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Introduction

In the proof of the reversibility of whole-plane SLE,; (x € (0,4]), the
annulus SLE(k, A,;) processes arise as the intermediate processes of the
whole-plane SLE,.
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Introduction

In the proof of the reversibility of whole-plane SLE,; (x € (0,4]), the
annulus SLE(k, A,;) processes arise as the intermediate processes of the
whole-plane SLE,.

This means that, given an initial segment and a final segment of a
whole-plane SLE,; curve, the middle part of the whole-plane SLE, curve
is an annulus SLE(k, A,;) curve growing in the complement of the two
segments from one tip point to the other tip point.
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Introduction

Annulus SLE(k, A,;) is defined using the annulus Loewner equation. The
driving term is \/kB(t) plus a drift function, which is determined by a
function A.. The process generates a random curve, which
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Introduction

Annulus SLE(k, A,;) is defined using the annulus Loewner equation. The
driving term is \/kB(t) plus a drift function, which is determined by a
function A.. The process generates a random curve, which

1. grows in a doubly connected domain,
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Introduction

Annulus SLE(k, A,;) is defined using the annulus Loewner equation. The
driving term is \/kB(t) plus a drift function, which is determined by a
function A.. The process generates a random curve, which

1. grows in a doubly connected domain,
2. starts from one boundary point,
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Introduction

Annulus SLE(k, A,;) is defined using the annulus Loewner equation. The
driving term is \/kB(t) plus a drift function, which is determined by a
function A.. The process generates a random curve, which

1. grows in a doubly connected domain,
2. starts from one boundary point,

3. ends at another boundary point, which lies on a different boundary
component as the initial point,
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Introduction

Annulus SLE(k, A,;) is defined using the annulus Loewner equation. The
driving term is \/kB(t) plus a drift function, which is determined by a
function A.. The process generates a random curve, which

1. grows in a doubly connected domain,
2. starts from one boundary point,

3. ends at another boundary point, which lies on a different boundary
component as the initial point,

4. satisfies Domain Markov Property (DMP) and reversibility.
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Introduction

Annulus SLE(k, A,;) is defined using the annulus Loewner equation. The
driving term is \/kB(t) plus a drift function, which is determined by a
function A.. The process generates a random curve, which

1. grows in a doubly connected domain,
2. starts from one boundary point,

3. ends at another boundary point, which lies on a different boundary
component as the initial point,

4. satisfies Domain Markov Property (DMP) and reversibility.

The reversibility of annulus SLE(x, A,;) is related to the reversibility of
whole-plane SLE,.
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Introduction

In this talk, | will discuss the restriction properties of the annulus
SLE(k,A,;) process. Throughout, fix x € (0,4], let c = W be
the central charge, and let po0p denote the Brownian loop measure.
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Introduction

In this talk, | will discuss the restriction properties of the annulus
SLE(k,A,;) process. Throughout, fix x € (0,4], let c = w be
the central charge, and let po0p denote the Brownian loop measure.

Theorem 1 [Z, 2011]

Let p >0, x,y € R, a= €% and b = e P, Let # be an annulus
SLE(k,Ax) trace in A, := {1 > |z| > e~ P} from a to b, and let u denote
its distribution. Let L be a relatively closed subset of A, such that A, \ L
is a doubly connected domain and contains the neighborhoods of a and b.
Define a new probability measure p; by

dpe 1gni—p
T‘u = 5ﬁz eXp(CMIoop([’(Ap;ﬁv L)))7

where Z > 0 is some normalization constant, and E(Ap; B, L) is the set of
the loops in A, that intersect both 3 and L. Then py, is the distribution
of a reparameterized annulus SLE(x, A,;) curve in A, \ L from a to b.
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Introduction

If kK = 8/3, then ¢ = 0. The theorem implies that, 3 conditioned to avoid
L is an annulus SLE(k, A,;) trace in A, \ L, up to a reparametrization.
For other k, we get the “weak” restriction property.
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Introduction

If kK = 8/3, then ¢ = 0. The theorem implies that, 3 conditioned to avoid
L is an annulus SLE(k, A,;) trace in A, \ L, up to a reparametrization.
For other k, we get the “weak” restriction property.

The theorem resembles the restriction theorem for chordal SLE
[Lawler-Schramm-Werner, 2003], which says that, if A, is replaced by a
simply connected domain D, if D\ L is also a simply connected domain,
and if 8 is a chordal SLE, trace, then i is the distribution of a
reparameterized chordal SLE,; trace in D\ L.
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Introduction

If kK = 8/3, then ¢ = 0. The theorem implies that, 3 conditioned to avoid
L is an annulus SLE(k, A,;) trace in A, \ L, up to a reparametrization.
For other k, we get the “weak” restriction property.

The theorem resembles the restriction theorem for chordal SLE
[Lawler-Schramm-Werner, 2003], which says that, if A, is replaced by a
simply connected domain D, if D\ L is also a simply connected domain,
and if 8 is a chordal SLE, trace, then i is the distribution of a
reparameterized chordal SLE,; trace in D\ L.

It turns out that the annulus SLE(k, A,;) process agrees with the annulus
SLE constructed by Gregory Lawler recently.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Symbols (p > 0):

Ap={eP <zl <1}, T={[z| =1}, T,={lz|=e"}.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Symbols (p > 0):
Ap={eP <l <1}, T={lz=1}, T,={lzl=e"}.
Special function (r > 0):

M

] e2kr_|_z
S(r,z) = lim S
M—o00 eskr — z

k=—M
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Symbols (p > 0):
A,={e"P<|z| <1}, T={z|=1}, T,={lz|=e"P}.

Special function (r > 0):
M

] e2kr_|_z
S(r,z) = lim S
M—o00 " eskr — z

Annulus Loewner equation of modulus p driven by £ € C([0, p)):

0:8:(2) = g:(2)S(p — t.g:(2) /€M), go(z) = z.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Symbols (p > 0):
Ap={eP <l <1}, T={lz=1}, T,={lzl=e"}.
Special function (r > 0):
m 2kr
. e +z
Sna)=lim, 2.

Annulus Loewner equation of modulus p driven by £ € C([0, p)):
0:g:(2) = £:(2)S(p — t,8:(2) /1Y), go(2) = z.

