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a random ensemble of non-crossing loops
whose law is conformally invariant

Canonical scaling limit of discrete loop ensembles
Loops of CLE look locally like SLE,
CLEg)3 is empty; CLEg is a single space-filling loop

We study the geometry of the CLE gasket:
the set of points not surrounded by any CLE loop
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4 < k < 8 when x > z. (dense phase)

Critical FK expected to have same scaling limit
as dense O(n = \/q)

[Saleur—Duplantier PRL '87, Rohde-Schramm Annals '05,

Kager—Nienhuis JSP '04]

Prediction of dimy[O(n) gasket| by Duplantier [PRL '90]
with above n «~ K correspondence gave first prediction of
dimy [CLE,, gasket] — confirmed by theorem
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Gasket dimension

dimy (CLE, gasket) > 1 + /8 = dimy (union of loops)
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Gasket dimension

dimy (CLE, gasket) > 1 + /8 = dimy (union of loops)

20F~T
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In fact, gasket is also closure of union of loops for k > 8/3
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Outline

The O(n) model

Hausdorff dimension of the CLE gasket

Exploring a CLE

A ldeas for the lower bound

An SLE estimate

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket



Outline

Exploring a CLE

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket



Discrete exploration process

Exploration path P, towards v:
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Discrete exploration process

Exploration path P, towards v: follow the interface

unless next vertex would be disconnected from v by path so far
in which case turn the other way
Union of all P, is exploration tree [Sheffield Duke '09]
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A branch of the exploration tree
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A branch of the exploration tree

J. Miller, N. Sun, and D. Wilson

Suppose have already explored
part of cluster boundary:

Law of remaining configuration is
simply chordal O(n) model
Limit: chordal SLE, from tip w
to original starting point o

But how to start the loop?
Chordal SLE,;, from o to 0?

Hausdorff dimension of the CLE gasket 11/35



Coordinate changes

A chordal Loewner evolution in I from w € 9D to o € ID (w # o)
(driving function W/ € OH)
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can also be viewed as a radial Loewner evolution from w to z € D,
(driving function W; € 9D)

up to the first time the curve disconnects w from z
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Coordinate changes

A chordal Loewner evolution in D from w € 9D to o € ID (w # 0)
(driving function W/ € OH)

can also be viewed as a radial Loewner evolution from w to z € D,
(driving function W; € 9D)

up to the first time the curve disconnects w from z

Assume z = 0: if W/ = \/kB; (chordal SLE,), arg W, turns out
to be BM with drift depending on O, = ¢;(0) (the force point):

arg Wy — arg O,
2

dlarg Wy| = /K dBy + %_6 cot ( ) dt (%)

(%) defines radial SLE,(x — 6) with starting configuration (w, o)
[Schramm—-Wilson NYJM '05]

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 12 /35



Coordinate changes

A chordal Loewner evolution in D from w € 9D to o € ID (w # 0)
(driving function W/ € OH)

can also be viewed as a radial Loewner evolution from w to z € D,
(driving function W; € 9D)

up to the first time the curve disconnects w from z

Assume z = 0: if W/ = \/kB; (chordal SLE,), arg W, turns out
to be BM with drift depending on O, = ¢;(0) (the force point):

dlarg W] = /K dB; + %—6 cot (arg Wi ; are Ot) dt (%)

(%) defines radial SLE,(x — 6) with starting configuration (w, o)
[Schramm—-Wilson NYJM '05]
0; = arg Wy — arg Oy

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 12 /35



Coordinate changes

A chordal Loewner evolution in D from w € 9D to o € ID (w # 0)
(driving function W/ € OH)

can also be viewed as a radial Loewner evolution from w to z € D,
(driving function W; € 9D)

up to the first time the curve disconnects w from z

Assume z = 0: if W/ = \/kB; (chordal SLE,), arg W, turns out
to be BM with drift depending on O, = ¢;(0) (the force point):

dlarg W] = /K dB; + %—6 cot (arg Wi ; are Ot) dt (%)

(%) defines radial SLE,(x — 6) with starting configuration (w, o)
[Schramm—-Wilson NYJM '05]

0; = arg Wy — arg Oy

= 27 times probability BM started from 0 hits between o and ~(t)
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Chordal SLE,, and radial SLE,(xk — 6)

Chordal SLE,. w ~» 0 and radial SLE,.(k — 6) w ~» z started from
(w, 0) coupled up to first disconnection time of 0 and z:
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Continuing radial SLE,(k — 6)

To start the loop exploration process, need to define SLE,(x — 6)
after times 6, = arg W, — arg O, € {0, 27}:
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after times 6, = arg W, — arg O, € {0, 27}:

k—4

d6; = \/k dB, +

cot(6;/2) dt (%)

SDE for 6/+/x has BES® singularity near points in 277Z, with
l<d<2ford<rk<8

Continuing after hitting 277 analogous to continuing BES? process
after hitting 0 — limit of “jumping e-BES® process”

