatorname{Conformally invariant scaling limit conjectured for} \; x = x_c \; (\operatorname{dilute}), \\ \; x > x_c \; (\operatorname{dense}) \; [\operatorname{Kager-Nienhuis JSP '04}] \end{array}$

FK model on \mathbb{Z}^2 at self-dual point $p = p_{sd}(q)$ corresponds to fully packed loop configurations on medial lattice with weights $n^{\ell(\omega)}$ with $n = \sqrt{q}$ — proved to be critical for $q \ge 1$ [Beffara-Duminil-Copin PTRF '11] Conjectured to have same scaling limit as dense $O(n = \sqrt{q})$

Two natural questions: Sense of convergence? The limiting object?

 $\begin{array}{l} O(n) \; \operatorname{model:} \; \mathbb{P}(\omega) = n^{\ell(\omega)} x^{e(\omega)}/Z \\ \operatorname{Critical point} \; x_c \equiv x_c(n) \equiv 1/\sqrt{2+\sqrt{2-n}} \; [\operatorname{Nienhuis PRL '82}] \\ - \; \operatorname{rigorously proved for} \; n = 0 \; (\mathsf{SAW}) \; [\operatorname{Duminil-Copin-Smirnov '10}] \\ \operatorname{Conformally invariant scaling limit conjectured for} \; x = x_c \; (\operatorname{dilute}), \\ \; x > x_c \; (\operatorname{dense}) \; [\operatorname{Kager-Nienhuis JSP '04}] \end{array}$

FK model on \mathbb{Z}^2 at self-dual point $p = p_{sd}(q)$ corresponds to fully packed loop configurations on medial lattice with weights $n^{\ell(\omega)}$ with $n = \sqrt{q}$ — proved to be critical for $q \ge 1$ [Beffara-Duminil-Copin PTRF '11] Conjectured to have some scaling limit as dense $O(n = \sqrt{q})$

Conjectured to have same scaling limit as dense $O(n=\sqrt{q})$

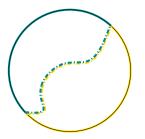
Two natural questions: Sense of convergence? The limiting object? (← this talk)

Chordal O(n) model:

O(n) model with Dobrushin boundary conditions

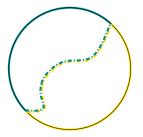
Chordal O(n) model:

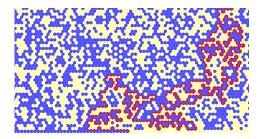
O(n) model with Dobrushin boundary conditions



Chordal O(n) model:

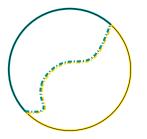
O(n) model with Dobrushin boundary conditions

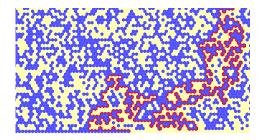




Chordal O(n) model:

O(n) model with Dobrushin boundary conditions

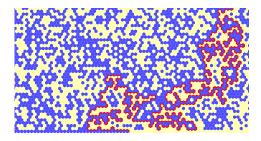




Has domain Markov property

Chordal O(n) model:

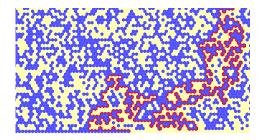
O(n) model with Dobrushin boundary conditions



Has domain Markov property

Chordal O(n) model:

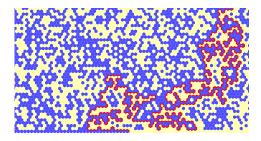
O(n) model with Dobrushin boundary conditions



Has domain Markov property

Chordal O(n) model:

O(n) model with Dobrushin boundary conditions



Has domain Markov property

Scaling limit of chordal arc should be **chordal** SLE_{κ}

Review of SLE

A short review of SLE:

[Schramm IJM '00]

A short review of SLE: [Schramm IJM '00] The chordal (radial) Schramm-Loewner evolution SLE_{κ} A short review of SLE: [Schramm IJM '00] The chordal (radial) Schramm-Loewner evolution SLE_{κ} is the random curve traveling $0 \rightsquigarrow \infty$ in $D = \overline{\mathbb{H}}$ ($1 \rightsquigarrow 0$ in $D = \overline{\mathbb{D}}$) A short review of SLE: [Schramm IJM '00] The chordal (radial) Schramm-Loewner evolution SLE_{κ} is the random curve traveling $0 \rightsquigarrow \infty$ in $D = \overline{\mathbb{H}} (1 \rightsquigarrow 0 \text{ in } D = \overline{\mathbb{D}})$ such that the conformal map $g_t : D \setminus \gamma[0, t] \rightarrow D$ satisfies the chordal (radial) Loewner differential equation A short review of SLE: [Schramm IJM '00] The chordal (radial) Schramm-Loewner evolution SLE_{κ} is the random curve traveling $0 \rightsquigarrow \infty$ in $D = \overline{\mathbb{H}} (1 \rightsquigarrow 0 \text{ in } D = \overline{\mathbb{D}})$ such that the conformal map $g_t : D \setminus \gamma[0, t] \rightarrow D$ satisfies the chordal (radial) Loewner differential equation

$$\dot{g}_t(z) = \frac{2}{g_t(z) - W_t} \quad \left(\dot{g}_t(z) = -g_t(z) \frac{g_t(z) + W_t}{g_t(z) - W_t} \right)$$

$$\dot{g}_t(z) = \frac{2}{g_t(z) - W_t} \quad \left(\dot{g}_t(z) = -g_t(z) \frac{g_t(z) + W_t}{g_t(z) - W_t} \right)$$

with driving function $W_t = g_t[\gamma(t)] \in \partial D$ given by $W_t = \sqrt{\kappa}B_t (W_t = \exp\{i\sqrt{\kappa}B_t\})$

$$\dot{g}_t(z) = \frac{2}{g_t(z) - W_t} \quad \left(\dot{g}_t(z) = -g_t(z) \frac{g_t(z) + W_t}{g_t(z) - W_t} \right)$$

with driving function $W_t = g_t[\gamma(t)] \in \partial D$ given by $W_t = \sqrt{\kappa}B_t \ (W_t = \exp\{i\sqrt{\kappa}B_t\})$

 ${\rm SLE}_{\kappa}$ is a curve: [RS Annals '05 ($\kappa \neq 8$), LSW AOP '04 ($\kappa = 8$)]

$$\dot{g}_t(z) = \frac{2}{g_t(z) - W_t} \quad \left(\dot{g}_t(z) = -g_t(z) \frac{g_t(z) + W_t}{g_t(z) - W_t} \right)$$
driving function $W_t = g_t[\gamma(t)] \in \partial D$ given by

with driving function $W_t = g_t[\gamma(t)] \in \partial D$ given by $W_t = \sqrt{\kappa}B_t \ (W_t = \exp\{i\sqrt{\kappa}B_t\})$ SLE_{κ} is a curve: [RS Annals '05 ($\kappa \neq 8$), LSW AOP '04 ($\kappa = 8$)]

 ${\rm SLE}_\kappa$ in general domains defined by conformal transformation

$$\dot{g}_t(z) = \frac{2}{g_t(z) - W_t} \quad \left(\dot{g}_t(z) = -g_t(z) \frac{g_t(z) + W_t}{g_t(z) - W_t} \right)$$

with driving function $W_t = g_t[\gamma(t)] \in \partial D$ given by $W_t = \sqrt{\kappa}B_t \ (W_t = \exp\{i\sqrt{\kappa}B_t\})$ SLE_{κ} is a curve: [RS Annals '05 ($\kappa \neq 8$), LSW AOP '04 ($\kappa = 8$)]

 SLE_{κ} in general domains defined by conformal transformation It is **characterized** by **conformal invariance**

$$\dot{g}_t(z) = \frac{2}{g_t(z) - W_t} \quad \left(\dot{g}_t(z) = -g_t(z) \frac{g_t(z) + W_t}{g_t(z) - W_t} \right)$$

with driving function $W_t = g_t[\gamma(t)] \in \partial D$ given by $W_t = \sqrt{\kappa}B_t \ (W_t = \exp\{i\sqrt{\kappa}B_t\})$ SLE_{κ} is a curve: [RS Annals '05 ($\kappa \neq 8$), LSW AOP '04 ($\kappa = 8$)]

 SLE_{κ} in general domains defined by conformal transformation It is characterized by conformal invariance and the domain Markov property

- **1** The O(n) model
- **2** Hausdorff dimension of the CLE gasket
- **3** Exploring a CLE
- 4 Ideas for the lower bound
- 5 An SLE estimate

1 The O(n) model

2 Hausdorff dimension of the CLE gasket

3 Exploring a CLE

4 Ideas for the lower bound

5 An SLE estimate

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket

Conformal loop ensembles

Conformal loop ensemble CLE_{κ} :

Conformal loop ensemble CLE_{κ} : a random ensemble of non-crossing loops

Conformal loop ensemble CLE_{κ} : a random ensemble of non-crossing loops whose law is conformally invariant

Conformal loop ensemble CLE_{κ} : a random ensemble of non-crossing loops whose law is conformally invariant

Canonical scaling limit of discrete loop ensembles

Conformal loop ensemble CLE_{κ} : a random ensemble of non-crossing loops whose law is conformally invariant

Canonical scaling limit of discrete loop ensembles Loops of ${\rm CLE}_\kappa$ look locally like ${\rm SLE}_\kappa$

Conformal loop ensemble CLE_{κ} : a random ensemble of non-crossing loops whose law is conformally invariant

Canonical scaling limit of discrete loop ensembles Loops of ${\rm CLE}_\kappa$ look locally like ${\rm SLE}_\kappa$ ${\rm CLE}_{8/3}$ is empty;

Conformal loop ensemble CLE_{κ} : a random ensemble of non-crossing loops whose law is conformally invariant

Canonical scaling limit of discrete loop ensembles Loops of CLE_{κ} look locally like SLE_{κ} $\text{CLE}_{8/3}$ is empty; CLE_8 is a single space-filling loop

Conformal loop ensemble CLE_{κ} : a random ensemble of non-crossing loops whose law is conformally invariant

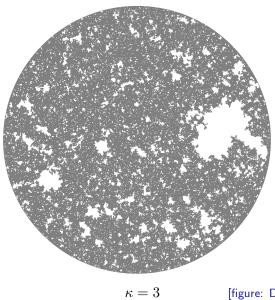
Canonical scaling limit of discrete loop ensembles Loops of CLE_{κ} look locally like SLE_{κ} $\text{CLE}_{8/3}$ is empty; CLE_8 is a single space-filling loop

We study the geometry of the CLE **gasket**:

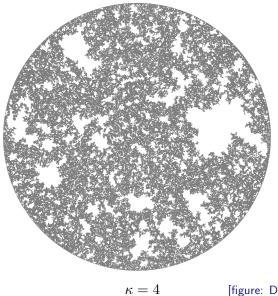
Conformal loop ensemble CLE_{κ} : a random ensemble of non-crossing loops whose law is conformally invariant

Canonical scaling limit of discrete loop ensembles Loops of CLE_{κ} look locally like SLE_{κ} $\text{CLE}_{8/3}$ is empty; CLE_8 is a single space-filling loop

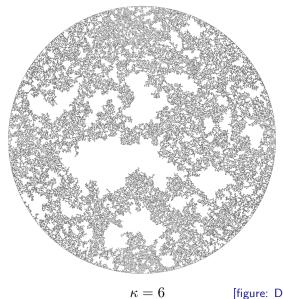
We study the geometry of the CLE **gasket**: the set of points not surrounded by any CLE loop