Hulls:
Kii={ze A, 15(z) <t}, 0<t<p.
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Conf
1. gt:Ap\Kt —» Apft;

Dapeng Zhan n Properties of Annulus SLE




Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Properties of g; and K;:

Conf
1. gt:Ap\Kt —» Apft;

2. dist(K¢, Tp) > 0 and mod(A, \ K¢) = p — t;
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Properties of g; and K;:

Conf
1. gt:Ap\Kt —» Apft;

2. dist(K¢, Tp) > 0 and mod(A, \ K¢) = p — t;
3. If ze T, gi(z) stays on T before it blows up;
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Properties of g; and K;:

Conf
8t - Ap \ Ke — Apft;

dist(K:, Tp) > 0 and mod(A, \ K¢) =p— t;
If z€ T, gi(z) stays on T before it blows up;
If z S Tp, gt(Z) S Tp—t for 0 S t < pP.

e
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Properties of g; and K;:

Conf
8t - Ap \ Ke — Apft;

dist(K:, Tp) > 0 and mod(A, \ K¢) =p— t;
If z€ T, gi(z) stays on T before it blows up;
If z S Tp, gt(Z) S Tp—t for 0 S t < pP.

e

Trace (when £(t) = /kB(t) + drift):

B(t):= lim g '(z), 0<t<p.

Ap_Dz—eit(®)
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The particular drift function
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Properties of 3:
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Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Properties of 3:

1. B is continuous in A, UT.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Properties of 3:

1. B is continuous in A, UT.
2. B(0) = €€ ¢ T,
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Annulus Loewner equation
Annulus SLE with one force point

Intermediate Whole-Plane SLE

Decomposition in the covering space

Properties of 3:

1. B is continuous in A, UT.

2. B(0) = €€ ¢ T,

3. If k € (0,4], B is simple, B(t) ¢ T for t > 0, and K; = 5((0, t]) for
0<t<p.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Properties of 3:

1. B is continuous in A, UT.

2. B(0) = €€ ¢ T,

3. If k € (0,4], B is simple, B(t) ¢ T for t > 0, and K; = 5((0, t]) for
0<t<p.

4. In the above case, § satisfies mod(A, \ 3((0, t])) = p — t. On the
other hand, if a simple curve satisfies these properties, then it is an
annulus Loewner trace driven by some continuous &.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

We may lift everything to the covering space. Symbols (p > 0):

e(z)=e? S,={p>Imz>0}, R,={lmz=p}.
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Annulus Loewner equation
Annulus SLE with one force point

Intermediate Whole-Plane SLE

Decomposition in the covering space

We may lift everything to the covering space. Symbols (p > 0):
e(z)=e? S,={p>Imz>0}, R,={lmz=p}.
Special function (r > 0, cota(z) := cot(z/2)):

H(r,z) = —iS(r,e'(2)) = P.V. ) coty(z — int).

2|n
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Annulus Loewner equation
Annulus SLE with one force point

Intermediate Whole-Plane SLE

Decomposition in the covering space

We may lift everything to the covering space. Symbols (p > 0):
e(z)=e? S,={p>Imz>0}, R,={lmz=p}.
Special function (r > 0, cota(z) := cot(z/2)):

H(r,z) = —iS(r,e'(2)) = P.V. ) coty(z — int).

2|n

Properties of H:
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

We may lift everything to the covering space. Symbols (p > 0):
e(z)=e? S,={p>Imz>0}, R,={lmz=p}.
Special function (r > 0, cota(z) := cot(z/2)):

H(r,z) = —iS(r,e'(2)) = P.V. ) coty(z — int).

2|n
Properties of H:

1. H(r,-) is meromorphic in C with poles {2n7 + i2mr : n,m € Z},
and each pole is simple with residue 2;

Dapeng Zhan Restriction Properties of Annulus SLE



Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

We may lift everything to the covering space. Symbols (p > 0):
e(z)=e? S,={p>Imz>0}, R,={lmz=p}.
Special function (r > 0, cota(z) := cot(z/2)):

H(r,z) = —iS(r,e'(2)) = P.V. ) coty(z — int).

2|n
Properties of H:

1. H(r,-) is meromorphic in C with poles {2n7 + i2mr : n,m € Z},
and each pole is simple with residue 2;

2. H(r,-) is odd, and has period 27;
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

We may lift everything to the covering space. Symbols (p > 0):
e(z)=e? S,={p>Imz>0}, R,={lmz=p}.
Special function (r > 0, cota(z) := cot(z/2)):

H(r,z) = —iS(r,e'(2)) = P.V. ) coty(z — int).
2|n
Properties of H:

1. H(r,-) is meromorphic in C with poles {2n7 + i2mr : n,m € Z},
and each pole is simple with residue 2;

2. H(r,-) is odd, and has period 27;
3. H(r,z) € R for z € R\ {poles}, and ImH(r,z) = —1 for z € R,.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Covering annulus Loewner equation of modulus p driven by £ € C([0, p)):

at'gt'(z) = H(p - tagt(z) - E(t))a §0(Z) =z

Dapeng Zhan Restri n Properties of Annulus SLE



Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Covering annulus Loewner equation of modulus p driven by £ € C([0, p)):
at'gt'(z) = H(p - tagt(z) - E(t))a §0(Z) =Z.
Covering hulls:

Rt::{zeSp:TE(z)gt}, 0<t<p.
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Annulus Loewner equation
Annulus SLE with one force point

Intermediate Whole-Plane SLE

Decomposition in the covering space

Covering annulus Loewner equation of modulus p driven by £ € C([0, p)):
0:8e(z) = H(p — t,8:(2) — £(1)),  &(2) = z.
Covering hulls:
K. ={zeS,:13(z) <t}, 0<t<p.

Properties of g; and K;:
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Annulus Loewner equation
Annulus SLE with one force point

Intermediate Whole-Plane SLE

Decomposition in the covering space

Covering annulus Loewner equation of modulus p driven by £ € C([0, p)):
0:8e(z) = H(p — t,8:(2) — £(1)),  &(2) = z.
Covering hulls:
K. ={zeS,:13(z) <t}, 0<t<p.
Properties of g; and K;:

- ~ Conf
L gt:Sp\Kt — Sp_t;
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Covering annulus Loewner equation of modulus p driven by £ € C([0, p)):
0:8e(z) = H(p — t,8:(2) — £(1)),  &(2) = z.
Covering hulls:
K. ={zeS,:13(z) <t}, 0<t<p.
Properties of g; and K;:
1 g Sp\Ke = Spa
2. dist(K;, R,) > 0;
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Covering annulus Loewner equation of modulus p driven by £ € C([0, p)):
0:8e(z) = H(p — t,8:(2) — £(1)),  &(2) = z.
Covering hulls:
K. ={zeS,:13(z) <t}, 0<t<p.

