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The O(n) model

G = (V,E) finite hexagon graph; ω black-white coloring of faces:

Black-white boundaries form loop configuration (outside white)

O(n) model: P(ω) = n`(ω)xe(ω)/Z
`(ω) = number of loops, e(ω) = total length of loops
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The O(n) model

O(n) model: P(ω) = n`(ω)xe(ω)/Z

Critical point xc ≡ xc(n) ≡ 1/
√

2 +
√

2− n [Nienhuis PRL ’82]

— rigorously proved for n = 0 (SAW) [Duminil-Copin–Smirnov ’10]

Conformally invariant scaling limit conjectured for x = xc (dilute),
x > xc (dense) [Kager–Nienhuis JSP ’04]

FK model on Z2 at self-dual point p = psd(q) corresponds to fully
packed loop configurations on medial lattice with weights n`(ω)

with n =
√
q — proved to be critical for q ≥ 1

[Beffara–Duminil-Copin PTRF ’11]

Conjectured to have same scaling limit as dense O(n =
√
q)

Two natural questions:
Sense of convergence?
The limiting object? (← this talk)
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The chordal O(n) model

Chordal O(n) model:
O(n) model with Dobrushin boundary conditions

Has domain Markov property
Scaling limit of chordal arc should be chordal SLEκ
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Review of SLE

A short review of SLE: [Schramm IJM ’00]

The chordal (radial) Schramm-Loewner evolution SLEκ
is the random curve traveling 0 ∞ in D = H (1 0 in D = D)
such that the conformal map gt : D\γ[0, t]→ D satisfies the
chordal (radial) Loewner differential equation

ġt(z) =
2

gt(z)−Wt

(
ġt(z) = −gt(z)

gt(z) +Wt

gt(z)−Wt

)
with driving function Wt = gt[γ(t)] ∈ ∂D given by
Wt =

√
κBt (Wt = exp{i√κBt})

SLEκ is a curve: [RS Annals ’05 (κ 6= 8), LSW AOP ’04 (κ = 8)]

SLEκ in general domains defined by conformal transformation
It is characterized by conformal invariance

and the domain Markov property
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Conformal loop ensembles
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Gasket dimension

CLEκ gasket dimension as a function of κ:
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Related works

dimH(SLEκ curve) = (1 + κ/8) ∧ 2
[Rohde–Schramm Annals ’05] (upper bound)
[Beffara AOP ’08] (lower bound)

O(n) model: for n ≤ 2, conjectured relation n = −2 cos(4π/κ)
8/3 ≤ κ ≤ 4 when x = xc (dilute phase),
4 ≤ κ ≤ 8 when x > xc (dense phase)

Critical FK expected to have same scaling limit
as dense O(n =

√
q)

[Saleur–Duplantier PRL ’87, Rohde–Schramm Annals ’05,

Kager–Nienhuis JSP ’04]

Prediction of dimH[O(n) gasket] by Duplantier [PRL ’90]

with above n! κ correspondence gave first prediction of
dimH[CLEκ gasket] — confirmed by theorem
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Gasket dimension

dimH(CLEκ gasket) > 1 + κ/8 = dimH(union of loops)
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In fact, gasket is also closure of union of loops for κ > 8/3
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Discrete exploration process

Exploration path Pv towards v:

follow the interface

unless next vertex would be disconnected from v by path so far
in which case turn the other way
Union of all Pv is exploration tree [Sheffield Duke ’09]
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Discrete exploration process

Exploration path Pv towards v: follow the interface84 SCOTT SHEFFIELD

Figure 1. A coloring of a hexagon graph and the corresponding exploration tree.
The arrow points to the root vertex v0.

Fix a vertex v0 on the outer boundary of G which is incident to only two edges
of G, and fix a directed edge e0 outside of G, beginning at some vertex v−1 and
pointing toward v0. For each vertex v of G, the exploration path Tv(A) is a directed,
non-self-intersecting path v0, v1, v2, . . . which ends at v. Each vk , for k ≥ 1, is chosen
in such a way that the sequence vk−2, vk−1, vk describes a right turn when the directed
edge (vk−2, vk−1) points to a black face (i.e., a face in A) and a left turn if (vk−2, vk−1)
points to a white face, unless this choice of vk would fail to lie in the same connected
component of V \{v0, v1, . . . , vk−1} as v, in which case the path turns in the other
direction.

The exploration tree T (A) of A is the union over all v ∈ V of Tv(A). The reader
may check that T (A) is in fact an out-directed spanning tree of G, rooted at v0. Readers
familiar with computer algorithms may recognize T (A) as the depth-first search tree
of G beginning at v0 under the rule that one searches right first after tracing an edge
directed towards a black face and left first after tracing an edge directed toward a white
face (see Figure 1).

