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Introduction
Intermediate Whole-Plane SLE

Restriction

In the proof of the reversibility of whole-plane SLEκ (κ ∈ (0, 4]), the
annulus SLE(κ,Λκ) processes arise as the intermediate processes of the
whole-plane SLEκ.

This means that, given an initial segment and a final segment of a
whole-plane SLEκ curve, the middle part of the whole-plane SLEκ curve
is an annulus SLE(κ,Λκ) curve growing in the complement of the two
segments from one tip point to the other tip point.
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Introduction
Intermediate Whole-Plane SLE

Restriction

Annulus SLE(κ,Λκ) is defined using the annulus Loewner equation. The
driving term is

√
κB(t) plus a drift function, which is determined by a

function Λκ. The process generates a random curve, which

1. grows in a doubly connected domain,

2. starts from one boundary point,

3. ends at another boundary point, which lies on a different boundary
component as the initial point,

4. satisfies Domain Markov Property (DMP) and reversibility.

The reversibility of annulus SLE(κ,Λκ) is related to the reversibility of
whole-plane SLEκ.
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Introduction
Intermediate Whole-Plane SLE

Restriction

In this talk, I will discuss the restriction properties of the annulus

SLE(κ,Λκ) process. Throughout, fix κ ∈ (0, 4], let c = (6−κ)(3κ−8)
2κ be

the central charge, and let µloop denote the Brownian loop measure.

Theorem 1 [Z, 2011]

Let p > 0, x , y ∈ R, a = e ix , and b = e−p+iy . Let β be an annulus
SLE(κ,Λκ) trace in Ap := {1 > |z | > e−p} from a to b, and let µ denote
its distribution. Let L be a relatively closed subset of Ap such that Ap \ L
is a doubly connected domain and contains the neighborhoods of a and b.
Define a new probability measure µL by

dµL

dµ
=

1β∩L=∅

Z
exp(cµloop(L(Ap;β, L))),

where Z > 0 is some normalization constant, and L(Ap;β, L) is the set of
the loops in Ap that intersect both β and L. Then µL is the distribution
of a reparameterized annulus SLE(κ,Λκ) curve in Ap \ L from a to b.
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Introduction
Intermediate Whole-Plane SLE

Restriction

If κ = 8/3, then c = 0. The theorem implies that, β conditioned to avoid
L is an annulus SLE(κ,Λκ) trace in Ap \ L, up to a reparametrization.
For other κ, we get the “weak” restriction property.

The theorem resembles the restriction theorem for chordal SLE
[Lawler-Schramm-Werner, 2003], which says that, if Ap is replaced by a
simply connected domain D, if D \ L is also a simply connected domain,
and if β is a chordal SLEκ trace, then µL is the distribution of a
reparameterized chordal SLEκ trace in D \ L.

It turns out that the annulus SLE(κ,Λκ) process agrees with the annulus
SLE constructed by Gregory Lawler recently.
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Restriction
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Annulus SLE with one force point
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Decomposition in the covering space

Symbols (p > 0):

Ap = {e−p < |z | < 1}, T = {|z | = 1}, Tp = {|z | = e−p}.

Special function (r > 0):

S(r , z) = lim
M→∞

M∑
k=−M

e2kr + z

e2kr − z
.

Annulus Loewner equation of modulus p driven by ξ ∈ C ([0, p)):

∂tgt(z) = gt(z)S(p − t, gt(z)/e iξ(t)), g0(z) = z .

Hulls:
Kt := {z ∈ Ap : τg (z) ≤ t}, 0 ≤ t < p.
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Restriction
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Properties of gt and Kt :

1. gt : Ap \ Kt
Conf
� Ap−t ;

2. dist(Kt ,Tp) > 0 and mod(Ap \ Kt) = p − t;

3. If z ∈ T, gt(z) stays on T before it blows up;

4. If z ∈ Tp, gt(z) ∈ Tp−t for 0 ≤ t < p.

Trace (when ξ(t) =
√
κB(t) + drift):

β(t) := lim
Ap−t3z→e iξ(t)

g−1
t (z), 0 ≤ t < p.
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Annulus Loewner equation
Annulus SLE with one force point
The particular drift function
Decomposition in the covering space

Properties of β:

1. β is continuous in Ap ∪ T.