Properties of g; and K;:

- ~ Conf
L gt:Sp\Kt — Sp_t;

2. dist(K;, R,) > 0;
3. If z € R, gi(z) stays on R before it blows up;
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Covering annulus Loewner equation of modulus p driven by £ € C([0, p)):
0:8e(z) = H(p — t,8:(2) — £(1)),  &(2) = z.
Covering hulls:
K. ={zeS,:13(z) <t}, 0<t<p.

Properties of g; and K;:

- ~ Conf
: gt:Sp\Kt — Sp_t;

1
2. dist(K;, R,) > 0;

3. If z € R, gi(z) stays on R before it blows up;
4. Ifze Ry, gi(z) € Rp—t for 0 < t < p.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Covering trace (when &(t) = /kB(t) + drift):

B(t):= lim g Yz), 0<t<p.
B(t) o oim. 8 (2) <t<p
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Decomposition in the covering space
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Covering trace (when &(t) = /kB(t) + drift):

B(t):= lim g Yz), 0<t<p.
B(t) o oim. 8 (2) <t<p

Properties of B:

1. f is continuous in SpUR.
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Annulus Loewner equation
Annulus SLE with one force point

Intermediate Whole-Plane SLE

Decomposition in the covering space
Covering trace (when &(t) = /kB(t) + drift):

B(t):= lim g Yz), 0<t<p.
B(t) o oim. 8 (2) <t<p

Properties of B:

1. f is continuous in SpUR.

2. B(0) = £(0) € R.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Covering trace (when &(t) = /kB(t) + drift):

B(t):= lim g Yz), 0<t<p.
B(t) o oim. 8 (2) <t<p

Properties of B:

1. f is continuous in SpUR.

2. B(0) = ¢£(0) € R.

3. If k€ (0,4], 3 is simple, B(t) R for t > 0, 3 does not intersect
2nm + B3 for any n € Z\ {0}, and K, = Unez(2nm 4 B((0, t])).
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Covering trace (when &(t) = /kB(t) + drift):

B(t):= lim g Yz), 0<t<p.
B(t) o oim. 8 (2) <t<p

Properties of B:

1. f is continuous in SpUR.

2. B(0) = ¢£(0) € R.

3. If k€ (0,4], 3 is simple, B(t) R for t > 0, 3 does not intersect
2nm + B3 for any n € Z\ {0}, and K, = Unez(2nm 4 B((0, t])).

Relations between (g, K¢, 8) and (g, Rt,B).

8t ©° e =¢ o gt, Rt = (ei)il(Kt)v B= e'o B
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Another special function (r > 0):

H/(r,z)=i+H(r,z+ir)=P.V. Zcotg(z — int).
2tn

Dapeng Zhan on Properties of Annulus SLE



Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Another special function (r > 0):

H/(r,z)=i+H(r,z+ir)=P.V. Zcotg(z — int).
2tn

Facts:

1. Hy(r,-) takes real values on R;
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Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Another special function (r > 0):

H/(r,z)=i+H(r,z+ir)=P.V. Zcotg(z — int).
2tn

Facts:

1. Hy(r,-) takes real values on R;
2. If z € Ry, then Re g;(z) satisfies

OrReg:(z) = H/(p — t,Regi(z) — (1)), 0<t<p.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Gt 13 witth oo (s el

The particular drift function
Decomposition in the covering space

Intermediate Whole-Plane SLE

Annulus SLE with one force point
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Annulus Loewner equation

Annulus SLE with one force point
lar drift function

Duumpm.tmn in the covering space

Intermediate Whole-Plane SLE

Annulus SLE,; (without additional force point) is the annulus Loewner
process driven by &(t) = /kB(t). The trace starts from 1 on T, and
ends at a random point on T,. The process satisfies DMP.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Gt 13 witth oo (s el

The particular drift function
Decomposition in the covering space

We now define SLE in a doubly connected domain, such that the curve
starts from one boundary point, and is affected by a force point on the
boundary, which is different from the initial point. There are two cases:
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Annulus Loewner equation

Intermediate Whole-Plane SLE (i 13 neliorcelpoint

The particular drift function
Decomposition in the covering space

We now define SLE in a doubly connected domain, such that the curve
starts from one boundary point, and is affected by a force point on the
boundary, which is different from the initial point. There are two cases:

1. the force point and the initial point lie on the same boundary
component;
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Annulus Loewner equation

Intermediate Whole-Plane SLE Gt 13 witth oo (s el

The particular drift function
Decomposition in the covering space

We now define SLE in a doubly connected domain, such that the curve
starts from one boundary point, and is affected by a force point on the
boundary, which is different from the initial point. There are two cases:

1. the force point and the initial point lie on the same boundary
component;

2. the two marked points lie on different boundary components.
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Annulus Loewner equation

Intermediate Whole-Plane SLE Gt 13 witth oo (s el

The particular drift function
Decomposition in the covering space

We now define SLE in a doubly connected domain, such that the curve
starts from one boundary point, and is affected by a force point on the
boundary, which is different from the initial point. There are two cases:

1. the force point and the initial point lie on the same boundary
component;

2. the two marked points lie on different boundary components.

We now focus on the second case.
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Suppose A(t, x) is C! on (0,00) x R, and has period 27 in its second
variable. Let a € T and b € T,. The annulus SLE(x,A) process in A,
started from a with force point b is defined as follows:
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Decomposition in the covering space

Suppose A(t, x) is C! on (0,00) x R, and has period 27 in its second
variable. Let a € T and b € T,. The annulus SLE(x,A) process in A,
started from a with force point b is defined as follows:

1. Pick x,y € R such that a=e* and b = e PT¥.
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Decomposition in the covering space

Suppose A(t, x) is C! on (0,00) x R, and has period 27 in its second
variable. Let a € T and b € T,. The annulus SLE(x,A) process in A,
started from a with force point b is defined as follows:

1. Pick x,y € R such that a=e* and b = e PT¥.
2. Solve the following SDE:

dé(t) = VEB(t) + A(p — t,&(t) — Reg (y +ip)),  £(0) = x
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Intermediate Whole-Plane SLE The particular drift function

Decomposition in the covering space

Suppose A(t, x) is C! on (0,00) x R, and has period 27 in its second
variable. Let a € T and b € T,. The annulus SLE(x,A) process in A,
started from a with force point b is defined as follows:

1. Pick x,y € R such that a=e* and b = e PT¥.
2. Solve the following SDE:

dé(t) = VEB(t) + A(p — t,&(t) — Reg (y +ip)),  £(0) = x

3. The annulus Loewner process driven by ¢ is the annulus SLE(x, A)
process to be defined.
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Remarks.