[figure: David Wilson]



[figure: David Wilson]



[figure: David Wilson]

Main theorem

Theorem (SSW '09, NW '11, MSW '12).

$$2-\frac{(8-\kappa)(3\kappa-8)}{32\kappa} \quad \text{for all } 8/3 \le \kappa \le 8.$$

$$2 - \frac{(8-\kappa)(3\kappa-8)}{32\kappa} \quad \text{for all } 8/3 \le \kappa \le 8.$$

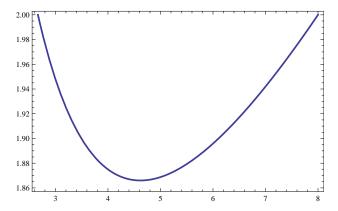
Schramm–Sheffield–Wilson [CMP '09]: upper bound

$$2 - \frac{(8-\kappa)(3\kappa-8)}{32\kappa} \quad \text{for all } 8/3 \le \kappa \le 8.$$

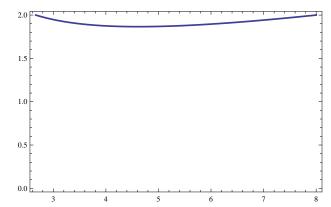
Schramm–Sheffield–Wilson [CMP '09]: upper bound
 Nacu–Werner [JLMS '11]: matching lower bound, κ ≤ 4

$$2-\frac{(8-\kappa)(3\kappa-8)}{32\kappa} \quad \text{for all } 8/3 \le \kappa \le 8.$$

- Schramm–Sheffield–Wilson [CMP '09]: upper bound
- Nacu–Werner [JLMS '11]: matching lower bound, $\kappa \leq 4$
- Miller–S.–Wilson: matching lower bound, $\kappa > 4$



Gasket dimension



On an absolute scale:

J. Miller, N. Sun, and D. Wilson

Related works

Related works

 $\dim_{\mathcal{H}}(\mathrm{SLE}_{\kappa} \text{ curve}) = (1 + \kappa/8) \wedge 2$

 $dim_{\mathcal{H}}(SLE_{\kappa} \text{ curve}) = (1 + \kappa/8) \land 2$ [Rohde–Schramm Annals '05] (upper bound)

O(n) model:

O(n) model: for $n \leq 2$, conjectured relation $n = -2\cos(4\pi/\kappa)$

O(n) model: for $n \le 2$, conjectured relation $n = -2\cos(4\pi/\kappa)$ $8/3 \le \kappa \le 4$ when $x = x_c$ (dilute phase),

O(n) model: for $n \le 2$, conjectured relation $n = -2\cos(4\pi/\kappa)$ $8/3 \le \kappa \le 4$ when $x = x_c$ (dilute phase), $4 \le \kappa \le 8$ when $x > x_c$ (dense phase)

O(n) model: for $n \le 2$, conjectured relation $n = -2\cos(4\pi/\kappa)$ $8/3 \le \kappa \le 4$ when $x = x_c$ (dilute phase), $4 \le \kappa \le 8$ when $x > x_c$ (dense phase) Critical FK expected to have same scaling limit as dense $O(n = \sqrt{q})$ [Saleur–Duplantier PRL '87, Rohde–Schramm Annals '05, Kager–Nienhuis JSP '04]

O(n) model: for $n \leq 2$, conjectured relation $n = -2\cos(4\pi/\kappa)$ $8/3 \leq \kappa \leq 4$ when $x = x_c$ (dilute phase), $4 \leq \kappa \leq 8$ when $x > x_c$ (dense phase) Critical FK expected to have same scaling limit as dense $O(n = \sqrt{q})$ [Saleur–Duplantier PRL '87, Rohde–Schramm Annals '05, Kager–Nienhuis JSP '04]

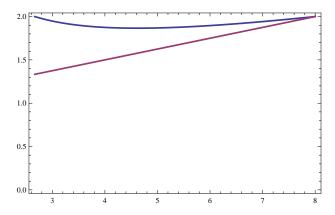
Prediction of $\dim_{\mathcal{H}}[O(n) \text{ gasket}]$ by Duplantier [PRL '90] with above $n \leftrightarrow \kappa$ correspondence gave first prediction of $\dim_{\mathcal{H}}[CLE_{\kappa} \text{ gasket}]$

O(n) model: for $n \leq 2$, conjectured relation $n = -2\cos(4\pi/\kappa)$ $8/3 \leq \kappa \leq 4$ when $x = x_c$ (dilute phase), $4 \leq \kappa \leq 8$ when $x > x_c$ (dense phase) Critical FK expected to have same scaling limit as dense $O(n = \sqrt{q})$ [Saleur–Duplantier PRL '87, Rohde–Schramm Annals '05, Kager–Nienhuis JSP '04]

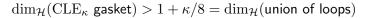
Prediction of $\dim_{\mathcal{H}}[O(n) \text{ gasket}]$ by Duplantier [PRL '90] with above $n \leftrightarrow \kappa$ correspondence gave first prediction of $\dim_{\mathcal{H}}[CLE_{\kappa} \text{ gasket}]$ — confirmed by theorem

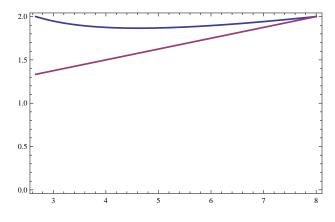
Gasket dimension

 $\dim_{\mathcal{H}}(CLE_{\kappa} \text{ gasket}) > 1 + \kappa/8 = \dim_{\mathcal{H}}(\text{union of loops})$



Gasket dimension





In fact, gasket is also closure of union of loops for $\kappa > 8/3$

- **1** The O(n) model
- **2** Hausdorff dimension of the CLE gasket
- **3** Exploring a CLE
- 4 Ideas for the lower bound
- 5 An SLE estimate

1 The O(n) model

2 Hausdorff dimension of the CLE gasket

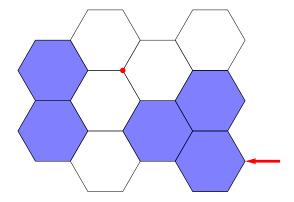
3 Exploring a CLE

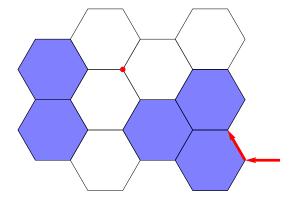
4 Ideas for the lower bound

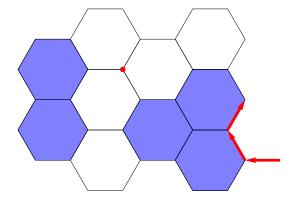
5 An SLE estimate

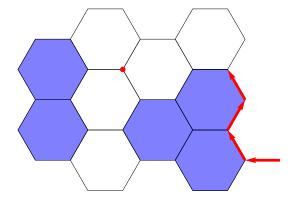
J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket

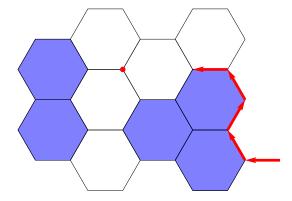
Exploration path P_v towards v:

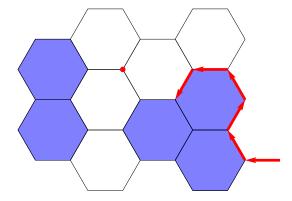


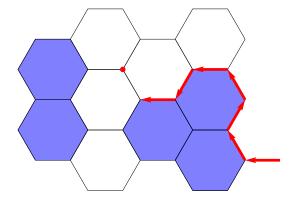


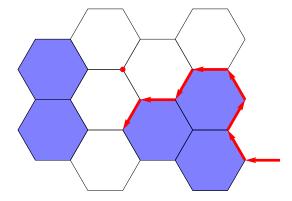


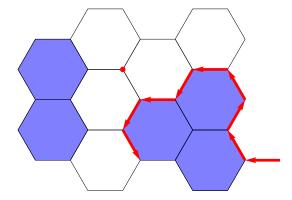




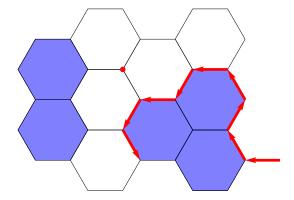








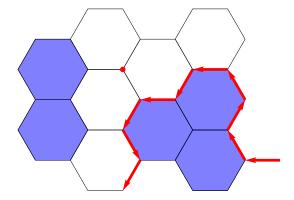
Exploration path P_v towards v: follow the interface



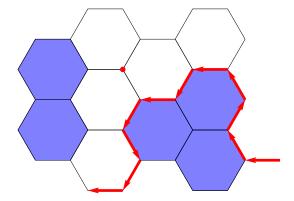
unless next vertex would be disconnected from v by path so far

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket

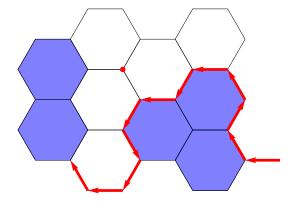
Exploration path P_v towards v: follow the interface



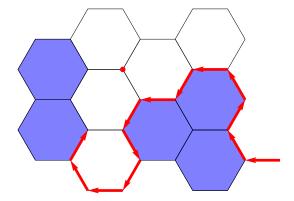
Exploration path P_v towards v: follow the interface



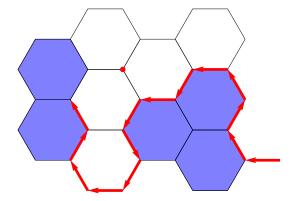
Exploration path P_v towards v: follow the interface



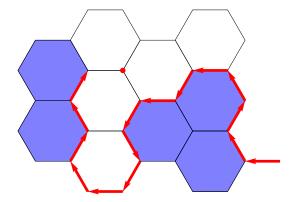
Exploration path P_v towards v: follow the interface



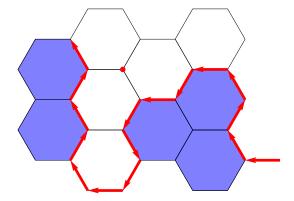
Exploration path P_v towards v: follow the interface



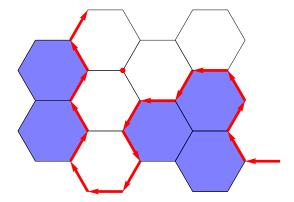
Exploration path P_v towards v: follow the interface



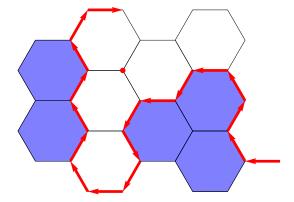
Exploration path P_v towards v: follow the interface



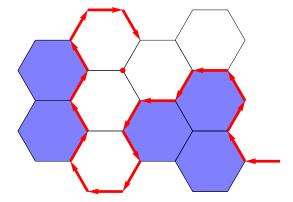
Exploration path P_v towards v: follow the interface



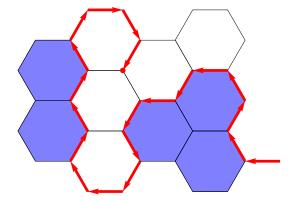
Exploration path P_v towards v: follow the interface



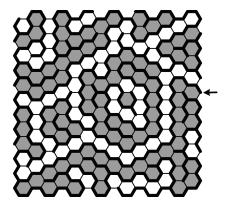
Exploration path P_v towards v: follow the interface