2. β(0) = e iξ(0) ∈ T.

3. If κ ∈ (0, 4], β is simple, β(t) 6∈ T for t > 0, and Kt = β((0, t]) for
0 ≤ t < p.

4. In the above case, β satisfies mod(Ap \ β((0, t])) = p − t. On the
other hand, if a simple curve satisfies these properties, then it is an
annulus Loewner trace driven by some continuous ξ.
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We may lift everything to the covering space. Symbols (p > 0):

e i (z) = e iz , Sp = {p > Im z > 0}, Rp = {Im z = p}.

Special function (r > 0, cot2(z) := cot(z/2)):

H(r , z) = −iS(r , e i (z)) = P.V.
∑
2|n

cot2(z − int).

Properties of H:

1. H(r , ·) is meromorphic in C with poles {2nπ + i2mr : n,m ∈ Z},
and each pole is simple with residue 2;

2. H(r , ·) is odd, and has period 2π;

3. H(r , z) ∈ R for z ∈ R \ {poles}, and ImH(r , z) = −1 for z ∈ Rr .
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Covering annulus Loewner equation of modulus p driven by ξ ∈ C ([0, p)):

∂t g̃t(z) = H(p − t, g̃t(z)− ξ(t)), g̃0(z) = z .

Covering hulls:

K̃t := {z ∈ Sp : τg̃ (z) ≤ t}, 0 ≤ t < p.

Properties of g̃t and K̃t :

1. g̃t : Sp \ K̃t
Conf
� Sp−t ;

2. dist(K̃t ,Rp) > 0;

3. If z ∈ R, g̃t(z) stays on R before it blows up;

4. If z ∈ Rp, g̃t(z) ∈ Rp−t for 0 ≤ t < p.
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Covering trace (when ξ(t) =
√
κB(t) + drift):

β̃(t) := lim
Sp3z→ξ(t)

g̃−1
t (z), 0 ≤ t < p.

Properties of β̃:

1. β̃ is continuous in Sp ∪ R.

2. β̃(0) = ξ(0) ∈ R.

3. If κ ∈ (0, 4], β̃ is simple, β̃(t) 6∈ R for t > 0, β̃ does not intersect

2nπ + β̃ for any n ∈ Z \ {0}, and K̃t =
⋃

n∈Z(2nπ + β̃((0, t])).

Relations between (gt ,Kt , β) and (g̃t , K̃t , β̃).

gt ◦ e i = e i ◦ g̃t , K̃t = (e i )−1(Kt), β = e i ◦ β̃.
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Another special function (r > 0):

HI (r , z) = i + H(r , z + ir) = P.V.
∑
2-n

cot2(z − int).

Facts:

1. HI (r , ·) takes real values on R;

2. If z ∈ Rp, then Re g̃t(z) satisfies

∂tRe g̃t(z) = HI (p − t,Re g̃t(z)− ξ(t)), 0 ≤ t < p.
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Annulus SLEκ (without additional force point) is the annulus Loewner
process driven by ξ(t) =

√
κB(t). The trace starts from 1 on T, and

ends at a random point on Tp. The process satisfies DMP.
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We now define SLE in a doubly connected domain, such that the curve
starts from one boundary point, and is affected by a force point on the
boundary, which is different from the initial point. There are two cases:

1. the force point and the initial point lie on the same boundary
component;

2. the two marked points lie on different boundary components.

We now focus on the second case.
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Suppose Λ(t, x) is C 1 on (0,∞)× R, and has period 2π in its second
variable. Let a ∈ T and b ∈ Tp. The annulus SLE(κ,Λ) process in Ap

started from a with force point b is defined as follows:

1. Pick x , y ∈ R such that a = e ix and b = e−p+iy .

2. Solve the following SDE:

dξ(t) =
√
κB(t) + Λ(p − t, ξ(t)− Re g̃ξt (y + ip)), ξ(0) = x

3. The annulus Loewner process driven by ξ is the annulus SLE(κ,Λ)
process to be defined.
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Remarks.