1. The definition does not depend on the choices of x and y because of
the periodicity of A.
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Remarks.

1. The definition does not depend on the choices of x and y because of
the periodicity of A.

2. For any A, the annulus SLE(k, A) process satisfies DMP.
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Decomposition in the covering space

Remarks.

1. The definition does not depend on the choices of x and y because of
the periodicity of A.

For any A, the annulus SLE(x, A) process satisfies DMP.

In general, the trace may not end at the force point. Even it does,
the reversibility may not hold.

Dapeng Zhan Restriction Properties of Annulus SLE



Annulus Loewner equation

Intermediate Whole-Plane SLE Gt 13 witth oo (s el

The particular drift function
Decomposition in the covering space

It was proved earlier that, if A satisfies the PDE:

DN = g/\” n (3 - g)H;’ +AH, £ N'Hy + NA, (1)
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Decomposition in the covering space

It was proved earlier that, if A satisfies the PDE:
Koan YT / / /
DN = 5 A +(3—§)H,+/\H,+/\H,+/\/\7 (1)
then an annulus SLE(k; A) process commutes with an annulus

SLE(k; A™) process growing in the same domain with the initial point
and force point exchanged, where A~ (t, x) = —A(t, —x).
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The particular drift function
Decomposition in the covering space

It was proved earlier that, if A satisfies the PDE:
Koan YT / / /
DN = 5 A +(3—§)H,+/\H,+/\H,+/\/\7 (1)
then an annulus SLE(k; A) process commutes with an annulus

SLE(k; A™) process growing in the same domain with the initial point
and force point exchanged, where A~ (t, x) = —A(t, —x).

If, in addition, an annulus SLE(x; A) trace a.s. ends at the force point,
then the reversal of an annulus SLE(k; A) trace is an annulus SLE(x; A7)
trace, up to some reparametrization. So the reversibility holds.
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Intermediate Whole-Plane SLE

Decomposition in the covering space

If we condition an annulus SLE without force point to end at a marked
point on T, then we get an annulus SLE(k, A) process. The A satisfies a
different PDE:

BN = g/\” + kH! + AH) + NH, + NA.
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Decomposition in the covering space

If we condition an annulus SLE without force point to end at a marked
point on T, then we get an annulus SLE(k, A) process. The A satisfies a
different PDE:

BN = g/\” + kH! + AH) + NH, + NA.

This agrees with (1) only when k = 2. For other x, we need some
different method to find a solution of (1).
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Intermediate Whole-Plane SLE

The particular drift function
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Intermediate Whole-Plane SLE T e A i
Decomposition in the covering space

For x € (0, 4], there is a special drift function A, which solves (1).
Moreover, the annulus SLE(k; A,;) process satisfies reversibility, and
serves as the intermediate process of a whole-plane SLE,; process. Such
A, is defined by the following.
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Intermediate Whole-Plane SLE T e A i
Decomposition in the covering space

For x € (0, 4], there is a special drift function A, which solves (1).
Moreover, the annulus SLE(k; A,;) process satisfies reversibility, and
serves as the intermediate process of a whole-plane SLE,; process. Such

A, is defined by the following.

. . . . _r.
First, we may transform (1) into a linear PDE using A = K

“HiT (2)

9,T = gr” FHM 4
K
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Define a rescaled Jacobi's theta function ©(t,z) = 62(Z, &)

— H(l _ ef2mt)(1 . ef(2m71)teiz)(1 _ ef(mel)tefiz).

Such ©; solves 9,0, = ©/, and H, can be expressed by H, = 2%.
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Decomposition in the covering space

Define a rescaled Jacobi's theta function ©(t,z) = 62(Z, &)

= H (1 _ emet)(l o e—(2m71)teiz)(1 _ ef(mel)tefIZ).
Such ©; solves 9,0, = ©/, and H, can be expressed by H, = 2%.

Let W = I'@f/'{. It is straightforward to check that I solves (2) iff W
solves another linear PDE (o = £ — 1):

OV = g\u" +oHW. (3)
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We now rescale W. The followings are equivalent:

~ . o+3 2
\U(t,x):e%t (z) 2\|!(7T—,Ex);
t t t
2 o+3 . 2
V(t,x) = e 2~ (%) Z\U(WT, EX)
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We now rescale W. The followings are equivalent:

~

2 mNot: o
V(e =e (3) (T )
2 o+i o 2
W(t,x):efm<%> Z\U(WT,EX)‘

Define another special function H; by (tanhy(z) := tanh(z/2))

I:I,(t,z) =P.V. Ztanhz(z — nt).

2|n
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We now rescale W. The followings are equivalent:

W(ex) — e (2) 7w (2 ),

2

V(e = e i (D)),

T s
t t
Define another special function H; by (tanhy(z) := tanh(z/2))

I:I,(t,z) =P.V. Ztanhz(z — nt).

2|n
One may check that W solves (3) iff W solves another linear PDE:

00 = S0 D
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As t — o0, ﬁ, — tanhy, so equation (4) tends to

—at\T: = g\TI” + o tanhy \TJ,
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As t — o0, ﬁ, — tanhy, so equation (4) tends to
01 Kan IxT
78{—\'} = E\U + Utanh2 \U,

which has a simple solution (7 = 5§ — 2, coshy(x) := cosh(x/2)):

~ L2 2
Voo (t,x) = e 2 coshj ().
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The particular drift function
Decomposition in the covering space

As t — o0, ﬁ, — tanhy, so equation (4) tends to
01 Kan IxT
78{—“} = E\U +Utanh2 \U,
which has a simple solution (7 = 5§ — 2, coshy(x) := cosh(x/2)):
~ 2t

. 2,
Vo (t,x) = e” 2 cosh (x).

