Restriction Properties of Annulus SLE

Dapeng Zhan

Michigan State University

March 27, 2012

 \leftarrow \Box

 $2Q$

∍

モミト

×.

[Introduction](#page-4-0)

メロトメ 倒 トメ きょくきょう

 \equiv 990

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

 \leftarrow

 $\leftarrow \Xi \rightarrow$

 \mathbf{p}

.

 $2Q$

э

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $2Q$

∍

 \mathbf{p} メ ヨ ト

.

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 \leftarrow

 \rightarrow \equiv \rightarrow

ミッ

In the proof of the reversibility of whole-plane SLE_{κ} ($\kappa \in (0,4]$), the annulus $SLE(\kappa, \Lambda_{\kappa})$ processes arise as the intermediate processes of the whole-plane SLE_{κ} .

 $2Q$

э

不良 下

In the proof of the reversibility of whole-plane SLE_{κ} ($\kappa \in (0,4]$), the annulus $SLE(\kappa, \Lambda_{\kappa})$ processes arise as the intermediate processes of the whole-plane SLE_{κ} .

This means that, given an initial segment and a final segment of a whole-plane SLE_{κ} curve, the middle part of the whole-plane SLE_{κ} curve is an annulus $SLE(\kappa, \Lambda_{\kappa})$ curve growing in the complement of the two segments from one tip point to the other tip point.

Annulus SLE(κ, Λ_{κ}) is defined using the annulus Loewner equation. The $\lim_{k \to \infty} \frac{\partial^k E(k)}{\partial k}$ is defined using the annulus Ebewher equation. The driving term is $\sqrt{k}B(t)$ plus a drift function, which is determined by a function Λ_{κ} . The process generates a random curve, which

不良 下

∍

Annulus SLE(κ, Λ_{κ}) is defined using the annulus Loewner equation. The $\lim_{k \to \infty} \frac{\partial^k E(k)}{\partial k}$ is defined using the annulus Ebewher equation. The driving term is $\sqrt{k}B(t)$ plus a drift function, which is determined by a function Λ_{κ} . The process generates a random curve, which

1. grows in a doubly connected domain,

不良 下

∍

Annulus SLE(κ, Λ_{κ}) is defined using the annulus Loewner equation. The $\lim_{k \to \infty} \frac{\partial^k E(k)}{\partial k}$ is defined using the annulus Ebewher equation. The driving term is $\sqrt{k}B(t)$ plus a drift function, which is determined by a function Λ_{κ} . The process generates a random curve, which

- 1. grows in a doubly connected domain,
- 2. starts from one boundary point,

不良 下

Annulus $\mathsf{SLE}(\kappa, \Lambda_{\kappa})$ is defined using the annulus Loewner equation. The $\lim_{k \to \infty} \frac{\partial^k E(k)}{\partial k}$ is defined using the annulus Ebewher equation. The driving term is $\sqrt{k}B(t)$ plus a drift function, which is determined by a function Λ_{κ} . The process generates a random curve, which

- 1. grows in a doubly connected domain,
- 2. starts from one boundary point,
- 3. ends at another boundary point, which lies on a different boundary component as the initial point,

 \rightarrow \equiv \rightarrow

Annulus $\mathsf{SLE}(\kappa, \Lambda_{\kappa})$ is defined using the annulus Loewner equation. The $\lim_{k \to \infty} \frac{\partial^k E(k)}{\partial k}$ is defined using the annulus Ebewher equation. The driving term is $\sqrt{k}B(t)$ plus a drift function, which is determined by a function Λ_{κ} . The process generates a random curve, which

- 1. grows in a doubly connected domain,
- 2. starts from one boundary point,
- 3. ends at another boundary point, which lies on a different boundary component as the initial point,
- 4. satisfies Domain Markov Property (DMP) and reversibility.

一 4 (王) ト

Annulus $\mathsf{SLE}(\kappa, \Lambda_{\kappa})$ is defined using the annulus Loewner equation. The $\lim_{k \to \infty} \frac{\partial^k E(k)}{\partial k}$ is defined using the annulus Ebewher equation. The driving term is $\sqrt{k}B(t)$ plus a drift function, which is determined by a function Λ_{κ} . The process generates a random curve, which

- 1. grows in a doubly connected domain,
- 2. starts from one boundary point,
- 3. ends at another boundary point, which lies on a different boundary component as the initial point,
- 4. satisfies Domain Markov Property (DMP) and reversibility.

The reversibility of annulus $SLE(\kappa, \Lambda_{\kappa})$ is related to the reversibility of whole-plane SLE_{κ} .

ヨメ イヨメ

In this talk, I will discuss the restriction properties of the annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ process. Throughout, fix $\kappa\in(0,4]$, let $\mathsf{c}=\frac{(6-\kappa)(3\kappa-8)}{2\kappa}$ be the central charge, and let μ_{loop} denote the Brownian loop measure.

不良 下

∍

In this talk, I will discuss the restriction properties of the annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ process. Throughout, fix $\kappa\in(0,4]$, let $\mathsf{c}=\frac{(6-\kappa)(3\kappa-8)}{2\kappa}$ be the central charge, and let μ_{loop} denote the Brownian loop measure.