A vertex v is called a branch point of T (A) if it has three neighbors in T (A). If
v1 and v2 are the immediate descendants of v and v3 is the parent, then we call v1 the
proper descendant if either the edge (v3, v) points to a black face and the path v3, v, v1

unless next vertex would be disconnected from v by path so far
in which case turn the other way
Union of all Pv is exploration tree [Sheffield Duke ’09]
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A branch of the exploration tree

Suppose have already explored
part of cluster boundary:
Law of remaining configuration is
simply chordal O(n) model
Limit: chordal SLEκ from tip w
to original starting point o

But how to start the loop?
Chordal SLEκ from o to o?
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Coordinate changes

A chordal Loewner evolution in D from w ∈ ∂D to o ∈ ∂D (w 6= o)
(driving function W ′t ∈ ∂H)

can also be viewed as a radial Loewner evolution from w to z ∈ D,
(driving function Wt ∈ ∂D)

up to the first time the curve disconnects w from z

w

o

z

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 12 / 35



Coordinate changes

A chordal Loewner evolution in D from w ∈ ∂D to o ∈ ∂D (w 6= o)
(driving function W ′t ∈ ∂H)

can also be viewed as a radial Loewner evolution from w to z ∈ D,
(driving function Wt ∈ ∂D)

up to the first time the curve disconnects w from z

w

o

z

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 12 / 35



Coordinate changes

A chordal Loewner evolution in D from w ∈ ∂D to o ∈ ∂D (w 6= o)
(driving function W ′t ∈ ∂H)

can also be viewed as a radial Loewner evolution from w to z ∈ D,
(driving function Wt ∈ ∂D)

up to the first time the curve disconnects w from z

w

o

z

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 12 / 35



Coordinate changes

A chordal Loewner evolution in D from w ∈ ∂D to o ∈ ∂D (w 6= o)
(driving function W ′t ∈ ∂H)

can also be viewed as a radial Loewner evolution from w to z ∈ D,
(driving function Wt ∈ ∂D)

up to the first time the curve disconnects w from z

w

o

z

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 12 / 35



Coordinate changes

A chordal Loewner evolution in D from w ∈ ∂D to o ∈ ∂D (w 6= o)
(driving function W ′t ∈ ∂H)

can also be viewed as a radial Loewner evolution from w to z ∈ D,
(driving function Wt ∈ ∂D)

up to the first time the curve disconnects w from z

w

o

z

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 12 / 35



Coordinate changes

A chordal Loewner evolution in D from w ∈ ∂D to o ∈ ∂D (w 6= o)
(driving function W ′t ∈ ∂H)

can also be viewed as a radial Loewner evolution from w to z ∈ D,
(driving function Wt ∈ ∂D)

up to the first time the curve disconnects w from z

Assume z = 0: if W ′t =
√
κBt (chordal SLEκ), argWt turns out

to be BM with drift depending on Ot ≡ gt(o) (the force point):

d[argWt] =
√
κ dBt +

κ− 6

2
cot

(
argWt − argOt

2

)
dt

(F)

(F) defines radial SLEκ(κ− 6) with starting configuration (w, o)
[Schramm–Wilson NYJM ’05]

θt ≡ argWt − argOt
= 2π times probability BM started from 0 hits between o and γ(t)
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Assume z = 0: if W ′t =
√
κBt (chordal SLEκ),

argWt turns out
to be BM with drift depending on Ot ≡ gt(o) (the force point):

d[argWt] =
√
κ dBt +

κ− 6

2
cot

(
argWt − argOt

2

)
dt

(F)

(F) defines radial SLEκ(κ− 6) with starting configuration (w, o)
[Schramm–Wilson NYJM ’05]
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= 2π times probability BM started from 0 hits between o and γ(t)
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Chordal SLEκ and radial SLEκ(κ− 6)

Chordal SLEκ w  o and radial SLEκ(κ− 6) w  z started from
(w, o) coupled up to first disconnection time of o and z:

w

o

z
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Continuing radial SLEκ(κ− 6)

To start the loop exploration process, need to define SLEκ(κ− 6)
after times θt ≡ argWt − argOt ∈ {0, 2π}:

dθt =
√
κ dBt +

κ− 4

2
cot(θt/2) dt

(F)

SDE for θ/
√
κ has besδ singularity near points in 2πZ, with

1 < δ < 2 for 4 < κ < 8
Continuing after hitting 2πZ analogous to continuing besδ process
after hitting 0 — limit of “jumping ε-besδ process”