Let \qu = \Tl/\TJOO and Ifll’q = ﬁ, — tanh,. Then V solves (4) iff \qu solves
another linear PDE:

Dapeng Zhan Restriction Properties of Annulus SLE



Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point
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As t — o0, ﬁ, — tanhy, so equation (4) tends to
01 Kan IxT
78{—“} = E\U +Utanh2 \U,

which has a simple solution (7 = 5§ — 2, coshy(x) := cosh(x/2)):

~

) 2
Voo (t,x) = e 2 coshj ().

Let \qu = \Tl/\TJOO and Ifll’q = ﬁ, — tanh,. Then V solves (4) iff \qu solves
another linear PDE:

—~0:Wg = Sy + 7tanh, ¥, + oH) U, (5)
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PDE (5) can be solved by a Feynman-Kac formula. Let Xi(t) be a
diffusion process which satisfies SDE:

dX(t) = VrdB(t) + T tanhy(X,(t))dt, Xi(0) = x.
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The particular drift function
Decomposition in the covering space

PDE (5) can be solved by a Feynman-Kac formula. Let Xi(t) be a
diffusion process which satisfies SDE:

dX(t) = VrdB(t) + T tanhy(X,(t))dt, Xi(0) = x.

One solution of (5) is given by

\qu(t,x) =E {exp (0 /000 I/-\I;7q(t + s,XX(s))ds)].
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The particular drift function
Decomposition in the covering space

PDE (5) can be solved by a Feynman-Kac formula. Let Xi(t) be a
diffusion process which satisfies SDE:

dX(t) = VrdB(t) + T tanhy(X,(t))dt, Xi(0) = x.

One solution of (5) is given by

o~

V,(t,x) =E {exp (a/ I/-\I;7q(t + s,XX(s))ds)].
0
It takes some work (using estimation of diffusion processes and Fubini's

theorem) to show that \qu is C12 differentiable. Once this is done, we

may apply Itd's formula to show that \TJq solves (5).
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Let \Tlo = \TJDO\TJq. Then \TJO solves (4). Define Wy using the rescaling
rule. Then W solves (3). Let [y = \Ilo@ 2/% Then Iq solves (2). All of

these functions are positive. Let Ag = Hr Then Ag solves (1).
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Decomposition in the covering space

Let \Tlo = \TJDO\TJq. Then \TJO solves (4). Define Wy using the rescaling
rule. Then W solves (3). Let [y = \Ilo@ 2/% Then Iq solves (2). All of

these functions are positive. Let Ag = Hr Then Ag solves (1).

However, Ag does not have period 27 in its second variable. To fix this
problem, we do the following. Let ['p,(t,x) = Fo(t,x — 2mm), m € Z.
Since H has period 27 in its second variable, every I, also solves the

linear PDE (2). Let
r=> Tnm

meZ
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Let \Tlo = \TJDO\TJq. Then \TJO solves (4). Define Wy using the rescaling
rule. Then W solves (3). Let [y = \Ilo@ 2/% Then Iq solves (2). All of
these functions are positive. Let Ag = Hr Then Ay solves (1).

However, Ag does not have period 27 in its second variable. To fix this
problem, we do the following. Let ['p,(t,x) = Fo(t,x — 2mm), m € Z.
Since H has period 27 in its second variable, every I, also solves the

linear PDE (2). Let
r=> Tnm

meZ

Some estimations show that the series of functions together with all of
their derivatives converge locally uniformly. Thus, I also solves (2). The
special drift function A, is defined to be A, = /{r?.
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Intermediate Whole-Plane SLE

Decomposition in the covering space
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Intermediate Whole-Plane SLE

The annulus SLE(x, A,) trace starts from the initial point a = e*, and
ends at the force point b = e P™¥. The covering trace starts from x,
and may end at y + 2mn + pi for some m € Z. We may decompose this
process according to the endpoint of the covering trace.
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Intermediate Whole-Plane SLE

The annulus SLE(x, A,) trace starts from the initial point a = e*, and
ends at the force point b = e P™¥. The covering trace starts from x,
and may end at y + 2mn + pi for some m € Z. We may decompose this
process according to the endpoint of the covering trace.

Recall that the driving function £ solves the SDE:
dé(t) = VRdB(t) + Au(p — £,&(t) — Regi(y + pi))dt,  £(0) = x.

The drift function A, is given by A, = Iir?/, where I =%
Mm(t,x) =To(t,x — 2mm).

mez [, and
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Intermediate Whole-Plane SLE

Let ym =y +2mm, m € Z. Suppose &, solves the following SDE:

dém(t) = VidB(t) + No(p — t,£(t) — Re gy (ym + pi))dt,  £(0) = x.

Dapeng Zhan Restriction Properties of Annulus SLE



Annulus Loewner equation

Intermediate Whole-Plane SLE Annulus SLE with one force point

The particular drift function
Decomposition in the covering space

Let vy =y + 2mm, m € Z. Suppose &, solves the following SDE:

dém(t) = VidB(t) + No(p — 1,£(t) — Reg;" (ym + pi))dt,  £(0) =

The covering trace driven by &, starts from x and ends at y,, + pi, and
fte is a convex combination of the pg 's:

pe=3 o Fp mlpyx = )usm-

meZ
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The particular drift function
Decomposition in the covering space

Let y, =y + 2mm, m € Z. Suppose &, solves the following SDE:
dém(t) = VdB(t) + No(p — t,£(t) — Reg;"(vm + pi))dt, £(0) = x.