1. The definition does not depend on the choices of x and y because of
the periodicity of Λ.

2. For any Λ, the annulus SLE(κ,Λ) process satisfies DMP.

3. In general, the trace may not end at the force point. Even it does,
the reversibility may not hold.
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It was proved earlier that, if Λ satisfies the PDE:

∂tΛ =
κ

2
Λ′′ +

(
3− κ

2

)
H′′I + ΛH′I + Λ′HI + Λ′Λ, (1)

then an annulus SLE(κ; Λ) process commutes with an annulus
SLE(κ; Λ−) process growing in the same domain with the initial point
and force point exchanged, where Λ−(t, x) = −Λ(t,−x).

If, in addition, an annulus SLE(κ; Λ) trace a.s. ends at the force point,
then the reversal of an annulus SLE(κ; Λ) trace is an annulus SLE(κ; Λ−)
trace, up to some reparametrization. So the reversibility holds.
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If we condition an annulus SLE without force point to end at a marked
point on Tp, then we get an annulus SLE(κ,Λ) process. The Λ satisfies a
different PDE:

∂tΛ =
κ

2
Λ′′ + κH′′I + ΛH′I + Λ′HI + Λ′Λ.

This agrees with (1) only when κ = 2. For other κ, we need some
different method to find a solution of (1).
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For κ ∈ (0, 4], there is a special drift function Λκ which solves (1).
Moreover, the annulus SLE(κ; Λκ) process satisfies reversibility, and
serves as the intermediate process of a whole-plane SLEκ process. Such
Λκ is defined by the following.

First, we may transform (1) into a linear PDE using Λ = κΓ′

Γ :

∂tΓ =
κ

2
Γ′′ + HIΓ

′ +
6− κ

2κ
H′IΓ. (2)
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Define a rescaled Jacobi’s theta function ΘI (t, z) = θ2( z
2π ,

it
π )

=
∞∏

m=1

(1− e−2mt)(1− e−(2m−1)te iz)(1− e−(2m−1)te−iz).

Such ΘI solves ∂tΘI = Θ′′I , and HI can be expressed by HI = 2
Θ′I
ΘI

.

Let Ψ = ΓΘ
2/κ
I . It is straightforward to check that Γ solves (2) iff Ψ

solves another linear PDE (σ = 4
κ − 1):

∂tΨ =
κ

2
Ψ′′ + σH′IΨ. (3)
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We now rescale Ψ. The followings are equivalent:

Ψ̂(t, x) = e
x2

2κt

(π
t

)σ+ 1
2

Ψ
(π2

t
,
π

t
x
)

;

Ψ(t, x) = e−
x2

2κt

(π
t

)σ+ 1
2

Ψ̂
(π2

t
,
π

t
x
)
.

Define another special function ĤI by (tanh2(z) := tanh(z/2))

ĤI (t, z) = P.V.
∑
2|n

tanh2(z − nt).

One may check that Ψ solves (3) iff Ψ̂ solves another linear PDE:

−∂tΨ̂ =
κ

2
Ψ̂′′ + σĤ

′
I Ψ̂. (4)
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As t →∞, ĤI → tanh2, so equation (4) tends to

−∂tΨ̂ =
κ

2
Ψ̂′′ + σ tanh′2 Ψ̂,

which has a simple solution (τ = κ
2 − 2, cosh2(x) := cosh(x/2)):

Ψ̂∞(t, x) = e−
τ2t
2κ cosh

2
κ τ
2 (x).

Let Ψ̂q = Ψ̂/Ψ̂∞ and ĤI ,q = ĤI − tanh2. Then Ψ̂ solves (4) iff Ψ̂q solves
another linear PDE:

−∂tΨ̂q =
κ

2
Ψ̂′′q + τ tanh2 Ψ̂′q + σĤ

′
I ,qΨ̂q. (5)
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PDE (5) can be solved by a Feynman-Kac formula. Let Xx(t) be a
diffusion process which satisfies SDE:

dXx(t) =
√
κdB(t) + τ tanh2(Xx(t))dt, Xx(0) = x .

One solution of (5) is given by

Ψ̂q(t, x) = E
[

exp
(
σ

∫ ∞
0

Ĥ
′
I ,q(t + s,Xx(s))ds

)]
.

It takes some work (using estimation of diffusion processes and Fubini’s

theorem) to show that Ψ̂q is C 1,2 differentiable. Once this is done, we

may apply Itô’s formula to show that Ψ̂q solves (5).
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may apply Itô’s formula to show that Ψ̂q solves (5).