Exploration path P_v towards v: follow the interface



Exploration path P_v towards v: follow the interface

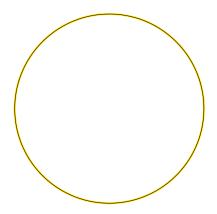


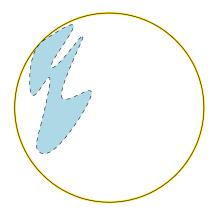
unless next vertex would be disconnected from v by path so far in which case turn the other way Union of all P_v is **exploration tree** [Sheffield Duke '09]

J. Miller, N. Sun, and D. Wilson

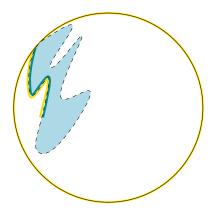
Hausdorff dimension of the ${\rm CLE}$ gasket

10/35

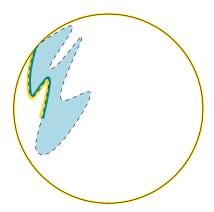




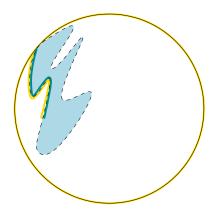
Suppose have already explored part of cluster boundary:



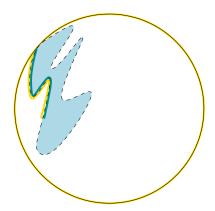
Suppose have already explored part of cluster boundary:



Suppose have already explored part of cluster boundary: Law of remaining configuration is simply **chordal** O(n) model



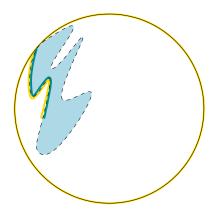
Suppose have already explored part of cluster boundary: Law of remaining configuration is simply **chordal** O(n) model Limit: chordal SLE_{κ} from tip wto original starting point o



Suppose have already explored part of cluster boundary: Law of remaining configuration is simply **chordal** O(n) model Limit: chordal SLE_{κ} from tip wto original starting point o

But how to start the loop?

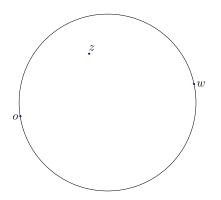
A branch of the exploration tree



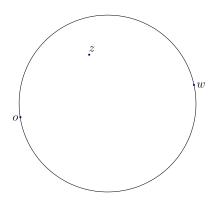
Suppose have already explored part of cluster boundary: Law of remaining configuration is simply **chordal** O(n) model Limit: chordal SLE_{κ} from tip wto original starting point o

But how to start the loop? Chordal SLE_{κ} from *o* to *o*?

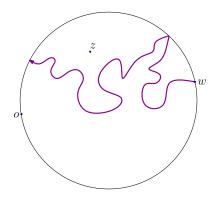
A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ $(w \neq o)$ (driving function $W'_t \in \partial \mathbb{H}$)



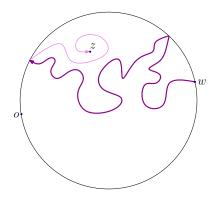
A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ $(w \neq o)$ (driving function $W'_t \in \partial \mathbb{H}$) can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$, (driving function $W_t \in \partial \mathbb{D}$)



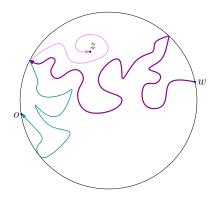
A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ $(w \neq o)$ (driving function $W'_t \in \partial \mathbb{H}$) can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$, (driving function $W_t \in \partial \mathbb{D}$)



A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ $(w \neq o)$ (driving function $W'_t \in \partial \mathbb{H}$) can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$, (driving function $W_t \in \partial \mathbb{D}$)



A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ $(w \neq o)$ (driving function $W'_t \in \partial \mathbb{H}$) can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$, (driving function $W_t \in \partial \mathbb{D}$)



A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ ($w \neq o$) (driving function $W'_t \in \partial \mathbb{H}$)

can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$,

(driving function $W_t \in \partial \mathbb{D}$)

A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ ($w \neq o$) (driving function $W'_t \in \partial \mathbb{H}$)

can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$,

(driving function $W_t \in \partial \mathbb{D}$)

up to the first time the curve disconnects w from z

Assume z = 0:

A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ ($w \neq o$) (driving function $W'_t \in \partial \mathbb{H}$)

can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$, (driving function $W_t \in \partial \mathbb{D}$)

up to the first time the curve disconnects w from z

Assume z = 0: if $W'_t = \sqrt{\kappa}B_t$ (chordal SLE_{κ}),

A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ $(w \neq o)$ (driving function $W'_t \in \partial \mathbb{H}$)

can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$, (driving function $W_t \in \partial \mathbb{D}$)

up to the first time the curve disconnects \boldsymbol{w} from \boldsymbol{z}

Assume z = 0: if $W'_t = \sqrt{\kappa}B_t$ (chordal SLE_{κ}), $\arg W_t$ turns out to be BM with drift depending on $O_t \equiv g_t(o)$ (the force point):

A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ $(w \neq o)$ (driving function $W'_t \in \partial \mathbb{H}$) can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$, (driving function $W_t \in \partial \mathbb{D}$)

up to the first time the curve disconnects w from z

Assume z = 0: if $W'_t = \sqrt{\kappa}B_t$ (chordal SLE_{κ}), arg W_t turns out to be BM with drift depending on $O_t \equiv g_t(o)$ (the force point):

$$d[\arg W_t] = \sqrt{\kappa} \ dB_t + \frac{\kappa - 6}{2} \cot\left(\frac{\arg W_t - \arg O_t}{2}\right) \ dt$$

A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ $(w \neq o)$ (driving function $W'_t \in \partial \mathbb{H}$) can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$, (driving function $W_t \in \partial \mathbb{D}$)

up to the first time the curve disconnects w from z

Assume z = 0: if $W'_t = \sqrt{\kappa}B_t$ (chordal SLE_{κ}), $\arg W_t$ turns out to be BM with drift depending on $O_t \equiv g_t(o)$ (the force point):

$$d[\arg W_t] = \sqrt{\kappa} \ dB_t + \frac{\kappa - 6}{2} \cot\left(\frac{\arg W_t - \arg O_t}{2}\right) \ dt \quad (\bigstar)$$

(\bigstar) defines radial SLE_{κ}(κ - 6) with starting configuration (w, o) [Schramm–Wilson NYJM '05]

A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ $(w \neq o)$ (driving function $W'_t \in \partial \mathbb{H}$) can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$, (driving function $W_t \in \partial \mathbb{D}$)

up to the first time the curve disconnects w from z

Assume z = 0: if $W'_t = \sqrt{\kappa}B_t$ (chordal SLE_{κ}), arg W_t turns out to be BM with drift depending on $O_t \equiv g_t(o)$ (the force point):

$$d[\arg W_t] = \sqrt{\kappa} \ dB_t + \frac{\kappa - 6}{2} \cot\left(\frac{\arg W_t - \arg O_t}{2}\right) \ dt \quad (\bigstar)$$

(\bigstar) defines radial SLE_{κ}($\kappa - 6$) with starting configuration (w, o) [Schramm-Wilson NYJM '05]

 $\theta_t \equiv \arg W_t - \arg O_t$

A chordal Loewner evolution in \mathbb{D} from $w \in \partial \mathbb{D}$ to $o \in \partial \mathbb{D}$ $(w \neq o)$ (driving function $W'_t \in \partial \mathbb{H}$) can also be viewed as a radial Loewner evolution from w to $z \in \mathbb{D}$, (driving function $W_t \in \partial \mathbb{D}$)

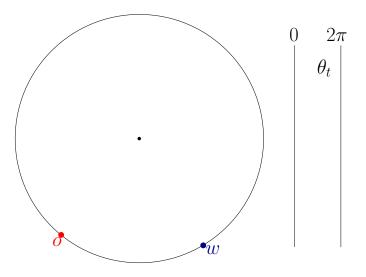
up to the first time the curve disconnects w from z

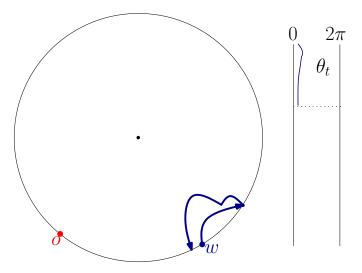
Assume z = 0: if $W'_t = \sqrt{\kappa}B_t$ (chordal SLE_{κ}), arg W_t turns out to be BM with drift depending on $O_t \equiv g_t(o)$ (the force point):

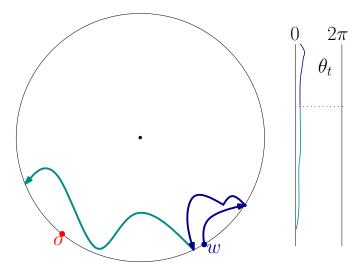
$$d[\arg W_t] = \sqrt{\kappa} \ dB_t + \frac{\kappa - 6}{2} \cot\left(\frac{\arg W_t - \arg O_t}{2}\right) \ dt \quad (\bigstar)$$

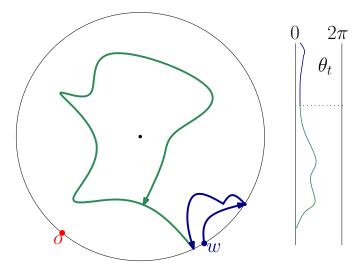
(★) defines radial $SLE_{\kappa}(\kappa - 6)$ with starting configuration (w, o)[Schramm–Wilson NYJM '05]

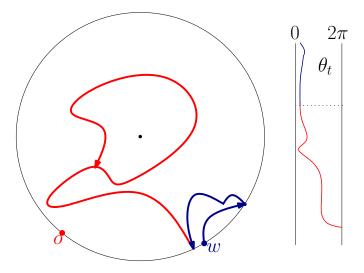
 $\frac{\theta_t}{\theta_t} \equiv \arg W_t - \arg O_t$ = 2π times probability BM started from 0 hits between o and $\gamma(t)$



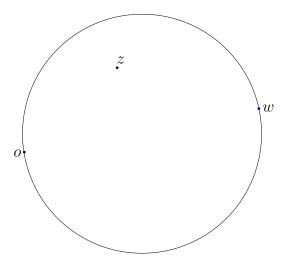




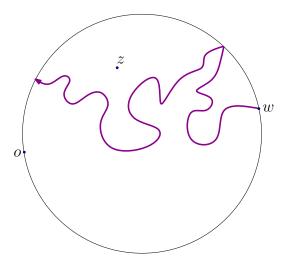




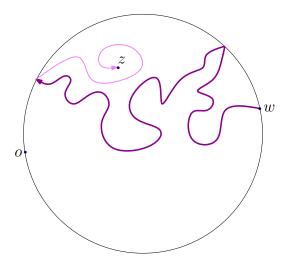
Chordal SLE_{κ} $w \rightsquigarrow o$ and radial SLE_{κ} $(\kappa - 6)$ $w \rightsquigarrow z$ started from (w, o) coupled up to first disconnection time of o and z:



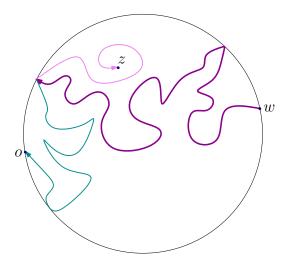
Chordal $SLE_{\kappa} w \rightsquigarrow o$ and radial $SLE_{\kappa}(\kappa - 6) w \rightsquigarrow z$ started from (w, o) coupled up to first disconnection time of o and z:



Chordal $SLE_{\kappa} w \rightsquigarrow o$ and radial $SLE_{\kappa}(\kappa - 6) w \rightsquigarrow z$ started from (w, o) coupled up to first disconnection time of o and z:



Chordal $SLE_{\kappa} w \rightsquigarrow o$ and radial $SLE_{\kappa}(\kappa - 6) w \rightsquigarrow z$ started from (w, o) coupled up to first disconnection time of o and z:



To start the loop exploration process, need to define $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \equiv \arg W_t - \arg O_t \in \{0, 2\pi\}$:

To start the loop exploration process, need to define $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \equiv \arg W_t - \arg O_t \in \{0, 2\pi\}$:

$$d\theta_t = \sqrt{\kappa} \ dB_t + \frac{\kappa - 4}{2} \cot(\theta_t/2) \ dt$$

To start the loop exploration process, need to define $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \equiv \arg W_t - \arg O_t \in \{0, 2\pi\}$:

$$d\theta_t = \sqrt{\kappa} \ dB_t + \frac{\kappa - 4}{2} \cot(\theta_t/2) \ dt$$

SDE for $\theta/\sqrt{\kappa}$ has BES^{δ} singularity near points in $2\pi\mathbb{Z}$, with $1 < \delta < 2$ for $4 < \kappa < 8$

To start the loop exploration process, need to define $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \equiv \arg W_t - \arg O_t \in \{0, 2\pi\}$:

$$d\theta_t = \sqrt{\kappa} \ dB_t + \frac{\kappa - 4}{2} \cot(\theta_t/2) \ dt$$

SDE for $\theta/\sqrt{\kappa}$ has BES^{δ} singularity near points in $2\pi\mathbb{Z}$, with $1 < \delta < 2$ for $4 < \kappa < 8$ Continuing after hitting $2\pi\mathbb{Z}$ analogous to continuing BES^{δ} process after hitting 0 — limit of "jumping ϵ -BES^{δ} process"

To start the loop exploration process, need to define $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \equiv \arg W_t - \arg O_t \in \{0, 2\pi\}$:

$$d\theta_t = \sqrt{\kappa} \ dB_t + \frac{\kappa - 4}{2} \cot(\theta_t/2) \ dt$$

SDE for $\theta/\sqrt{\kappa}$ has BES^{δ} singularity near points in $2\pi\mathbb{Z}$, with $1 < \delta < 2$ for $4 < \kappa < 8$ Continuing after hitting $2\pi\mathbb{Z}$ analogous to continuing BES^{δ} process after hitting 0 — limit of "jumping ϵ -BES^{δ} process"

To define radial $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \in \{0, 2\pi\}$:

To start the loop exploration process, need to define $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \equiv \arg W_t - \arg O_t \in \{0, 2\pi\}$:

$$d\theta_t = \sqrt{\kappa} \ dB_t + \frac{\kappa - 4}{2} \cot(\theta_t/2) \ dt$$

SDE for $\theta/\sqrt{\kappa}$ has BES^{δ} singularity near points in $2\pi\mathbb{Z}$, with $1 < \delta < 2$ for $4 < \kappa < 8$ Continuing after hitting $2\pi\mathbb{Z}$ analogous to continuing BES^{δ} process after hitting 0 — limit of "jumping ϵ -BES^{δ} process"

To define radial $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \in \{0, 2\pi\}$: define θ_t to be the unique process with values in $[0, 2\pi]$

To start the loop exploration process, need to define $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \equiv \arg W_t - \arg O_t \in \{0, 2\pi\}$:

$$d\theta_t = \sqrt{\kappa} \ dB_t + \frac{\kappa - 4}{2} \cot(\theta_t/2) \ dt \quad (\bigstar)$$

SDE for $\theta/\sqrt{\kappa}$ has BES^{δ} singularity near points in $2\pi\mathbb{Z}$, with $1 < \delta < 2$ for $4 < \kappa < 8$ Continuing after hitting $2\pi\mathbb{Z}$ analogous to continuing BES^{δ} process after hitting 0 — limit of "jumping ϵ -BES^{δ} process"

To define radial $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \in \{0, 2\pi\}$: define θ_t to be the unique process with values in $[0, 2\pi]$ which satisfies SDE (\bigstar) when $\theta_t \notin \{0, 2\pi\}$,

To start the loop exploration process, need to define $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \equiv \arg W_t - \arg O_t \in \{0, 2\pi\}$:

$$d\theta_t = \sqrt{\kappa} \ dB_t + \frac{\kappa - 4}{2} \cot(\theta_t/2) \ dt \quad (\bigstar)$$

SDE for $\theta/\sqrt{\kappa}$ has BES^{δ} singularity near points in $2\pi\mathbb{Z}$, with $1 < \delta < 2$ for $4 < \kappa < 8$ Continuing after hitting $2\pi\mathbb{Z}$ analogous to continuing BES^{δ} process after hitting 0 — limit of "jumping ϵ -BES^{δ} process"

To define radial $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \in \{0, 2\pi\}$: define θ_t to be the unique process with values in $[0, 2\pi]$ which satisfies SDE (\bigstar) when $\theta_t \notin \{0, 2\pi\}$, and is instantaneously reflecting at the endpoints

To start the loop exploration process, need to define $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \equiv \arg W_t - \arg O_t \in \{0, 2\pi\}$:

$$d\theta_t = \sqrt{\kappa} \ dB_t + \frac{\kappa - 4}{2} \cot(\theta_t/2) \ dt \quad (\bigstar)$$

SDE for $\theta/\sqrt{\kappa}$ has BES^{δ} singularity near points in $2\pi\mathbb{Z}$, with $1 < \delta < 2$ for $4 < \kappa < 8$ Continuing after hitting $2\pi\mathbb{Z}$ analogous to continuing BES^{δ} process after hitting 0 — limit of "jumping ϵ -BES^{δ} process"

To define radial $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \in \{0, 2\pi\}$: define θ_t to be the unique process with values in $[0, 2\pi]$ which satisfies SDE (\bigstar) when $\theta_t \notin \{0, 2\pi\}$, and is instantaneously reflecting at the endpoints

 $\theta_t = 0 \ (\theta_t = 2\pi)$

To start the loop exploration process, need to define $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \equiv \arg W_t - \arg O_t \in \{0, 2\pi\}$:

$$d\theta_t = \sqrt{\kappa} \ dB_t + \frac{\kappa - 4}{2} \cot(\theta_t/2) \ dt \quad (\bigstar)$$

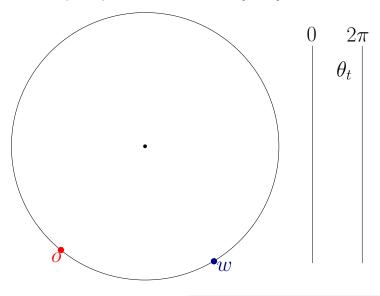
SDE for $\theta/\sqrt{\kappa}$ has BES^{δ} singularity near points in $2\pi\mathbb{Z}$, with $1 < \delta < 2$ for $4 < \kappa < 8$ Continuing after hitting $2\pi\mathbb{Z}$ analogous to continuing BES^{δ} process after hitting 0 — limit of "jumping ϵ - BES^{δ} process"

To define radial $SLE_{\kappa}(\kappa - 6)$ after times $\theta_t \in \{0, 2\pi\}$: define θ_t to be the unique process with values in $[0, 2\pi]$ which satisfies SDE (\bigstar) when $\theta_t \notin \{0, 2\pi\}$, and is instantaneously reflecting at the endpoints

$$\theta_t = 0 \ (\theta_t = 2\pi) \iff \arg O_t = (\arg W_t)^- \ (\arg O_t = (\arg W_t)^+)$$

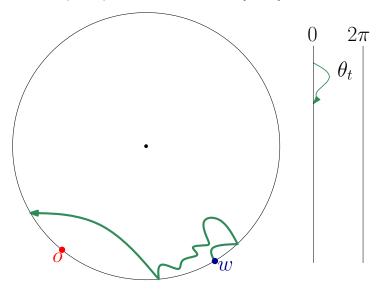
Radial $SLE_{\kappa}(\kappa - 6)$ continued

Radial $SLE_{\kappa}(\kappa - 6)$ continued after $\theta_t \in \{0, 2\pi\}$:



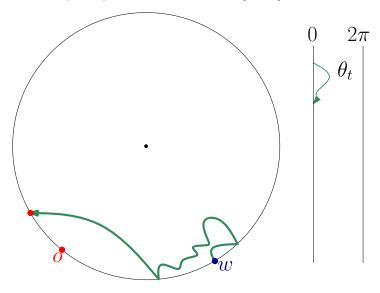
Radial $SLE_{\kappa}(\kappa - 6)$ continued

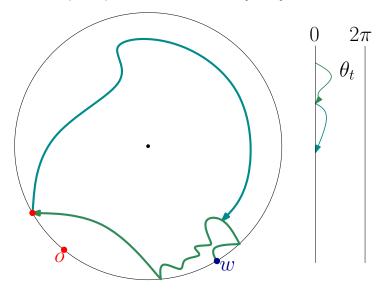
Radial $SLE_{\kappa}(\kappa - 6)$ continued after $\theta_t \in \{0, 2\pi\}$:

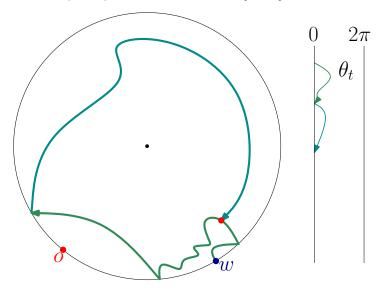


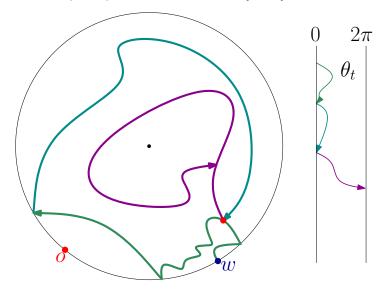
Radial $SLE_{\kappa}(\kappa - 6)$ continued

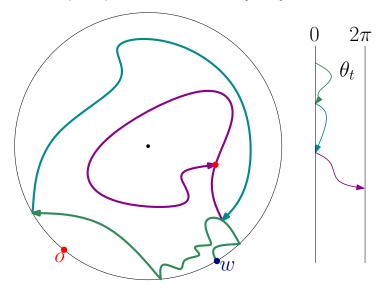
Radial $SLE_{\kappa}(\kappa - 6)$ continued after $\theta_t \in \{0, 2\pi\}$:

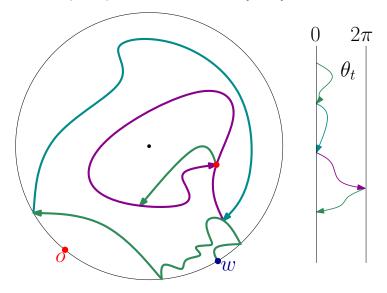


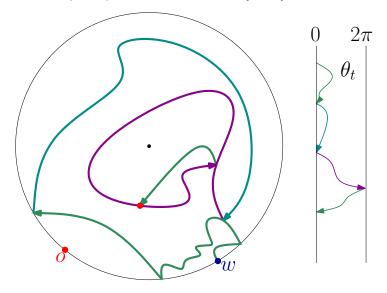


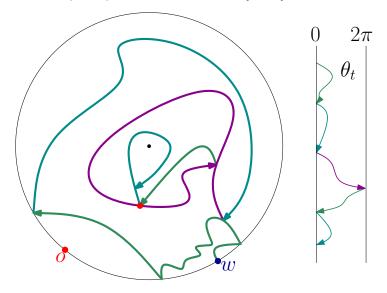


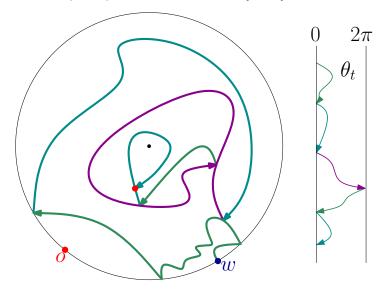












Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to z

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at o

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from o

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $\operatorname{SLE}_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal $\operatorname{SLE}_{\kappa}$ targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a branching ${\rm SLE}_\kappa(\kappa-6)$

- analogue of the discrete exploration tree

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $\operatorname{SLE}_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal $\operatorname{SLE}_{\kappa}$ targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a branching $SLE_{\kappa}(\kappa-6)$

- analogue of the discrete exploration tree

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** SLE_{κ}($\kappa - 6$) — analogue of the discrete exploration tree

branching SLE₆ [figure: Jason Miller]

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** SLE_{κ}($\kappa - 6$) — analogue of the discrete exploration tree

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $\operatorname{SLE}_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal $\operatorname{SLE}_{\kappa}$ targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** SLE_{κ}($\kappa - 6$) — analogue of the discrete exploration tree

branching SLE₆ [figure: Jason Miller]

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** SLE_{κ}($\kappa - 6$) — analogue of the discrete exploration tree

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

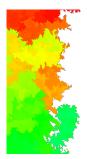
Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching SLE₆ [figure: Jason Miller]

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree



Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching SLE₆ [figure: Jason Miller]

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching SLE₆ [figure: Jason Miller]

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching SLE₆ [figure: Jason Miller]

J. Miller, N. Sun, and D. Wilson

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching SLE₆ [figure: Jason Miller]

J. Miller, N. Sun, and D. Wilson

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching SLE₆ [figure: Jason Miller]

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching SLE₆ [figure: Jason Miller]

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching SLE_6 [figure: Jason Miller]

J. Miller, N. Sun, and D. Wilson

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching SLE_6 [figure: Jason Miller]

J. Miller, N. Sun, and D. Wilson

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching SLE_6 [figure: Jason Miller]

J. Miller, N. Sun, and D. Wilson

Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

Branching $SLE_{\kappa}(\kappa - 6)$

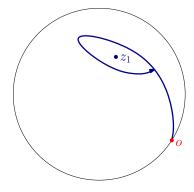
Fix root $o \in \partial \mathbb{D}$; let η^z be radial $SLE_{\kappa}(\kappa - 6)$ from o to zWhen away from o, η^z behaves like chordal SLE_{κ} targeted at ountil first time τ^z that z is disconnected from oCan couple η^z, η^w to agree until first time η^z disconnects z from w

All the η^z together form a **branching** $SLE_{\kappa}(\kappa - 6)$ — analogue of the discrete exploration tree

branching ${\rm SLE}_6$ [figure: Jason Miller]

Exploring the first CLE loop

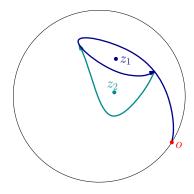
Run η^{z_1} to first time τ^{z_1} that z_1 is disconnected from o



Exploring the first CLE loop

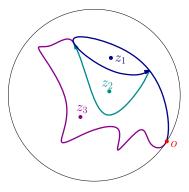
Run η^{z_1} to first time τ^{z_1} that z_1 is disconnected from o

Choose new target z_2 , run η^{z_2} until τ^{z_2}



Choose new target z_2 , run η^{z_2} until τ^{z_2}

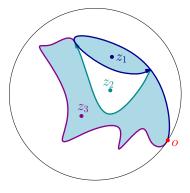
Continue until for some target z_k , η^{z_k} returns to root o:



Choose new target z_2 , run η^{z_2} until τ^{z_2}

Continue until for some target z_k , η^{z_k} returns to root o:

```
\eta^{z_k} is the full CLE loop:
necessarily ccw, pinned at o
```

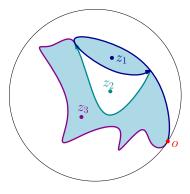


Choose new target z_2 , run η^{z_2} until τ^{z_2}

Continue until for some target z_k , η^{z_k} returns to root o:

```
\eta^{z_k} is the full CLE loop:
necessarily ccw, pinned at o
```

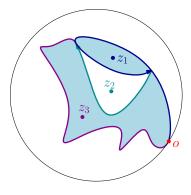
Exploring the full loop ensemble:



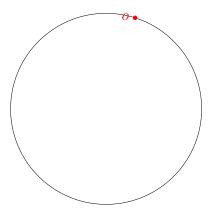
Choose new target z_2 , run η^{z_2} until τ^{z_2}

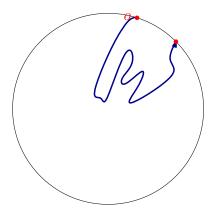
Continue until for some target z_k , η^{z_k} returns to root o:

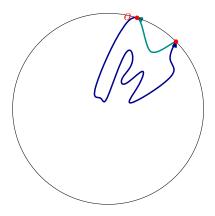
```
\eta^{z_k} is the full CLE loop:
necessarily ccw, pinned at o
```

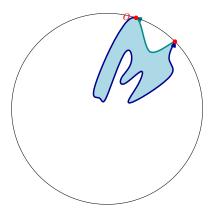


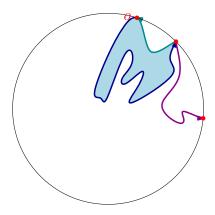
Exploring the full loop ensemble:

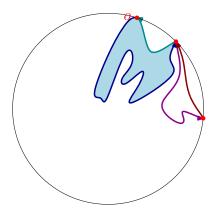


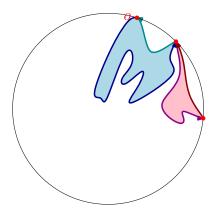




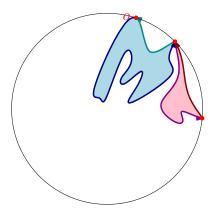






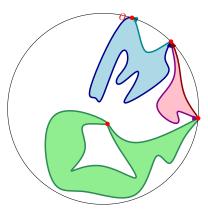


Whenever force point for η^z jumps, becomes base for new loop



 CLE loops can be detached from the boundary:

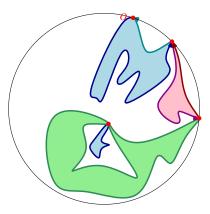
Whenever force point for η^z jumps, becomes base for new loop



CLE loops can be detached from the boundary: pinned to $_{\rm CW}$ loops in exploration

J. Miller, N. Sun, and D. Wilson

Whenever force point for η^z jumps, becomes base for new loop



CLE loops can be detached from the boundary: pinned to $_{\rm CW}$ loops in exploration

J. Miller, N. Sun, and D. Wilson

Remarks

Conjecture: SLE_{κ}(κ - 6) processes (4 < κ < 8) are generated by curves with reversible law

Conjecture: $SLE_{\kappa}(\kappa - 6)$ processes $(4 < \kappa < 8)$ are generated by curves with reversible law — implies CLE_{κ} loops are continuous with law independent of choice of root [Sheffield Duke '09]

Conjecture proved by works of Miller-Sheffield '12

- **1** The O(n) model
- **2** Hausdorff dimension of the CLE gasket
- **3** Exploring a CLE
- 4 Ideas for the lower bound
- 5 An SLE estimate

1 The O(n) model

2 Hausdorff dimension of the CLE gasket

3 Exploring a CLE

4 Ideas for the lower bound

5 An SLE estimate

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket

Dimension upper bound

Hausdorff dimension upper bounds are typically obtained by first moment estimates,

In the case of the gasket Γ :

[SSW CMP '09]

In the case of the gasket Γ :

[SSW CMP '09]

$$\mathbb{P}(\operatorname{dist}(z,\Gamma) < \epsilon) \asymp \left(\frac{\epsilon}{1-|z|}\right)^{\alpha}, \quad \alpha \equiv \frac{(8-\kappa)(3\kappa-8)}{32\kappa}$$

In the case of the gasket Γ :

[SSW CMP '09]

$$\mathbb{P}(\operatorname{dist}(z,\Gamma) < \epsilon) \asymp \left(\frac{\epsilon}{1-|z|}\right)^{\alpha}, \quad \alpha \equiv \frac{(8-\kappa)(3\kappa-8)}{32\kappa}$$

This gives the **expectation dimension** of Γ

In the case of the gasket Γ :

[SSW CMP '09]

$$\mathbb{P}(\operatorname{dist}(z,\Gamma) < \epsilon) \asymp \left(\frac{\epsilon}{1-|z|}\right)^{\alpha}, \quad \alpha \equiv \frac{(8-\kappa)(3\kappa-8)}{32\kappa}$$

This gives the **expectation dimension** of Γ

 \geq Minkowski dimension of Γ

In the case of the gasket Γ :

[SSW CMP '09]

$$\mathbb{P}(\operatorname{dist}(z,\Gamma) < \epsilon) \asymp \left(\frac{\epsilon}{1-|z|}\right)^{\alpha}, \quad \alpha \equiv \frac{(8-\kappa)(3\kappa-8)}{32\kappa}$$

This gives the **expectation dimension** of Γ

- \geq Minkowski dimension of Γ
- \geq Hausdorff dimension of Γ

Dimension lower bound

Hausdorff dimension lower bounds are typically obtained by second moment estimates,

Proposition.

Proposition. Random set $S \subseteq \mathbb{D}$,

Dimension lower bound

Hausdorff dimension lower bounds are typically obtained by second moment estimates, e.g. lower bound for SLE_{κ} [Beffara AOP '08]

Proposition. Random set $S \subseteq \mathbb{D}$, $S^n \equiv {\text{dist}(z, S) < e^{-\beta n}}$.

Proposition. Random set $S \subseteq \mathbb{D}$, $S^n \equiv {\text{dist}(z, S) < e^{-\beta n}}$. If for all $z, w \in \mathbb{D}/2$ we have

Dimension lower bound

Hausdorff dimension lower bounds are typically obtained by second moment estimates, e.g. lower bound for SLE_{κ} [Beffara AOP '08]

Proposition. Random set $S \subseteq \mathbb{D}$, $S^n \equiv {\text{dist}(z, S) < e^{-\beta n}}$. If for all $z, w \in \mathbb{D}/2$ we have

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar),$$

Dimension lower bound

Hausdorff dimension lower bounds are typically obtained by second moment estimates, e.g. lower bound for SLE_{κ} [Beffara AOP '08]

Proposition. Random set $S \subseteq \mathbb{D}$, $S^n \equiv {\text{dist}(z, S) < e^{-\beta n}}$. If for all $z, w \in \mathbb{D}/2$ we have

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar)$$

then $\dim_{\mathcal{H}}(S) \geq 2 - s$ with positive probability.