The covering trace driven by &, starts from x and ends at y,, + pi, and
fte is a convex combination of the pg 's:

pe=3 o Fp mlpyx = )usm-

meZ

We call the annulus Loewner process driven by &, a conditional annulus
SLE(k, A,;) process (with initial point x and force point y,, + pi).
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Change of domains
Radon-Nikodym derivative
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Theorem 1

Let p >0, a=eXeT and b = e P € T,. Let 3 be an annulus
SLE(k,Ax) trace in A, from a to b, and let p denote its distribution.
Let L be a relatively closed subset of A, such that A, \ L is a doubly
connected domain and contains the neighborhoods of a and b. Define a
new probability measure p; by

dpe 1gni—p
Tu = ﬂmz exp(¢ thoop (L(Ap; B, L)),

where Z > 0 is some normalization constant, and £(A,; 3, L) is the set of
the loops in A, that intersect both 3 and L. Then py is the distribution
of a reparameterized annulus SLE(x, A,) curve in A, \ L from a to b.
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Restriction

Change of domains

Dapeng Zhan n Properties of Annulus SLE




Change of domains
Radon-Nikodym derivative

The proof
Other results

Restriction

Let p, = mod(A, \ L) and L = (e')~1(L). We may find W, and W, such
that Conf

Wi (Ap\ L;T,) = (Ap;Tp);

— ~ Conf
W, - (Sp \ L; ]Rp) - (SPL; RPL);

Wioe =¢e' oW,
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Change of domains

Radon-Nikodym derivative
The proof

Restriction Other results

Let p, = mod(A, \ L) and L = (e')~1(L). We may find W, and W, such
that Conf

Wi (Ap\ L;T,) = (Ap;Tp);

— ~ Conf
W, - (Sp \ L; ]Rp) - (SPL; RPL);

WLoeizeioWL.
Let £(t) = v/kB(t) plus a drift, 0 < t < p, such that £(0) = x. Let 3 be

the annulus Loewner trace of modulus p driven by &, and let B and g; be
the covering trace and maps. Recall that 5(0) = £(0) = x and

B(0) = X = a.
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Let T, be the first time that 8(t) € L. If such time does not exist, set
T =p. For 0 <t < Ty, let Bi(t) = Wi (5(t)), and

v(t) = pr — mod(A,, \ B((0, t])).
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Let T, be the first time that 8(t) € L. If such time does not exist, set
T =p. For 0 <t < Ty, let Bi(t) = Wi (5(t)), and

v(t) = pr — mod(A,, \ B((0, t])).

Then (5, is an annulus Loewner trace via the time-change v(t). This
means that there exist £ € C([0, T.)) and two families of conformal
maps g and gk, 0 < t < T, such that
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Let T, be the first time that 8(t) € L. If such time does not exist, set
T =p. For 0 <t < Ty, let Bi(t) = Wi (5(t)), and

v(t) = pr — mod(A,, \ B((0, t])).

Then (5, is an annulus Loewner trace via the time-change v(t). This
means that there exist £ € C([0, T.)) and two families of conformal
maps g and gk, 0 < t < T, such that

Conf
gl Ap \ BL((0,t]) = Ap vy

shoei=dogh

0:&; (2) = V'()H(pe — v(t), & (2) — &u(1))-
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Define . .
We=gfoW,og !, 0<t<T.
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Change of domains
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The proof

Restriction Other results

Define . .
We=gfoW,og !, 0<t<T.

Then
~_ Conf

Wt . Sp—t \Et(L) —» SPL_V(t)'
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Change of domains
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The proof

Restriction Other results

Define . .
W,=gloW,og ™, 0<t<T.

Then
~_ Conf

We :Sp-e \&(L) = Spi_v(e)-

Some standard arguments show that
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Define . .
W,=gloW,og ™, 0<t<T.

Then
~_ Conf

We :Sp-e \&(L) = Spi_v(e)-

Some standard arguments show that

1 v/(t) = W(E(E))
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Define . .
W,=gloW,og ™, 0<t<T.
Then

— _ ~. Conf
We :Sp—e \ (L) = Sp—v(e)-

Some standard arguments show that

Lv/(t) = W{((1))%

2. &u(t) = We(&(1));
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Restriction

Define . .
W,=gloW,og ™, 0<t<T.

Then Conf
We :Sp—e \ (L) = Sp—v(e)-

Some standard arguments show that

1 V/(t) = W/(E(t))
2 G(t) = Wa(e():
3. O Wie(X)|x=g(r) = —3W/'(£(1)).
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Define . .
W,=gloW,og ™, 0<t<T.

Then
~_ Conf

We :Sp-e \&(L) = Spi_v(e)-

Some standard arguments show that

1 V/(t) = W/(E(t))
2 G(t) = Wa(e():
3. O Wie(X)|x=g(r) = —3W/'(£(1)).

Write Aj(t) = Wt(j)(f(t)). From Itd’s formula, we have

déL(t) = Ai()de(t) + (g —3) Ay(t)dt.
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Restriction

Radon-Nikodym derivative
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Restriction Other results

Fix meZ. Let yy, =y +2mm. Let
Xn(t) = &(t) = Re&elym +pi),  Xim(t) = &(t) — RegH (Wi (ym + pi))-

Yin(t) = To(p — £, Xim(t)),  Yim(t) = Tolpr — v(t), Xi.m(t))-
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Change of domains

Radon-Nikodym derivative
The proof

Restriction Other results

Fix meZ. Let yy, =y +2mm. Let
Xn(t) = &(t) = Re&elym +pi),  Xim(t) = &(t) — RegH (Wi (ym + pi))-

Yin(t) = To(p — £, Xim(t)),  Yim(t) = Tolpr — v(t), Xi.m(t))-

Recall that A;(t) = WY (£(1)). Let

Al(t) = W& (y + pi)), As(t) = -

So As(t) is the Schwarzian derivative of W, at &(t).
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Let o = 62’—”. Define
K

Mp(t) = Al(t)O‘A,(t)aW exp (—% /OtAs(s)ds+oz /ppLV(t)r(s)ds),
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Let o = 62’—”. Define
K

Y, m(t) c [t pL—v(t)
M (t) = A1 (£)% A (£)* ~L: L
m(t) = Au(t)*A(t) Yo (t) exp ( 5 /0 s(s)ds+a /p_t r(s)ds),
where r(s) is a coefficient in the Laurent expansion of H(s, ) at O:

H(s,z) = % +r(s)z + O(2%).
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Let o = 62’—”. Define
K

n(t) = Ar(e)"Ar(e) 2 oy (- [ As(s)ds o / iV(t)r(S)dS),

where r(s) is a coefficient in the Laurent expansion of H(s, ) at O:
2 3
H(s,z) = ~ +r(s)z+ O(z°).