Dapeng Zhan Restriction Properties of Annulus SLE



Introduction
Intermediate Whole-Plane SLE

Restriction

Annulus Loewner equation
Annulus SLE with one force point
The particular drift function
Decomposition in the covering space

PDE (5) can be solved by a Feynman-Kac formula. Let Xx(t) be a
diffusion process which satisfies SDE:

dXx(t) =
√
κdB(t) + τ tanh2(Xx(t))dt, Xx(0) = x .

One solution of (5) is given by

Ψ̂q(t, x) = E
[

exp
(
σ

∫ ∞
0

Ĥ
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Let Ψ̂0 = Ψ̂∞Ψ̂q. Then Ψ̂0 solves (4). Define Ψ0 using the rescaling

rule. Then Ψ0 solves (3). Let Γ0 = Ψ0Θ
−2/κ
I . Then Γ0 solves (2). All of

these functions are positive. Let Λ0 = κ
Γ′0
Γ0

. Then Λ0 solves (1).

However, Λ0 does not have period 2π in its second variable. To fix this
problem, we do the following. Let Γm(t, x) = Γ0(t, x − 2mπ), m ∈ Z.
Since H has period 2π in its second variable, every Γm also solves the
linear PDE (2). Let

Γ =
∑
m∈Z

Γm.

Some estimations show that the series of functions together with all of
their derivatives converge locally uniformly. Thus, Γ also solves (2). The

special drift function Λκ is defined to be Λκ = κΓ′

Γ .
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The annulus SLE(κ,Λκ) trace starts from the initial point a = e ix , and
ends at the force point b = e−p+iy . The covering trace starts from x ,
and may end at y + 2mπ + pi for some m ∈ Z. We may decompose this
process according to the endpoint of the covering trace.

Recall that the driving function ξ solves the SDE:

dξ(t) =
√
κdB(t) + Λκ(p − t, ξ(t)− Re g̃ξt (y + pi))dt, ξ(0) = x .

The drift function Λκ is given by Λκ = κΓ′

Γ , where Γ =
∑

m∈Z Γm, and
Γm(t, x) = Γ0(t, x − 2mπ).
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Let ym = y + 2mπ, m ∈ Z. Suppose ξm solves the following SDE:

dξm(t) =
√
κdB(t) + Λ0(p − t, ξ(t)− Re g̃ξmt (ym + pi))dt, ξ(0) = x .

The covering trace driven by ξm starts from x and ends at ym + pi , and
µξ is a convex combination of the µξm ’s:

µξ =
∑
m∈Z

Γm(p, x − y)

Γ(p, x − y)
µξm .

We call the annulus Loewner process driven by ξm a conditional annulus
SLE(κ,Λκ) process (with initial point x and force point ym + pi).
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Theorem 1

Let p > 0, a = e ix ∈ T, and b = e−p+iy ∈ Tp. Let β be an annulus
SLE(κ,Λκ) trace in Ap from a to b, and let µ denote its distribution.
Let L be a relatively closed subset of Ap such that Ap \ L is a doubly
connected domain and contains the neighborhoods of a and b. Define a
new probability measure µL by

dµL

dµ
=

1β∩L=∅

Z
exp(cµloop(L(Ap;β, L))),

where Z > 0 is some normalization constant, and L(Ap;β, L) is the set of
the loops in Ap that intersect both β and L. Then µL is the distribution
of a reparameterized annulus SLE(κ,Λκ) curve in Ap \ L from a to b.
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Let pL = mod(Ap \ L) and L̃ = (e i )−1(L). We may find WL and W̃L such
that

WL : (Ap \ L;Tp)
Conf
� (ApL ;TpL);

W̃L : (Sp \ L̃;Rp)
Conf
� (SpL ;RpL);

WL ◦ e i = e i ◦ W̃L.

Let ξ(t) =
√
κB(t) plus a drift, 0 ≤ t < p, such that ξ(0) = x . Let β be

the annulus Loewner trace of modulus p driven by ξ, and let β̃ and g̃t be
the covering trace and maps. Recall that β̃(0) = ξ(0) = x and
β(0) = e ix = a.