To define radial SLEκ(κ− 6) after times θt ∈ {0, 2π}:
define θt to be the unique process with values in [0, 2π]
which satisfies SDE (F) when θt /∈ {0, 2π},
and is instantaneously reflecting at the endpoints

θt = 0 (θt = 2π) ! argOt = (argWt)
− (argOt = (argWt)

+)
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Radial SLEκ(κ− 6) continued

Radial SLEκ(κ− 6) continued after θt ∈ {0, 2π}:

wo

θt

0 2π
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Branching SLEκ(κ− 6)

Fix root o ∈ ∂D; let ηz be radial SLEκ(κ− 6) from o to z
When away from o, ηz behaves like chordal SLEκ targeted at o

until first time τ z that z is disconnected from o
Can couple ηz, ηw to agree until first time ηz disconnects z from w

All the ηz together form a branching SLEκ(κ− 6)
— analogue of the discrete exploration tree

branching SLE6 [figure: Jason Miller]
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Exploring the first CLE loop

Run ηz1 to first time τ z1 that
z1 is disconnected from o

Choose new target z2,
run ηz2 until τ z2

Continue until for some target zk,
ηzk returns to root o:

ηzk is the full CLE loop:
necessarily ccw, pinned at o

Exploring the full loop ensemble:
Whenever force point for ηz jumps, becomes base for new loop
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Exploring the full CLE

Exploring the full loop ensemble:
Whenever force point for ηz jumps, becomes base for new loop

o

CLE loops can be detached from the boundary:
pinned to cw loops in exploration
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Remarks

CLEκ for κ ≤ 4 has an equivalent definition as the outer boundary
of a Brownian loop soup [Sheffield–Werner Annals (to appear)]

Conjecture: SLEκ(κ− 6) processes (4 < κ < 8) are generated by
curves with reversible law — implies CLEκ loops are continuous
with law independent of choice of root [Sheffield Duke ’09]

(Immediate from loop-soup construction for 8/3 ≤ κ ≤ 4)

Conjecture proved by works of Miller–Sheffield ’12
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Dimension upper bound

Hausdorff dimension upper bounds are typically obtained by first
moment estimates, e.g. upper bound for SLEκ [RS Annals ’05]

In the case of the gasket Γ: [SSW CMP ’09]

P(dist(z,Γ) < ε) �
(

ε

1− |z|

)α
, α ≡ (8− κ)(3κ− 8)

32κ

This gives the expectation dimension of Γ
≥ Minkowski dimension of Γ
≥ Hausdorff dimension of Γ
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Dimension lower bound

Hausdorff dimension lower bounds are typically obtained by second
moment estimates, e.g. lower bound for SLEκ [Beffara AOP ’08]

Proposition. Random set S ⊆ D, Sn ≡ {dist(z, S) < e−βn}.
If for all z, w ∈ D/2 we have

P(z, w ∈ Sn) ≤ CP(z ∈ Sn)P(w ∈ Sn)

|z − w|s (F),

then dimH(S) ≥ 2− s with positive probability.
[positive probability to probability one by zero-one argument]

We prove the dimension lower bound on the CLE gasket
by a multi-scale refinement of the second moment method
originating from [Dembo–Peres–Rosen–Zeitouni AOP ’00, Acta ’01]
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[positive probability to probability one by zero-one argument]

We prove the dimension lower bound on the CLE gasket
by a multi-scale refinement of the second moment method
originating from [Dembo–Peres–Rosen–Zeitouni AOP ’00, Acta ’01]
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Second moment refinement

Suppose have following tree structure on the set S:

Conditioned on Ezj ≡ {z ∈ Sj}:
Ezj+1 depends on process in annulus A(z, e−βj , e−β(j−1)),

and has probability ≈ (e−β)s

Ezj+1 and Ewj+1 are independent if annuli disjoint,
approximately equal if annuli substantially overlapping
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Second moment refinement

Recall second moment condition

P(z, w ∈ Sn) ≤ CP(z ∈ Sn)P(w ∈ Sn)

|z − w|s (F)

Tree structure implies:
If |z − w| ≈ e−βm then P(z, w ∈ Sn) ≈

overlapping annuli︷ ︸︸ ︷
m−1∏
j=0

P[Ezj+1 |Ezj ]

disjoint annuli︷ ︸︸ ︷
n∏

j=m

P[Ezj+1 |Ezj ]

n∏
j=m

P[Ewj+1 |Ewj ]