Proposition. Random set $S \subseteq \mathbb{D}$, $S^n \equiv {\text{dist}(z, S) < e^{-\beta n}}$. If for all $z, w \in \mathbb{D}/2$ we have

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar),$$

then $\dim_{\mathcal{H}}(S) \ge 2 - s$ with positive probability. [positive probability to probability one by zero-one argument]

Proposition. Random set $S \subseteq \mathbb{D}$, $S^n \equiv {\text{dist}(z, S) < e^{-\beta n}}$. If for all $z, w \in \mathbb{D}/2$ we have

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar),$$

then $\dim_{\mathcal{H}}(S) \ge 2 - s$ with positive probability. [positive probability to probability one by zero-one argument]

We prove the dimension lower bound on the CLE gasket

Proposition. Random set $S \subseteq \mathbb{D}$, $S^n \equiv {\text{dist}(z, S) < e^{-\beta n}}$. If for all $z, w \in \mathbb{D}/2$ we have

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar)$$

then $\dim_{\mathcal{H}}(S) \ge 2 - s$ with positive probability. [positive probability to probability one by zero-one argument]

We prove the dimension lower bound on the ${\rm CLE}$ gasket by a multi-scale refinement of the second moment method

Proposition. Random set $S \subseteq \mathbb{D}$, $S^n \equiv {\text{dist}(z, S) < e^{-\beta n}}$. If for all $z, w \in \mathbb{D}/2$ we have

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar),$$

then $\dim_{\mathcal{H}}(S) \ge 2 - s$ with positive probability. [positive probability to probability one by zero-one argument]

We prove the dimension lower bound on the $\rm CLE$ gasket by a multi-scale refinement of the second moment method originating from [Dembo-Peres-Rosen-Zeitouni AOP '00, Acta '01]

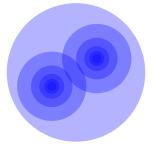
Suppose have following tree structure on the set S:

Suppose have following tree structure on the set S:

Conditioned on $E_j^z \equiv \{z \in S^j\}$:

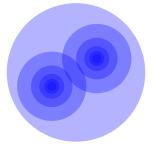
23/35

Suppose have following tree structure on the set S:



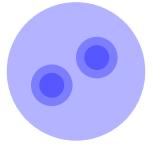
 $\begin{array}{l} \mbox{Conditioned on } E_j^z \equiv \{z \in S^j\}: \\ E_{j+1}^z \mbox{ depends on process in annulus } A(z,e^{-\beta j},e^{-\beta(j-1)}), \end{array}$

Suppose have following tree structure on the set S:



Conditioned on $E_j^z \equiv \{z \in S^j\}$: E_{j+1}^z depends on process in annulus $A(z, e^{-\beta j}, e^{-\beta(j-1)})$, and has probability $\approx (e^{-\beta})^s$

Suppose have following tree structure on the set S:



Conditioned on $E_j^z \equiv \{z \in S^j\}$:

 E_{j+1}^z depends on process in annulus $A(z,e^{-\beta j},e^{-\beta(j-1)})$, and has probability $\approx (e^{-\beta})^s$ E_{j+1}^z and E_{j+1}^w are independent if annuli disjoint,

Suppose have following tree structure on the set S:

Conditioned on $E_j^z \equiv \{z \in S^j\}$:

 E_{j+1}^z depends on process in annulus $A(z,e^{-\beta j},e^{-\beta(j-1)})$, and has probability $\approx (e^{-\beta})^s$ E_{j+1}^z and E_{j+1}^w are independent if annuli disjoint, approximately equal if annuli substantially overlapping

Recall second moment condition

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar)$$

Recall second moment condition

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar)$$

Tree structure implies:

Recall second moment condition

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar)$$

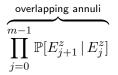
Tree structure implies: If $|z - w| \approx e^{-\beta m}$ then $\mathbb{P}(z, w \in S^n) \approx$

Recall second moment condition

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar)$$

Tree structure implies:

If $|z-w|\approx e^{-\beta m}$ then $\mathbb{P}(z,w\in S^n)\approx$

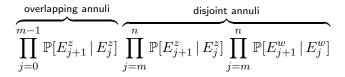


Recall second moment condition

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar)$$

Tree structure implies:

If $|z-w|\approx e^{-\beta m}$ then $\mathbb{P}(z,w\in S^n)\approx$

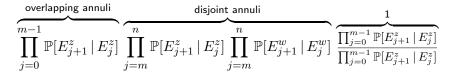


Recall second moment condition

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar)$$

Tree structure implies:

If $|z-w|\approx e^{-\beta m}$ then $\mathbb{P}(z,w\in S^n)\approx$

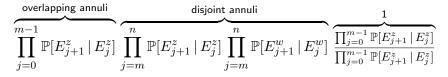


Recall second moment condition

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^s} \quad (\bigstar)$$

Tree structure implies:

If
$$|z-w|\approx e^{-\beta m}$$
 then $\mathbb{P}(z,w\in S^n)\approx$



rearranging and using $\mathbb{P}(E_{j+1}^z\,|\,E_j^z)\approx (e^{-\beta})^s$ gives (\bigstar)

Find a subset $S \subseteq \Gamma$ which has such a tree structure,

Find a subset $S\subseteq \Gamma$ which has such a tree structure, without losing too much in the Hausdorff dimension

Find a subset $S\subseteq \Gamma$ which has such a tree structure, without losing too much in the Hausdorff dimension

Obstructions for the gasket Γ :

Find a subset $S\subseteq \Gamma$ which has such a tree structure, without losing too much in the Hausdorff dimension

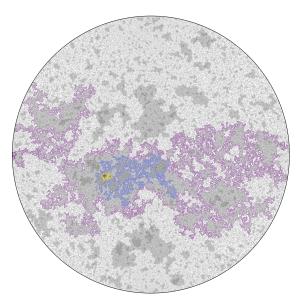
Obstructions for the gasket Γ :

No obvious succession of events E_j^z

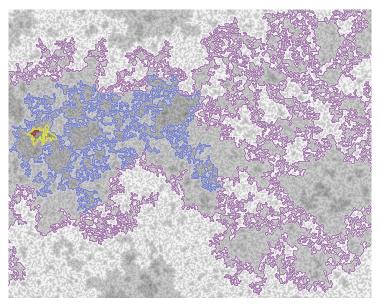
Find a subset $S\subseteq \Gamma$ which has such a tree structure, without losing too much in the Hausdorff dimension

Obstructions for the gasket Γ :

No obvious succession of events E_j^z $\{z,w\in\Gamma^m\}$ may cause $\{z\in\Gamma^n\}, \{w\in\Gamma^n\}$ to be correlated



[figure: Sam Watson and David Wilson]



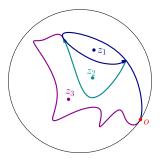
[figure: Sam Watson and David Wilson]

Main idea:

Both CCW and CW loops cut off regions,

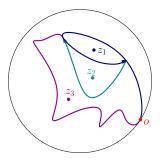
Main idea:

Both CCW and CW loops cut off regions, but only CCW loops cut regions out of the gasket



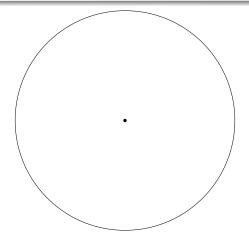
Main idea:

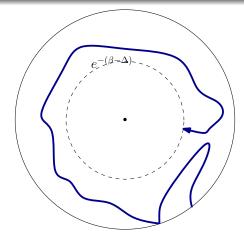
Both CCW and CW loops cut off regions, but only CCW loops cut regions out of the gasket

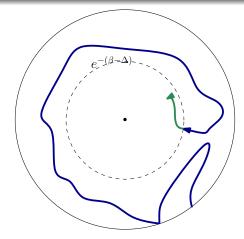


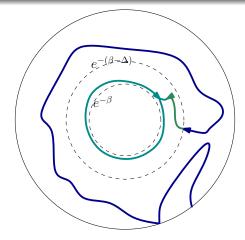
— so we use the $_{\mathrm{CW}}$ loops to create the tree structure

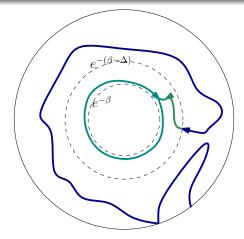
Definition of ${\cal E}_1^0$



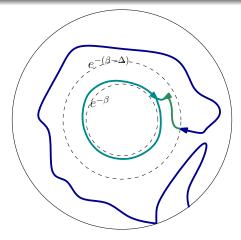




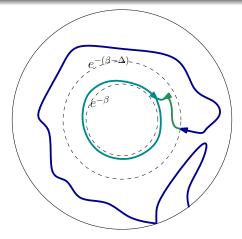




 E_1^0 :



 E_1^0 : the SLE_{κ}($\kappa - 6$) makes a CW loop completely contained in annulus $A(0, e^{-\beta}, e^{-(\beta-1)})$,



 E_1^0 : the $SLE_{\kappa}(\kappa - 6)$ makes a CW loop completely contained in annulus $A(0, e^{-\beta}, e^{-(\beta-1)})$, before making any CCW loop surrounding 0

Define E_j^0 , $j \ge 1$ inductively:

Define E_j^0 , $j \ge 1$ inductively: If E_1^0 occurs, the CW loop cuts off a region D_1^0 **Define** E_j^0 , $j \ge 1$ **inductively:** If E_1^0 occurs, the CW loop cuts off a region D_1^0 Uniformize $D_j^0 \to \mathbb{D}$, $0 \mapsto 0$ Define E_j^0 , $j \ge 1$ inductively: If E_1^0 occurs, the CW loop cuts off a region D_1^0 Uniformize $D_j^0 \to \mathbb{D}$, $0 \mapsto 0$ and define E_2^0 to be E_1^0 in the uniformized domain Define E_j^0 , $j \ge 1$ inductively: If E_1^0 occurs, the CW loop cuts off a region D_1^0 Uniformize $D_j^0 \to \mathbb{D}$, $0 \mapsto 0$ and define E_2^0 to be E_1^0 in the uniformized domain

For general $z \in \mathbb{D}$, define E_j^z , $j \ge 1$ by first applying automorphism of \mathbb{D} taking $z \mapsto 0$

Tree structure

Conformal invariance and

$$\mathbb{P}\Big(\bigcap_{j=1}^{n} E_n^z\Big)$$

$$\mathbb{P}\Big(\bigcap_{j=1}^{n} E_n^z\Big) = \mathbb{P}(E_1^z)^n$$

$$\mathbb{P}\Big(\bigcap_{j=1}^{n} E_n^z\Big) = \mathbb{P}(E_1^z)^n = \mathbb{P}(E_1^w)^n$$

Conformal invariance and domain Markov property of $SLE_{\kappa}(\kappa - 6)$ imply

$$\mathbb{P}\Big(\bigcap_{j=1}^{n} E_n^z\Big) = \mathbb{P}(E_1^z)^n = \mathbb{P}(E_1^w)^n$$

By a distortion estimate, $D_j^z \approx$ ball of radius $e^{-\beta j}$ about z

Conformal invariance and domain Markov property of ${\rm SLE}_{\kappa}(\kappa-6)$ imply

$$\mathbb{P}\Big(\bigcap_{j=1}^{n} E_n^z\Big) = \mathbb{P}(E_1^z)^n = \mathbb{P}(E_1^w)^n$$

By a distortion estimate, $D_j^z \approx$ ball of radius $e^{-\beta j}$ about z (for $z \in \mathbb{D}/2$, β large)