Dapeng Zhan Restriction Properties of Annulus SLE



Introduction
Intermediate Whole-Plane SLE

Restriction

Change of domains
Radon-Nikodym derivative
The proof
Other results

Let pL = mod(Ap \ L) and L̃ = (e i )−1(L). We may find WL and W̃L such
that

WL : (Ap \ L;Tp)
Conf
� (ApL ;TpL);

W̃L : (Sp \ L̃;Rp)
Conf
� (SpL ;RpL);

WL ◦ e i = e i ◦ W̃L.

Let ξ(t) =
√
κB(t) plus a drift, 0 ≤ t < p, such that ξ(0) = x . Let β be

the annulus Loewner trace of modulus p driven by ξ, and let β̃ and g̃t be
the covering trace and maps. Recall that β̃(0) = ξ(0) = x and
β(0) = e ix = a.

Dapeng Zhan Restriction Properties of Annulus SLE



Introduction
Intermediate Whole-Plane SLE

Restriction

Change of domains
Radon-Nikodym derivative
The proof
Other results

Let TL be the first time that β(t) ∈ L. If such time does not exist, set
TL = p. For 0 ≤ t < TL, let βL(t) = WL(β(t)), and

v(t) = pL −mod(ApL \ βL((0, t])).

Then βL is an annulus Loewner trace via the time-change v(t). This
means that there exist ξL ∈ C ([0,TL)) and two families of conformal
maps gL

t and g̃L
t , 0 ≤ t < TL, such that

gL
t : ApL \ βL((0, t])

Conf
� ApL−v(t);

gL
t ◦ e i = e i ◦ g̃L

t ;

∂t g̃
L
t (z) = v ′(t)H(pL − v(t), g̃L

t (z)− ξL(t)).
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Define
W̃t = g̃L

t ◦ W̃L ◦ g̃−1
t , 0 ≤ t < TL.

Then

W̃t : Sp−t \ g̃t(L̃)
Conf
� SpL−v(t).

Some standard arguments show that

1. v ′(t) = W̃ ′t (ξ(t))2;

2. ξL(t) = W̃t(ξ(t));

3. ∂tW̃t(x)|x=ξ(t) = −3W̃ ′′t (ξ(t)).

Write Aj(t) = W̃
(j)
t (ξ(t)). From Itô’s formula, we have

dξL(t) = A1(t)dξ(t) +
(κ

2
− 3
)
A2(t)dt.
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Fix m ∈ Z. Let ym = y + 2mπ. Let

Xm(t) = ξ(t)− Re g̃t(ym + pi), XL,m(t) = ξL(t)− Re g̃L
t (W̃L(ym + pi)).

Ym(t) = Γ0(p − t,Xm(t)), YL,m(t) = Γ0(pL − v(t),XL,m(t)).

Recall that Aj(t) = W̃
(j)
t (ξ(t)). Let

AI (t) = W̃ ′t (g̃t(y + pi)), AS(t) =
A3(t)

A1(t)
− 3

2

(A2(t)

A1(t)

)2

.

So AS(t) is the Schwarzian derivative of W̃t at ξ(t).
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Let α = 6−κ
2κ . Define

Mm(t) = A1(t)αAI (t)α
YL,m(t)

Ym(t)
exp

(
− c

6

∫ t

0

AS(s)ds+α

∫ pL−v(t)

p−t
r(s)ds

)
,

where r(s) is a coefficient in the Laurent expansion of H(s, ·) at 0:

H(s, z) =
2

z
+ r(s)z + O(z3).

One may check that Mm(t) is a semi-martingale, and satisfies

dMm(t)

Mm(t)
=
[(

3− κ

2

)A2(t)

A1(t)
+ A1(t)Λ0(pL − v(t),XL,m(t))

−Λ0(p − t,Xm(t))
]
· (dξ(t)− Λ0(p − t,Xm(t))).
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Suppose now ξ is the solution of

dξ(t) =
√
κdB(t) + Λ0(p − t,Xm(t))dt, ξ(0) = x . (6)

Then Mm is a local martingale. Since Xm(t) = ξ(t)− Re g̃t(ym + pi), we
see that ξ generates a conditional annulus SLE(κ,Λκ) process, and a.s.

limt→p β̃(t) = ym + pi .