To define radial SLE,(x — 6) after times 0; € {0, 27}:
define 6, to be the unique process with values in [0, 27]
which satisfies SDE (%) when 6, ¢ {0, 27},

and is instantaneously reflecting at the endpoints

6,5 =0 (91 = 27T)

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 15/35



Continuing radial SLE,(x — 6)

To start the loop exploration process, need to define SLE,(x — 6)
after times 6, = arg W, — arg O, € {0, 27}:

k—4

d@t = \/E dBt + COt(Qt/Q) dt (*)

SDE for 6/+/x has BES® singularity near points in 277Z, with
l<d<2ford<rk<8

Continuing after hitting 277 analogous to continuing BES? process
after hitting 0 — limit of “jumping e-BES® process”

To define radial SLE,(x — 6) after times 0; € {0, 27}:
define 6, to be the unique process with values in [0, 27]
which satisfies SDE (%) when 6, ¢ {0, 27},

and is instantaneously reflecting at the endpoints

0; =0 (0; = 27) e arg Op = (arg Wy)~ (arg Oy = (arg Wy) ™)
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Radial SLE,(x — 6) continued

Radial SLE,(k — 6) continued after 6; € {0,27}:

w
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of a Brownian loop soup [Sheffield-Werner Annals (to appear)]

Conjecture: SLE,(k — 6) processes (4 < k < 8) are generated by
curves with reversible law — implies CLE,; loops are continuous
with law independent of choice of root [Sheffield Duke '09]

Conjecture proved by works of Miller—Sheffield '12
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If for all z,w € D/2 we have

z € S")P(w e S™)

|2 — w|®

P(z,w e 57) < ¢ 2L (%),

then dimy(S) > 2 — s with positive probability.

We prove the dimension lower bound on the CLE gasket
by a multi-scale refinement of the second moment method
originating from [Dembo—Peres—Rosen—Zeitouni AOP '00, Acta '01]
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Second moment refinement

Suppose have following tree structure on the set S:

Conditioned on 7 = {z € 57}:
E%, | depends on process in annulus Az, e Pi e=BU-1),
and has probability ~ (e=#)*
E% .y and EY ;| are independent if annuli disjoint,
approximately equal if annuli substantially overlapping
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Second moment refinement

Recall second moment condition

P P "
P(z,w € S™) < C (z € SM)P(w € S™)

|2 —wl*

(%)

Tree structure implies:
If |z — w| ~ e P™ then P(z,w € S™) ~

overlapping annuli disjoint annuli
o\

1
m—1

o T T wy T PIER | B3
jl_Io P J+1|E]]1_£1 [ J+1|E]]Hn [ g+1|E ] s 1IP’[E;+1\E;]

rearranging and using P(E7, , | E7) ~ (e —)* gives (%)

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 24 /35



Second moment refinement

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 25/35



Second moment refinement

Refined second moment method [DPRZ]:

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 25/35



Second moment refinement

Refined second moment method [DPRZ]:
Find a subset S C I" which has such a tree structure,

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 25/35



Second moment refinement

Refined second moment method [DPRZ]:
Find a subset S C I" which has such a tree structure,
without losing too much in the Hausdorff dimension

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket

25/35



Second moment refinement

Refined second moment method [DPRZ]:
Find a subset S C I" which has such a tree structure,
without losing too much in the Hausdorff dimension

Obstructions for the gasket I':

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 25/35



Second moment refinement

Refined second moment method [DPRZ]:
Find a subset S C I" which has such a tree structure,
without losing too much in the Hausdorff dimension

Obstructions for the gasket I':
No obvious succession of events Ej

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 25/35



Second moment refinement

Refined second moment method [DPRZ]:
Find a subset S C I" which has such a tree structure,
without losing too much in the Hausdorff dimension

Obstructions for the gasket I':
No obvious succession of events E?
{z,w € T"™} may cause {z € I}, {w € '} to be correlated
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Refinement of the CLE gasket

Main idea:
Both ccw and cw loops cut off regions,
but only ccw loops cut regions out of the gasket

N

— so we use the CW loops to create the tree structure
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Definition of EY

EY: the SLE,(x — 6) makes a CW loop completely contained in
annulus A(0,e=?, e~ (F=1),
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Definition of EY

EY: the SLE,(x — 6) makes a CW loop completely contained in
annulus A(0,e=?,e=(#=1), before making any ccw loop
surrounding 0
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Definition of Ef

Define £, j > 1 inductively:
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Definition of Ef

Define £, j > 1 inductively:
If EY occurs, the cw loop cuts off a region DY
Uniformize D — D, 0+ 0

and define ES to be EY in the uniformized domain

For general z € D, define £7, j > 1 by first applying
automorphism of D takmg z—0
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Tree structure

The EJZ have the required tree structure:
(replacing true annuli by conformal annuli)

Conformal invariance and
domain Markov property of SLE, (k — 6) imply

IP( ﬁ En) — P(E?)"
j=1
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Conformal invariance and
domain Markov property of SLE, (k — 6) imply

p( () E3) = B(ED" = P(EY)"
j=1
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Tree structure