Conformal invariance and domain Markov property of $SLE_{\kappa}(\kappa - 6)$ imply

$$\mathbb{P}\Big(\bigcap_{j=1}^{n} E_n^z\Big) = \mathbb{P}(E_1^z)^n = \mathbb{P}(E_1^w)^n$$

By a distortion estimate, $D_j^z \approx \text{ball of radius } e^{-\beta j}$ about z(for $z \in \mathbb{D}/2$, β large) Once $D_j^z \cap D_j^w = \emptyset$, events (conditionally) independent thereafter

Conformal invariance and domain Markov property of ${\rm SLE}_\kappa(\kappa-6)$ imply

$$\mathbb{P}\Big(\bigcap_{j=1}^{n} E_n^z\Big) = \mathbb{P}(E_1^z)^n = \mathbb{P}(E_1^w)^n$$

By a distortion estimate, $D_j^z \approx \text{ball of radius } e^{-\beta j}$ about z(for $z \in \mathbb{D}/2$, β large) Once $D_j^z \cap D_j^w = \emptyset$, events (conditionally) independent thereafter

Remains to show $\mathbb{P}(E_1^0) \approx (e^{-\beta})^{\alpha}$

- **1** The O(n) model
- **2** Hausdorff dimension of the CLE gasket
- **3** Exploring a CLE
- 4 Ideas for the lower bound
- 5 An SLE estimate

1 The O(n) model

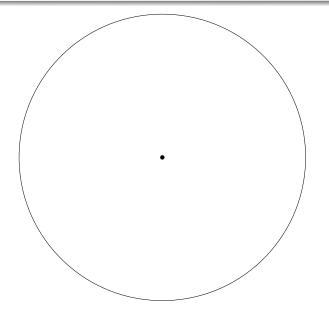
2 Hausdorff dimension of the CLE gasket

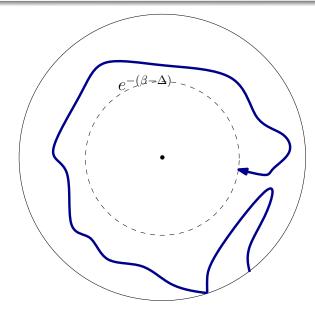
3 Exploring a CLE

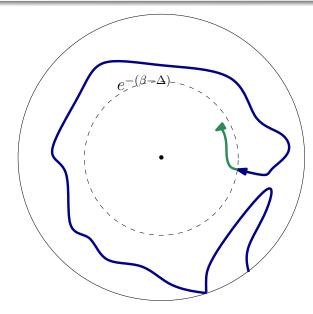
4 Ideas for the lower bound

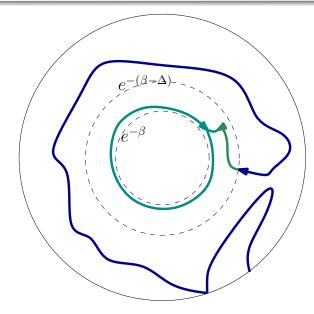
5 An SLE estimate

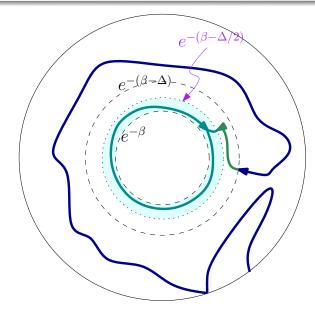
J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket

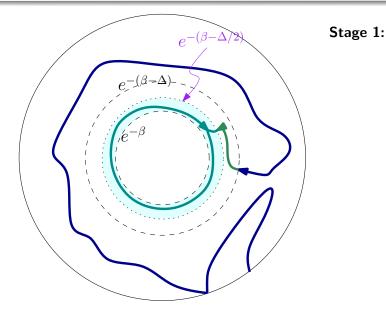




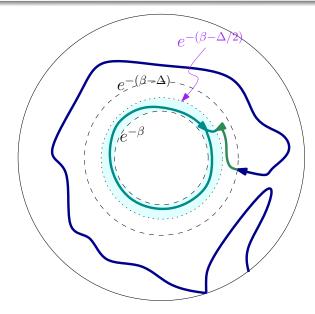




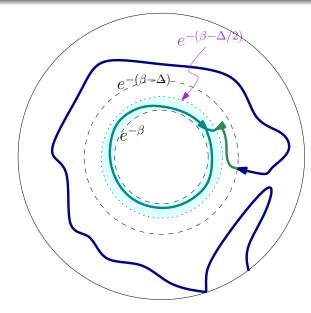




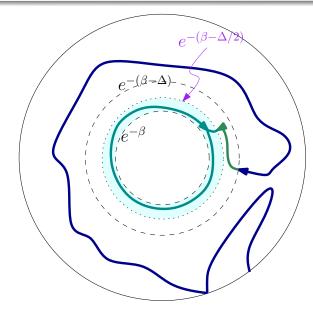
J. Miller, N. Sun, and D. Wilson



Stage 1: reach $e^{-(\beta-\Delta)}$

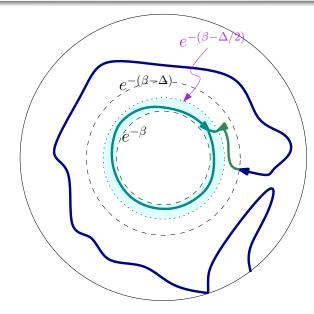


Stage 1: reach $e^{-(\beta-\Delta)}$ without CCW loop around 0:



Stage 1: reach $e^{-(\beta-\Delta)}$ without CCW loop around 0: prob. $\asymp (e^{-\beta})^{\alpha}$ [SSW]

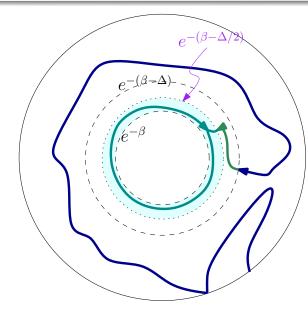
Probability of E_1^0



Stage 1: reach $e^{-(\beta-\Delta)}$ without CCW loop around 0: prob. $\asymp (e^{-\beta})^{\alpha}$ [SSW]

Stage 2:

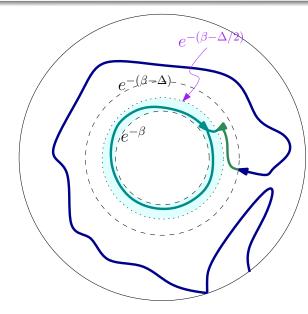
Probability of E_1^0



Stage 1: reach $e^{-(\beta-\Delta)}$ without CCW loop around 0: prob. $\asymp (e^{-\beta})^{\alpha}$ [SSW]

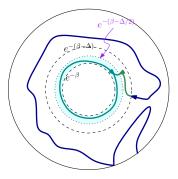
Stage 2: CW loop within inner annulus before CCW loop around 0:

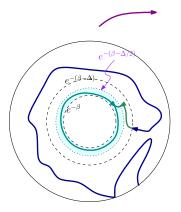
Probability of E_1^0

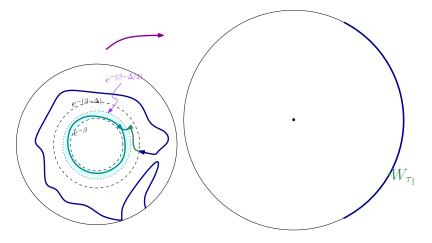


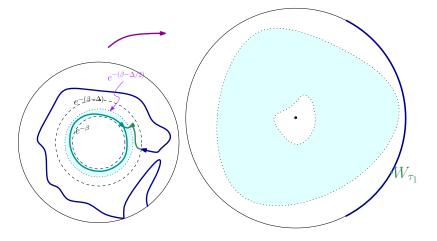
Stage 1: reach $e^{-(\beta-\Delta)}$ without CCW loop around 0: prob. $\asymp (e^{-\beta})^{\alpha}$ [SSW]

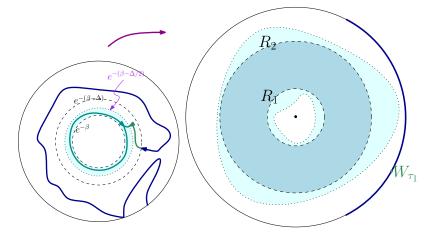
Stage 2: CW loop within inner annulus before CCW loop around 0: need to show prob. ≈ 1

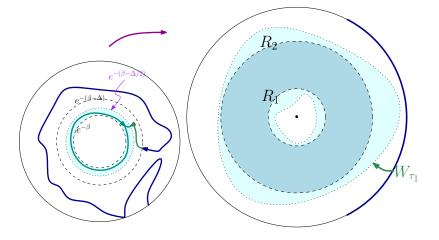


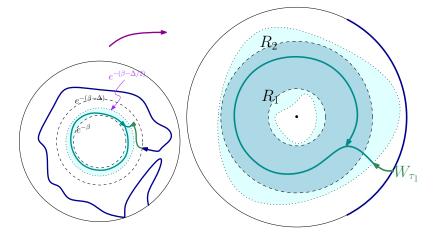


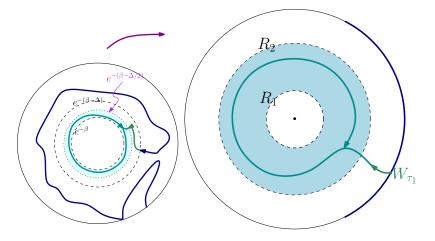




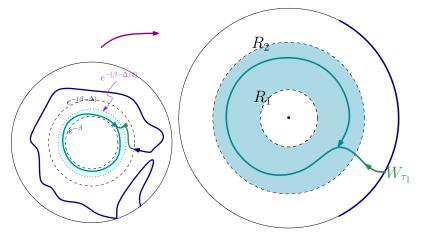








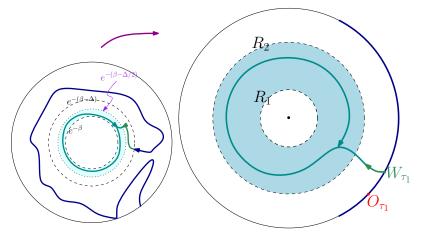
Conditioned on **Stage 1** success at time τ_1 , uniformize by g_{τ_1} :



New Stage 2: CW loop in $A(0, R_1, R_2)$ before CCW loop surrounding 0

J. Miller, N. Sun, and D. Wilson

Conditioned on **Stage 1** success at time τ_1 , uniformize by g_{τ_1} :

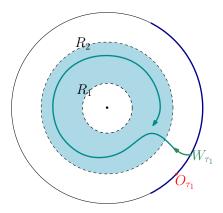


New Stage 2: CW loop in $A(0, R_1, R_2)$ before CCW loop surrounding 0

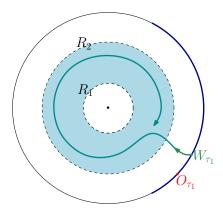
J. Miller, N. Sun, and D. Wilson

Chordal SLE_{κ} curve γ traveling $W_{\tau_1} \rightsquigarrow O_{\tau_1}$ makes almost-loop with positive probability:

Chordal SLE_{κ} curve γ traveling $W_{\tau_1} \rightsquigarrow O_{\tau_1}$ makes almost-loop with positive probability:

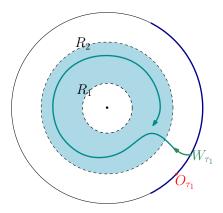


Chordal SLE_{κ} curve γ traveling $W_{\tau_1} \rightsquigarrow O_{\tau_1}$ makes almost-loop with positive probability:



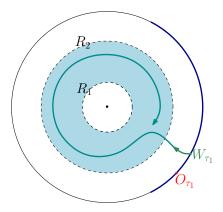
Driving functions uniformly close

Chordal SLE_{κ} curve γ traveling $W_{\tau_1} \rightsquigarrow O_{\tau_1}$ makes almost-loop with positive probability:



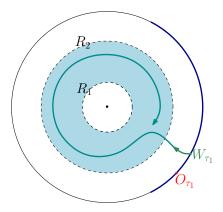
Driving functions uniformly close \Rightarrow curves close in Carathéodory topology

Chordal SLE_{κ} curve γ traveling $W_{\tau_1} \rightsquigarrow O_{\tau_1}$ makes almost-loop with positive probability:



Driving functions uniformly close \Rightarrow curves close in Carathéodory topology \Rightarrow curves close as sets w.r.t. Hausdorff distance

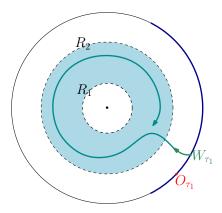
Chordal SLE_{κ} curve γ traveling $W_{\tau_1} \rightsquigarrow O_{\tau_1}$ makes almost-loop with positive probability:



Driving functions uniformly close \Rightarrow curves close in Carathéodory topology \Rightarrow curves close as sets w.r.t. Hausdorff distance

Suffices for driving function to be within ϵ of fixed driving function

Chordal SLE_{κ} curve γ traveling $W_{\tau_1} \rightsquigarrow O_{\tau_1}$ makes almost-loop with positive probability:



Driving functions uniformly close \Rightarrow curves close in Carathéodory topology \Rightarrow curves close as sets w.r.t. Hausdorff distance

Suffices for driving function to be within ϵ of fixed driving function with ϵ uniform over all $|W - O| \ge c$

 $F \equiv \{ \text{no } \mathbf{CCW} \text{ loop surrounding } 0 \text{ by time } T \}$

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

Claim. Law of θ_T conditioned on F is not concentrated near $0, 2\pi$

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

Claim. Law of θ_T conditioned on F is not concentrated near $0,2\pi$

Proof.

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

Claim. Law of θ_T conditioned on F is not concentrated near $0, 2\pi$

Proof. $d\theta_t = \sqrt{\kappa} \ dB_t + (\kappa - 4)/2 \cot(\theta_t/2) \ dt$ (\bigstar)

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

Claim. Law of θ_T conditioned on F is not concentrated near $0, 2\pi$

Proof.
$$d\theta_t = \sqrt{\kappa} \ dB_t + (\kappa - 4)/2 \cot(\theta_t/2) \ dt$$
 (\bigstar)
(a) $\mathbb{P}(\theta_T \le \pi \mid F) \ge 1/2$

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

Claim. Law of θ_T conditioned on F is not concentrated near $0, 2\pi$

Proof.
$$d\theta_t = \sqrt{\kappa} \ dB_t + (\kappa - 4)/2 \cot(\theta_t/2) \ dt$$
 (\bigstar)
(a) $\mathbb{P}(\theta_T \le \pi \mid F) \ge 1/2$
Proof: $\mathbb{P}(\theta_T \le \pi) \ge 1/2$ by reflective symmetry

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

Claim. Law of θ_T conditioned on F is not concentrated near $0, 2\pi$

Proof. $d\theta_t = \sqrt{\kappa} \ dB_t + (\kappa - 4)/2 \cot(\theta_t/2) \ dt$ (★) (a) $\mathbb{P}(\theta_T \le \pi | F) \ge 1/2$ Proof: $\mathbb{P}(\theta_T \le \pi) \ge 1/2$ by reflective symmetry Conditioning induces negative drift

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

Claim. Law of θ_T conditioned on F is not concentrated near $0, 2\pi$

Proof. $d\theta_t = \sqrt{\kappa} \ dB_t + (\kappa - 4)/2 \cot(\theta_t/2) \ dt$ (**★**) (a) $\mathbb{P}(\theta_T \le \pi \mid F) \ge 1/2$ Proof: $\mathbb{P}(\theta_T \le \pi) \ge 1/2$ by reflective symmetry Conditioning induces negative drift (b) $\mathbb{P}(\theta_T \ge \epsilon \mid F) \ge \epsilon$

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

Claim. Law of θ_T conditioned on F is not concentrated near $0, 2\pi$

Proof. $d\theta_t = \sqrt{\kappa} \ dB_t + (\kappa - 4)/2 \cot(\theta_t/2) \ dt$ (**★**) (a) $\mathbb{P}(\theta_T \le \pi | F) \ge 1/2$ Proof: $\mathbb{P}(\theta_T \le \pi) \ge 1/2$ by reflective symmetry Conditioning induces negative drift (b) $\mathbb{P}(\theta_T \ge \epsilon | F) \ge \epsilon$ Proof: use part (a) (up to time T - 1)

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

Claim. Law of θ_T conditioned on F is not concentrated near $0, 2\pi$

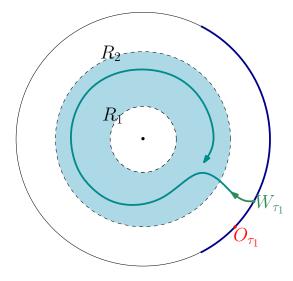
Proof. $d\theta_t = \sqrt{\kappa} \, dB_t + (\kappa - 4)/2 \cot(\theta_t/2) \, dt$ (\bigstar) (a) $\mathbb{P}(\theta_T \leq \pi \mid F) \geq 1/2$ Proof: $\mathbb{P}(\theta_T \leq \pi) \geq 1/2$ by reflective symmetry Conditioning induces negative drift (b) $\mathbb{P}(\theta_T \geq \epsilon \mid F) \geq \epsilon$ Proof: use part (a) (up to time T - 1) and the fact that when θ is bounded away from 2π , it is absolutely continuous w.r.t. a Bessel process with bounded Radon-Nikodym derivative

 $F \equiv \{ \text{no } \operatorname{\mathbf{CCW}} \text{ loop surrounding } 0 \text{ by time } T \} \\= \{ \theta \text{ does not reach } 2\pi \text{ by } T \}$

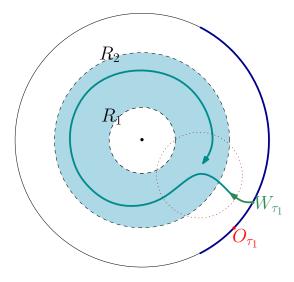
Claim. Law of θ_T conditioned on F is not concentrated near $0, 2\pi$

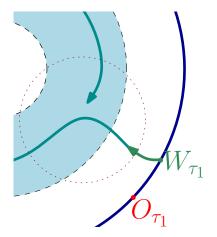
Proof. $d\theta_t = \sqrt{\kappa} \, dB_t + (\kappa - 4)/2 \cot(\theta_t/2) \, dt$ (\bigstar) (a) $\mathbb{P}(\theta_T \leq \pi \mid F) \geq 1/2$ Proof: $\mathbb{P}(\theta_T \leq \pi) \geq 1/2$ by reflective symmetry Conditioning induces negative drift (b) $\mathbb{P}(\theta_T \geq \epsilon \mid F) \geq \epsilon$ Proof: use part (a) (up to time T - 1) and the fact that when θ is bounded away from 2π , it is absolutely continuous w.r.t. a Bessel process with bounded Radon-Nikodym derivative Combining parts (a) and (b) proves the claim

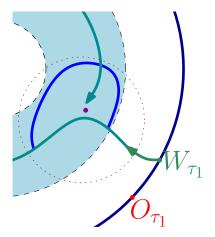
Closing the loop

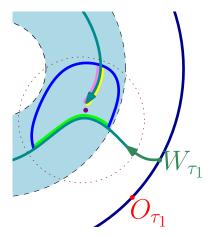


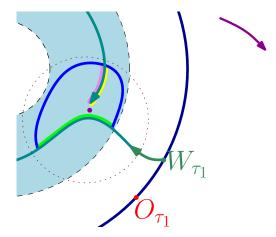
Closing the loop

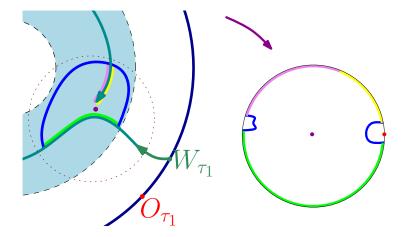


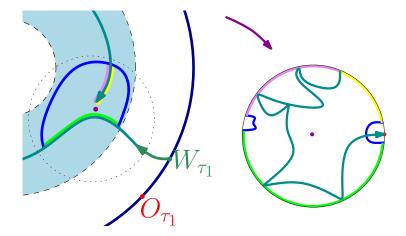


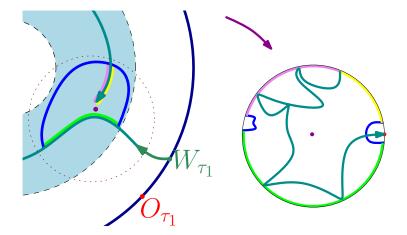










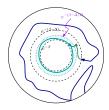


Stage 2 succeeds with positive probability

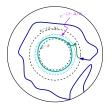
J. Miller, N. Sun, and D. Wilson

Hausdorff dimension of the CLE gasket

Therefore $\mathbb{P}(E_1^0) = (e^{-\beta})^{\alpha[1+o(1)]}$ (o(1) is in β)



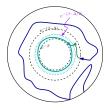
Therefore $\mathbb{P}(E_1^0) = (e^{-\beta})^{\alpha[1+o(1)]}$ (o(1) is in β)



Implies second moment estimate

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^{\alpha[1 + o(1)]}} \quad (\bigstar)$$

Therefore $\mathbb{P}(E_1^0) = (e^{-\beta})^{\alpha[1+o(1)]}$ (o(1) is in β)

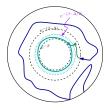


Implies second moment estimate

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^{\alpha[1 + o(1)]}} \quad (\bigstar)$$

so $\dim_{\mathcal{H}}(\Gamma) \geq 2 - \alpha [1 + o(1)]$ with positive probability

Therefore $\mathbb{P}(E_1^0) = (e^{-\beta})^{\alpha[1+o(1)]}$ (o(1) is in β)

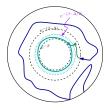


Implies second moment estimate

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^{\alpha[1 + o(1)]}} \quad (\bigstar)$$

so $\dim_{\mathcal{H}}(\Gamma) \geq 2 - \alpha[1 + o(1)]$ with positive probability — hence w.p. 1, since countably many outermost CW loops

Therefore $\mathbb{P}(E_1^0) = (e^{-\beta})^{\alpha[1+o(1)]}$ (o(1) is in β)



Implies second moment estimate

$$\mathbb{P}(z, w \in S^n) \le C \frac{\mathbb{P}(z \in S^n) \mathbb{P}(w \in S^n)}{|z - w|^{\alpha[1 + o(1)]}} \quad (\bigstar)$$

so $\dim_{\mathcal{H}}(\Gamma) \geq 2 - \alpha [1 + o(1)]$ with positive probability — hence w.p. 1, since countably many outermost CW loops Taking $\beta \to \infty$ gives $\dim_{\mathcal{H}}(\Gamma) \geq 2 - \alpha$ w.p. 1

Thank you!