Girsanov theorem implies that, if Mm(t) is uniformly bounded on [0,S ]
for some stopping time S ≤ TL, and if the original probability measure is
weighted by Mm(S)/Mm(0), then ξ(t), 0 ≤ t ≤ S , satisfies

dξ(t) =
√
κdB̃(t) + A1(t)Λ0(pL − v(t),XL,m(t))dt +

(
3− κ

2

)A2(t)

A1(t)
dt,

(7)

where B̃(t) is a Brownian motion under the new measure.
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Since dξL(t) = A1(t)dξ(t) + (κ2 − 3)A2(t)dt, we find

dξL(t) = A1(t)
√
κdB̃(t) + A1(t)2Λ0(pL − v(t),XL,m(t))dt.

Since XL,m(t) = ξL(t)− g̃L
t (W̃L(ym + pi)) and v ′(t) = A1(t)2, under the

new measure, βL ◦ v−1 up to time v(S) is a conditional annulus
SLE(κ; Λκ) trace in ApL . So under the new measure, β up to S is a
reparameterized conditional annulus SLE(κ; Λκ) trace in Ap \ L.

Let µm and µL,m denote the distributions of the solutions to (6) and (7),
respectively. Then we have

Mm(S)

Mm(0)
=

dµL,m|FS

dµm|FS

.
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We may decompose Mm(t) into the product Mm(t) = Nm(t) exp(cU(t)),

where U(t) = µloop(L(Ap;β((0, t]), L)). The integral
∫ t

0
AS(s)ds is

included in the formula for U(t). Let Em denote the event that

limt→p β̃(t) = ym + pi , which happens a.s. if ξ solves (6).

There are two lemmas for Nm(t).

Lemma 1

On the event {TL = p} ∩ Em, we have

lim
t→p

Nm(t) = Cp,pL ,

which is a positive constant depending only on p and pL.
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Let Pm denote the set of (ρ1, ρ2) with the following properties.

1. For j = 1, 2, ρj is a polygonal crosscut in Sp that grows from R to
Rp, whose line segments are parallel to either x-axis or y -axis, and
whose vertices other than the end points have rational coordinates.

2. ρ1 + 2jπ, ρ2 + 2kπ, j , k ∈ Z, and L̃ are mutually disjoint.

3. ρ1 ∪ ρ2 disconnects x and ym + pi from L̃ in Sp.
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For each (ρ1, ρ2) ∈ Pm, let Tρ1,ρ2 denote the first time that β̃ hits

ρ1 ∪ ρ2. If such time does not exist, set Tρ1,ρ2 = p. Since β̃ starts from

x , and ρ1 ∪ ρ2 separates x from L̃, Tρ1,ρ2 ≤ TL.

Lemma 2

For each (ρ1, ρ2) ∈ Pm, ln(Nm(t)) is uniformly bounded on [0,Tρ1,ρ2 ) by
a constant depending only on p, L, ρ1, ρ2.
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Now we study the properties of U(t). We know that U is nonnegative
and increasing in t. For any (ρ1, ρ2) ∈ Pm, we have

U(Tρ1,ρ2 ) ≤ µloop(L(Ap; e i (ρ1) ∪ e i (ρ2), L)).

Since dist(e i (ρ1) ∪ e i (ρ2), L) > 0, it is shown [Lawler-Werner] that the
righthand side is finite. Thus, U(t) is uniformly bounded on [0,Tρ1,ρ2 ].

Since Mm(t) = Nm(t) exp(cU(t)), Mm(t) is uniformly bounded on
[0,Tρ1,ρ2 ]. So

Mm(Tρ1,ρ2 )

Mm(0)
=

dµL,m|FTρ1,ρ2

dµm|FTρ1,ρ2

.

Especially, on the event {Tρ1,ρ2 = p},

dµL,m

dµm
=

Mm(p)

Mm(0)
=

Cp,pL

Mm(0)
exp(cµloop(L(Ap;β, L))). (8)
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Recall that Em = {limt→p β̃(t) = ym + pi}. It is easy to check that

{TL = p} ∩ Em ⊂
⋃

(ρ1,ρ2)∈Pm

{Tρ1,ρ2 = p}.

Since µm is supported by Em, we find that (8) holds on the event
{TL = p} = {β ∩ L = ∅}.