The E7 have the required tree structure:
(replacmg true annuli by conformal annuli)

Conformal invariance and
domain Markov property of SLE, (k — 6) imply

p( () E3) = B(ED" = P(EY)"
j=1

By a distortion estimate, D7 ~ ball of radius e P9 about z
(for z € D/2, B large)
Once D N D}’ = @, events (conditionally) independent thereafter

Remains to show P(EY) ~ (e=#)@

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 29/35



Outline

The O(n) model

Hausdorff dimension of the CLE gasket

Exploring a CLE

A ldeas for the lower bound

An SLE estimate

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket



Outline

H An SLE estimate

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket



Probability of EY

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 30/35



Probability of EY

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 30/35



Probability of EY

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 30/35



Probability of EY

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 30/35



Probability of EY

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 30/35



Probability of EY

Stage 1:

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 30/35



Probability of EY

Stage 1:
reach e~ (F=2)

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 30/35



Probability of EY

Stage 1:
reach e~ (
without ccw loop
around O:
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Probability of EY

Stage 1:
reach e~ (
without ccw loop
around O:

prob. = (e~#)~
[SSW]

B—A)

Stage 2:

CW loop within
inner annulus before
ccw loop around 0:
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Probability of EY

Stage 1:
reach e~ (
without ccw loop
around O:

prob. = (e~#)~
[SSW]

B—A)

Stage 2:

CW loop within
inner annulus before
ccw loop around 0:
need to show

prob. <1
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EY continued on Stage 1

Conditioned on Stage 1 success at time 7, uniformize by g, :
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Conditioned on Stage 1 success at time 71, uniformize by g;,:

New Stage 2: cw loop in A(0, Ry, Rs) before ccw loop
surrounding 0
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An almost loop

Chordal SLE,; curve v traveling W, ~ O,
makes almost-loop with positive probability:
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Chordal SLE, curve v traveling W,, ~» O,
makes almost-loop with positive probability:

Driving functions uniformly close
= curves close in

Carathéodory topology

= curves close as sets

w.r.t. Hausdorff distance

Suffices for driving function to be
within e of fixed driving function
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An almost loop

Chordal SLE, curve v traveling W,, ~» O,
makes almost-loop with positive probability:

J. Miller, N. Sun, and D. Wilson

Driving functions uniformly close
= curves close in

Carathéodory topology

= curves close as sets

w.r.t. Hausdorff distance

Suffices for driving function to be
within e of fixed driving function
with e uniform over all

W —-0|>c¢

Hausdorff dimension of the CLE gasket 32/35
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The configuration at time 7

F = {no ccw loop surrounding 0 by time 7'}
= {0 does not reach 27 by T'}

Claim. Law of 67 conditioned on F' is not concentrated near 0, 27

Proof.
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The configuration at time 7

F = {no ccw loop surrounding 0 by time 7'}
= {0 does not reach 27 by T'}

Claim. Law of 07 conditioned on F' is not concentrated near 0, 27

Proof. df; = \/k dB; + (k —4)/2cot(0;/2) dt ()
(@) P(Or <7 |F)>1/2
Proof: P(p < ) > 1/2 by reflective symmetry
Conditioning induces negative drift
(b) P(Or > €| F) > ¢
Proof: use part (a) (up to time 7' — 1)
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Proof. df; = \/k dB; + (k —4)/2cot(0;/2) dt ()

(a) P(Or < 7| F)>1/2
Proof: P(p < ) > 1/2 by reflective symmetry
Conditioning induces negative drift

(b) P(Or > €| F) > ¢
Proof: use part (a) (up to time 7' — 1)
and the fact that when 6 is bounded away from 2, it is
absolutely continuous w.r.t. a Bessel process
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The configuration at time 7

F = {no ccw loop surrounding 0 by time 7'}
= {0 does not reach 27 by T'}

Claim. Law of 07 conditioned on F' is not concentrated near 0, 27

Proof. df; = \/k dB; + (k —4)/2cot(0;/2) dt ()

(a) P(Or < 7| F)>1/2
Proof: P(p < ) > 1/2 by reflective symmetry
Conditioning induces negative drift

(b) P(Or > €| F) > ¢
Proof: use part (a) (up to time 7' — 1)
and the fact that when 6 is bounded away from 2, it is
absolutely continuous w.r.t. a Bessel process
with bounded Radon-Nikodym derivative

Combining parts (a) and (b) proves the claim
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Closing the loop

Stage 2 succeeds with positive probability
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Implies second moment estimate

z € S")P(w e S™)

P(
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Conclusion

Therefore P(EY) = (e=#)ell+ol  (o(1) is in B)

Implies second moment estimate

z € S")P(w e S™)
Iz — w|lFe(]

P(zw e 87 < ¢ (%)

so dimy (I') > 2 — a[1 4 o(1)] with positive probability
— hence w.p. 1, since countably many outermost c¢w loops
Taking 8 — oo gives dimy/(I') > 2 — a w.p. 1
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Thank you!
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