One may check that Mp,,(t) is a semi-martingale, and satisfies

Mol®) _ [ (5 YA g (0 Xe(0)

Mom(t) -2/ Aud)

~Ro(p = t, Xn(1))] - (dE(£) = No(p — £, Xn(1))):
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Suppose now £ is the solution of

dE(t) = VRB(t) + ho(p — t, Xm(t))dt, () =x.  (6)
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Suppose now £ is the solution of
dE(t) = VRdB(t) + Ao(p — t, Xm(t))dt, €(0)=x.  (6)

Then M,, is a local martingale. Since Xy,(t) = £(t) — Re g¢(ym + pi), we
see that £ generates a conditional annulus SLE(k, A,) process, and a.s.

lim:_, B(t) = Ym+ pi.
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Suppose now £ is the solution of
dE(t) = VRdB(t) + Ao(p — t, Xm(t))dt, €(0)=x.  (6)

Then M,, is a local martingale. Since Xy,(t) = £(t) — Re g¢(ym + pi), we
see that £ generates a conditional annulus SLE(k, A,) process, and a.s.

lim:_, B(t) = Ym+ pi.

Girsanov theorem implies that, if M, (t) is uniformly bounded on [0, S]
for some stopping time S < T, and if the original probability measure is
weighted by Mp,(S)/Mn,(0), then £(t), 0 < t < S, satisfies

de(t) = VrdB(t) + A ()No(pr — v(t), Xem(t))dt + (3 B g) Aa(t) 4

where B(t) is a Brownian motion under the new measure.

Dapeng Zhan Restriction Properties of Annulus SLE



Change of domains
Radon-Nikodym derivative

The proof
Other results

Restriction

Since d¢(t) = Ai(t)d&(t) + (5 — 3)Ax(t)dt, we find

der(t) = Au(t)VrdB(t) + Ar(t)*Ao(pr — v(t), X m(t))dt.
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Since d¢(t) = Ai(t)d&(t) + (5 — 3)Ax(t)dt, we find

dér(t) = AL(t)VrdB(t) + AL(t)*Ao(pr — v(t), X m(t))dt.
Since X m(t) = £1(t) — BLH(Wi(ym + pi)) and v/(t) = Ay(t)2, under the
new measure, 3, o v~ ! up to time v(S) is a conditional annulus

SLE(k; Ax) trace in Ap,. So under the new measure, 5 up to Sis a
reparameterized conditional annulus SLE(k; A,) trace in A, \ L.
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Since d¢(t) = Ai(t)d&(t) + (5 — 3)Ax(t)dt, we find
der(t) = Au(t)VrdB(t) + Ar(t)*Ao(pr — v(t), X m(t))dt.

Since X m(t) = £1(t) — BLH(Wi(ym + pi)) and v/(t) = Ay(t)2, under the
new measure, 3, o v~ ! up to time v(S) is a conditional annulus

SLE(k; Ax) trace in Ap,. So under the new measure, 5 up to Sis a
reparameterized conditional annulus SLE(k; A,) trace in A, \ L.

Let um and pr,m denote the distributions of the solutions to (6) and (7),
respectively. Then we have

Mm(s) _ dUL,m|fs

Mm(0)  dpmlrs
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The proof
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We may decompose M,,(t) into the product M, (t) = Npy(t) exp(c U(t)),
where U(t) = ptioop(L(Ap; B((0, t]), L)). The integral [, As(s)ds is
included in the formula for U(t). Let £, denote the event that

lime_,p B(t) = yYm + pi, which happens a.s. if £ solves (6).
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We may decompose M,,(t) into the product M, (t) = Npy(t) exp(c U(t)),
where U(t) = ptioop(L(Ap; B((0, t]), L)). The integral [, As(s)ds is
included in the formula for U(t). Let £, denote the event that

lime_,p B(t) = yYm + pi, which happens a.s. if £ solves (6).

There are two lemmas for N,,(t).

On the event {T; = p} N &y, we have

lim N (t) = Cp p,

t—p

which is a positive constant depending only on p and p;.
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Let P, denote the set of (p1, p2) with the following properties.
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Let P, denote the set of (p1, p2) with the following properties.
1. For j =1,2, pj is a polygonal crosscut in S, that grows from R to

R,, whose line segments are parallel to either x-axis or y-axis, and
whose vertices other than the end points have rational coordinates.
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Let P, denote the set of (p1, p2) with the following properties.

1. For j =1,2, pj is a polygonal crosscut in S, that grows from R to
R,, whose line segments are parallel to either x-axis or y-axis, and
whose vertices other than the end points have rational coordinates.

2. p1+2jm, p2 + 2km, j, k € Z, and L are mutually disjoint.
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Let P, denote the set of (p1, p2) with the following properties.

1. For j =1,2, pj is a polygonal crosscut in S, that grows from R to
R,, whose line segments are parallel to either x-axis or y-axis, and
whose vertices other than the end points have rational coordinates.

2. p1+2jm, p2 + 2km, j, k € Z, and L are mutually disjoint.
3. p1 U po disconnects x and y,, + pi from Lin Sp.
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For each (p1,p2) € Pm, let T,, ,, denote the first time thatNB hits
p1 U p2. If such time does not exist, set T, ,, = p. Since 3 starts from
< Ti.

x, and p; U po separates x from Z To
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For each (p1,p2) € Pm, let T,, ,, denote the first time that 3 hits

p1 U po. If such time does not exist, set T, ,, = p. Since E starts from

x, and p; U po separates x from Z Toip < Tp.

For each (p1, p2) € Pm, In(Npm(t)) is uniformly bounded on [0, T, ,,) by
a constant depending only on p, L, p1, po.
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Now we study the properties of U(t). We know that U is nonnegative
and increasing in t. For any (p1, p2) € P, we have

U( TPl,P2) < /Jloop('c(Ap; ei(pl) U ei(pz), L))
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Now we study the properties of U(t). We know that U is nonnegative
and increasing in t. For any (p1, p2) € P, we have

U( TPl,P2) < /Jloop('c(Ap; ei(pl) U ei(pz), L))

Since dist(e’(p1) U €/(p2), L) > 0, it is shown [Lawler-Werner] that the
righthand side is finite. Thus, U(t) is uniformly bounded on [0, T, ,,].
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Now we study the properties of U(t). We know that U is nonnegative
and increasing in t. For any (p1, p2) € P, we have

U( TPl,P2) < /Jloop('c(Ap; ei(pl) U ei(pz), L))

Since dist(e’(p1) U €/(p2), L) > 0, it is shown [Lawler-Werner] that the
righthand side is finite. Thus, U(t) is uniformly bounded on [0, T, ,,].