On the other hand, since µL,m is supported by {β ∩ L = ∅}, we have

dµL,m

dµm
=

1β∩L=∅

Mm(0)
Cp,pLµloop(L(Ap;β, L)).

Setting xL = W̃L(x) and yL = Re W̃L(y + pi), we get

Mm(0) =
Γm(pL, xL − yL)

Γm(p, x − y)
.
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Recall that if µ is the distribution of the driving function of an annulus
SLE(κ,Λκ) trace in Ap from e ix to e−p+iy , then

µ =
∑
m∈Z

Γm(p, x − y)

Γ(p, x − y)
µm.

Similarly, if µL is the distribution of the driving function of an annulus
SLE(κ,Λκ) trace in Ap \ L from e ix to e−p+iy , then

µL =
∑
m∈Z

Γm(pL, xL − yL)

Γ(pL, xL − yL)
µL,m.

Therefore,

dµL

dµ
=

Γ(pL, xL − yL)

Γ(p, x − y)
Cp,pL1β∩L=∅ exp(cµloop(L(Ap;β, L))),

which finishes the proof with Z = Γ(p, x − y)/(Γ(pL, xL − yL)Cp,L).
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The following theorem connects annulus SLE(κ,Λκ) with chordal SLEκ.
This theorem shows that the annulus SLE(κ,Λκ) process agrees with the
annulus SLEκ defined by Lawler.

Theorem 2

With other conditions the same as in Theorem 1 except that now Ap \ L
is a simply connected domain, µL is the distribution of a reparameterized
chordal SLEκ trace in Ap \ L from a to b.
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Theorem 2 can be used to construct multiple disjoint SLEκ curves
crossing an annulus.

Definition

Let n ≥ 2. Let a1, . . . , an (resp. b1, . . . , bn) be distinct points on T (resp.
Tp) that are oriented counterclockwise. A random n-tuple of disjoint
curves (β1, . . . , βn) is called a multiple SLEκ in Ap from (a1, . . . , an) to
(b1, . . . , bn), if for any j ∈ {1, . . . , n}, conditioned on all other n−1 curves,
βj is a chordal SLE(κ) trace from aj to bj that grows in Dj , which is the
subregion in Ap bounded by βj−1 and βj+1 (β0 := βn and βn+1 := β1)
that has aj and bj as its boundary points.
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The picture shows multiple SLE with n = 4. When the 3 blue curves are
known, the red curve is a chordal SLEκ that grows in the grey region.
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The following result resembles the work by Kozdron and Lawler for
simply connected domains.

Corollary

Let Ap, n, aj , bj be as in the definition. For 1 ≤ j ≤ n, let βj be an annulus
SLE(κ,Λκ) curve in Ap from aj to bj , and let µβj denote its distribution.
Define a new probability measure µM by

dµM∏
j µβj

=
1Edisj

Z
exp

(
c

n∑
k=1

(k − 1)µloop(Lk)
)
, (9)

where Z > 0 is some normalization constant, Edisj is the event that βj ,
1 ≤ j ≤ n, are mutually disjoint, and Lk is the set of loops in Ap that
intersect at exactly k curves among β1, . . . , βn. Then µM is the distribution
of a multiple SLEκ in Ap from (a1, . . . , an) to (b1, . . . , bn).
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Proof. Fix j ∈ {1, . . . , n}. Let E jdisj denote the event that βk , k 6= j , are

mutually disjoint. When E jdisj occurs, let Dj be as in the definition, and
Lj = Ap \ Dj . The key step is that the righthand side of (9) can be
written as

Cj1{βj∩Lj=∅} exp(cµloop(L(Ap;βj , Lj))),

where Cj is measurable w.r.t. the σ-algebra generated by βk , k 6= j .

Let µM
j denote the conditional distribution of βj when (β1, . . . , βn) ∼ µM

and all βk other than βj are given. Then

dµM
j

dµj

∣∣∣
{βk :k 6=j}

= Cj1{βj∩Lj=∅} exp(cµloop(L(Ap;βj , Lj))).

From Theorem 2 we conclude that µM
j is the distribution of a

time-change of a chordal SLE(κ) trace in Ap \ Lj = Dj from aj to bj . 2
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Thank you!
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