1︷ ︸︸ ︷∏m−1
j=0 P[Ezj+1 |Ezj ]∏m−1
j=0 P[Ezj+1 |Ezj ]

rearranging and using P(Ezj+1 |Ezj ) ≈ (e−β)s gives (F)
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Second moment refinement

Refined second moment method [DPRZ]:
Find a subset S ⊆ Γ which has such a tree structure,
without losing too much in the Hausdorff dimension

Obstructions for the gasket Γ:
No obvious succession of events Ezj
{z, w ∈ Γm} may cause {z ∈ Γn}, {w ∈ Γn} to be correlated
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Refinement of the CLE gasket

Main idea:
Both ccw and cw loops cut off regions,
but only ccw loops cut regions out of the gasket

z3

z1

z2

o

— so we use the cw loops to create the tree structure
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Definition of E0
1

E0
1 : the SLEκ(κ− 6) makes a cw loop completely contained in

annulus A(0, e−β, e−(β−1)), before making any ccw loop
surrounding 0
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Definition of Ez
j

Define E0
j , j ≥ 1 inductively:

If E0
1 occurs, the cw loop cuts off a region D0

1

Uniformize D0
j → D, 0 7→ 0

and define E0
2 to be E0

1 in the uniformized domain

For general z ∈ D, define Ezj , j ≥ 1 by first applying
automorphism of D taking z 7→ 0
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Tree structure

The Ezj have the required tree structure:
(replacing true annuli by conformal annuli)

Conformal invariance and
domain Markov property of SLEκ(κ− 6) imply

P
( n⋂
j=1

Ezn

)

= P(Ez1)n = P(Ew1 )n

By a distortion estimate, Dz
j ≈ ball of radius e−βj about z

(for z ∈ D/2, β large)
Once Dz

j ∩Dw
j = ∅, events (conditionally) independent thereafter

Remains to show P(E0
1) ≈ (e−β)α
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E0
1 continued on Stage 1

Conditioned on Stage 1 success at time τ1, uniformize by gτ1 :

Wτ1

New Stage 2: cw loop in A(0, R1, R2) before ccw loop
surrounding 0
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An almost loop

Chordal SLEκ curve γ traveling Wτ1  Oτ1
makes almost-loop with positive probability:

R2

Oτ1

Wτ1

R1

Driving functions uniformly close
⇒ curves close in
Carathéodory topology
⇒ curves close as sets
w.r.t. Hausdorff distance

Suffices for driving function to be
within ε of fixed driving function
with ε uniform over all
|W −O| ≥ c

J. Miller, N. Sun, and D. Wilson Hausdorff dimension of the CLE gasket 32 / 35



An almost loop

Chordal SLEκ curve γ traveling Wτ1  Oτ1
makes almost-loop with positive probability:

R2

Oτ1

Wτ1

R1

Driving functions uniformly close
⇒ curves close in
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The configuration at time τ1

F ≡ {no ccw loop surrounding 0 by time T}
= {θ does not reach 2π by T}

Claim. Law of θT conditioned on F is not concentrated near 0, 2π

Proof. dθt =
√
κ dBt + (κ− 4)/2 cot(θt/2) dt (F)

(a) P(θT ≤ π |F ) ≥ 1/2
Proof: P(θT ≤ π) ≥ 1/2 by reflective symmetry
Conditioning induces negative drift

(b) P(θT ≥ ε |F ) ≥ ε
Proof: use part (a) (up to time T − 1)
and the fact that when θ is bounded away from 2π, it is
absolutely continuous w.r.t. a Bessel process
with bounded Radon-Nikodym derivative

Combining parts (a) and (b) proves the claim
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Proof: P(θT ≤ π) ≥ 1/2 by reflective symmetry
Conditioning induces negative drift

(b) P(θT ≥ ε |F ) ≥ ε
Proof: use part (a) (up to time T − 1)
and the fact that when θ is bounded away from 2π, it is
absolutely continuous w.r.t. a Bessel process
with bounded Radon-Nikodym derivative

Combining parts (a) and (b) proves the claim
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Closing the loop

R2

Oτ1

Wτ1

R1

Stage 2 succeeds with positive probability
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Conclusion

Therefore P(E0
1) = (e−β)α[1+o(1)] (o(1) is in β)

e−β

e−(β−∆)

e−(β−∆/2)

Implies second moment estimate

P(z, w ∈ Sn) ≤ CP(z ∈ Sn)P(w ∈ Sn)

|z − w|α[1+o(1)]
(F)

so dimH(Γ) ≥ 2− α[1 + o(1)] with positive probability
— hence w.p. 1, since countably many outermost cw loops
Taking β →∞ gives dimH(Γ) ≥ 2− α w.p. 1
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Thank you!
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