Since My, (t) = Npy(t) exp(c U(t)), Mm(t) is uniformly bounded on
[0, To1,p.]- So
Mm(TPth) _ d'ul"m|]:7p17pz

Mm(O) N d‘LLm"FTpLPz .

Especially, on the event {T,, ,, = p},

die,m _ Mum(p) _ Cop
dpvm Mm(o) Mm(O)

exp(c /Lloop(ﬁ(Ap; B, L))) (8)
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Recall that &, = {lim;—, B(t) = ym + pi}. It is easy to check that

{TL=p}néncC U {Torp. = P}
(p1,p2)EPm
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Recall that &, = {lim;—, B(t) = ym + pi}. It is easy to check that

{TL=p}néncC U {Torp. = P}
(p1,p2)EPm

Since un, is supported by &, we find that (8) holds on the event
{TL=p}={BNL=0}.
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Recall that &, = {lim;—, B(t) = ym + pi}. It is easy to check that

{TL=p}néncC U {Torp. = P}
(p1,p2)EPm

Since un, is supported by &, we find that (8) holds on the event
{TL=p}={BNL=0}.

On the other hand, since p; m is supported by {8 N L =0}, we have

durm  lgni=o
— = 00| A, 7L .
i M,(0) Cp,pi oop(L(Ap; B8, L))
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Recall that &, = {lim;—, B(t) = ym + pi}. It is easy to check that

{TL=ptné&ncC U {Tor.p = P}

(p1,02)EPm
Since un, is supported by &, we find that (8) holds on the event
{TL=p}={8NnL=0}.

On the other hand, since p; m is supported by {8 N L =0}, we have

durm  lgni=o
— = 00| A, 7/— .
i M,(0) Cp,pi oop(L(Ap; B8, L))

Setting x; = WL(x) and y; = Re WL(y + pi), we get

Cm(pL, xt — yi)

Mn(0) = Cm(p,x—y)
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Recall that if 42 is the distribution of the driving function of an annulus
SLE(k,A,) trace in A, from e* to e P*Y, then

,Xfy)
= Z Mp,x — )Mm'

meZ
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Recall that if 42 is the distribution of the driving function of an annulus
SLE(k,A,) trace in A, from e* to e P*Y, then

,Xf)
B= Z Fp,x— )Mm'

meZ

Similarly, if p, is the distribution of the driving function of an annulus
SLE(k,A,) trace in A, \ L from e to e”P*Y, then

y XL —
HL = Z pL L yL) He,m-
= T(pLyxt — i)
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Recall that if 42 is the distribution of the driving function of an annulus
SLE(k,A,) trace in A, from e* to e P*Y, then

p=> rp,;(X: fm-

meZ

Similarly, if p, is the distribution of the driving function of an annulus
SLE(k,A,) trace in A, \ L from e to e”P*Y, then

y XL —
HL = Z pL L yL) He,m-
= T(pLyxt — i)

Therefore,
dur  T(pL,xe — yi)
e ch,mlﬁm:w exp(C tioop (L(Ap; B, L)),
which finishes the proof with Z =T (p,x —y)/(T'(pr,x — y1)Cp,1)-
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The following theorem connects annulus SLE(k, A,;) with chordal SLE,..
This theorem shows that the annulus SLE(x, A,;) process agrees with the
annulus SLE, defined by Lawler.

With other conditions the same as in Theorem 1 except that now A, \ L
is a simply connected domain, p; is the distribution of a reparameterized
chordal SLE, trace in A, \ L from a to b.
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Theorem 2 can be used to construct multiple disjoint SLE, curves
crossing an annulus.

Definition

Let n > 2. Let ay,...,a, (resp. by, ..., b,) be distinct points on T (resp.
T,) that are oriented counterclockwise. A random n-tuple of disjoint
curves (B1,. .., B,) is called a multiple SLE, in A, from (ay,...,a,) to
(b1, ..., bn), ifforany j € {1,...,n}, conditioned on all other n—1 curves,
B; is a chordal SLE(k) trace from a; to b; that grows in D;, which is the
subregion in A, bounded by 5;_1 and Bj11 (fo := B, and Bny1 = F1)
that has a; and b; as its boundary points.
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The picture shows multiple SLE with n = 4. When the 3 blue curves are
known, the red curve is a chordal SLE, that grows in the grey region.
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The following result resembles the work by Kozdron and Lawler for
simply connected domains.

Corollary

Let A, n, aj, b; be as in the definition. For 1 < j < n, let 8; be an annulus
SLE(k,Ax) curve in A, from a; to b, and let g, denote its distribution.
Define a new probability measure u™ by

ﬁj.uﬂﬁ, = 187 exp (€D (k = Dttoop(£4)) (9)

k=1

where Z > 0 is some normalization constant, &y is the event that f;,
1 < j < n, are mutually disjoint, and Ly is the set of loops in A, that
intersect at exactly k curves among 1, . .., B,. Then M is the distribution
of a multiple SLE, in A, from (a1,...,a,) to (b1,..., by).
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Proof. Fix j € {1,...,n}. Let 5£isj denote the event that i, k # j, are

mutually disjoint. When Sé'isj occurs, let D; be as in the definition, and
Lj = Ap \ D;. The key step is that the righthand side of (9) can be
written as

ql{ﬂjﬂLj:V)} exp(c:u'k)op(ﬁ(AP; Bj? LJ)))v

where C; is measurable w.r.t. the o-algebra generated by By, k # j.
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Proof. Fix j € {1,...,n}. Let éﬂ denote the event that 8y, k # j, are

mutually disjoint. When Sé'isj occurs, let D; be as in the definition, and
L; = A, \ D;. The key step is that the righthand side of (9) can be
written as

isj

L5101 &xP(C 11g0p (L (Ap: 5. L)),
where C; is measurable w.r.t. the o-algebra generated by By, k # j.

Let ;LJM denote the conditional distribution of 8; when (B4, . .., 8,) ~ u™
and all B« other than §; are given. Then

duJ’-V’
dpj {Bekiy

= le{ﬁ’jﬁLJ:@} exp(c N’|oop(£(AP; ﬂja Lj)))

From Theorem 2 we conclude that uj’-‘/’ is the distribution of a
time-change of a chordal SLE(k) trace in A, \ Lj = D; from a; to b;. O
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Thank you!
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