Theorem 1 [Z, 2011]

Let $p > 0$, $x, y \in \mathbb{R}$, $a = e^{i x}$, and $b = e^{-p + i y}$. Let β be an annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ trace in $\mathbb{A}_p:=\{1>|z|>e^{-p}\}$ from a to b , and let μ denote its distribution. Let L be a relatively closed subset of \mathbb{A}_p such that $\mathbb{A}_p \setminus L$ is a doubly connected domain and contains the neighborhoods of a and b. Define a new probability measure μ_1 by

$$
\frac{d\mu_L}{d\mu} = \frac{\mathbf{1}_{\beta \cap L = \emptyset}}{Z} \exp(c \,\mu_{\text{loop}}(\mathcal{L}(\mathbb{A}_p; \beta, L))),
$$

where $Z > 0$ is some normalization constant, and $\mathcal{L}(\mathbb{A}_p; \beta, L)$ is the set of the loops in A_n that intersect both β and L. Then μ_l is the distribution of a reparameterized annulus $SLE(\kappa, \Lambda_{\kappa})$ curve in $\mathbb{A}_{p} \setminus L$ from a to b.

イ押 トメ ヨ トメ ヨ ト

Э

つくい

If $\kappa = 8/3$, then c = 0. The theorem implies that, β conditioned to avoid L is an annulus $SLE(\kappa, \Lambda_{\kappa})$ trace in $\mathbb{A}_{p} \setminus L$, up to a reparametrization. For other κ , we get the "weak" restriction property.

不良 下

∍

つへへ

If $\kappa = 8/3$, then c = 0. The theorem implies that, β conditioned to avoid L is an annulus $SLE(\kappa, \Lambda_{\kappa})$ trace in $\mathbb{A}_{p} \setminus L$, up to a reparametrization. For other κ , we get the "weak" restriction property.

The theorem resembles the restriction theorem for chordal SLE [Lawler-Schramm-Werner, 2003], which says that, if \mathbb{A}_p is replaced by a simply connected domain D, if $D \setminus L$ is also a simply connected domain, and if β is a chordal SLE_κ trace, then μ_L is the distribution of a reparameterized chordal SLE_{κ} trace in $D \setminus L$.

ALCOHOL:

If $\kappa = 8/3$, then c = 0. The theorem implies that, β conditioned to avoid L is an annulus $SLE(\kappa, \Lambda_{\kappa})$ trace in $\mathbb{A}_{p} \setminus L$, up to a reparametrization. For other κ , we get the "weak" restriction property.

The theorem resembles the restriction theorem for chordal SLE [Lawler-Schramm-Werner, 2003], which says that, if \mathbb{A}_p is replaced by a simply connected domain D, if $D \setminus L$ is also a simply connected domain, and if β is a chordal SLE_κ trace, then μ_L is the distribution of a reparameterized chordal SLE_{κ} trace in $D \setminus L$.

It turns out that the annulus $SLE(\kappa,\Lambda_{\kappa})$ process agrees with the annulus SLE constructed by Gregory Lawler recently.

ヨメ イヨメ

つひへ

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $4.17 +$

ミメ メミメ

 $2Q$

э

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $4.17 +$

ほき メミメ

 $2Q$

∍

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Symbols $(p > 0)$:

 $\mathbb{A}_p = \{ e^{-p} < |z| < 1 \}, \quad \mathbb{T} = \{ |z| = 1 \}, \quad \mathbb{T}_p = \{ |z| = e^{-p} \}.$

イロメ イ押メ イヨメ イヨメー

重

[Introduction](#page-4-0) [Intermediate Whole-Plane SLE](#page-18-0) [Restriction](#page-100-0) [Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Symbols $(p > 0)$:

$$
\mathbb{A}_p = \{ e^{-p} < |z| < 1 \}, \quad \mathbb{T} = \{ |z| = 1 \}, \quad \mathbb{T}_p = \{ |z| = e^{-p} \}.
$$

Special function $(r > 0)$:

$$
\mathsf{S}(r,z)=\lim_{M\to\infty}\sum_{k=-M}^M\frac{e^{2kr}+z}{e^{2kr}-z}.
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

目

[Introduction](#page-4-0) [Intermediate Whole-Plane SLE](#page-18-0) [Restriction](#page-100-0) [Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Symbols $(p > 0)$:

$$
\mathbb{A}_p = \{ e^{-p} < |z| < 1 \}, \quad \mathbb{T} = \{ |z| = 1 \}, \quad \mathbb{T}_p = \{ |z| = e^{-p} \}.
$$

Special function $(r > 0)$:

$$
S(r,z)=\lim_{M\to\infty}\sum_{k=-M}^M\frac{e^{2kr}+z}{e^{2kr}-z}.
$$

Annulus Loewner equation of modulus p driven by $\xi \in C([0, p))$:

$$
\partial_t g_t(z) = g_t(z) \mathbf{S}(p-t, g_t(z)/e^{i\xi(t)}), \quad g_0(z) = z.
$$

イロメ イ押メ イヨメ イヨメー

重

[Introduction](#page-4-0) [Intermediate Whole-Plane SLE](#page-18-0) [Restriction](#page-100-0) [Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Symbols $(p > 0)$:

$$
\mathbb{A}_p = \{ e^{-p} < |z| < 1 \}, \quad \mathbb{T} = \{ |z| = 1 \}, \quad \mathbb{T}_p = \{ |z| = e^{-p} \}.
$$

Special function $(r > 0)$:

$$
\mathsf{S}(r,z)=\lim_{M\to\infty}\sum_{k=-M}^M\frac{e^{2kr}+z}{e^{2kr}-z}.
$$

Annulus Loewner equation of modulus p driven by $\xi \in C([0, p))$:

$$
\partial_t g_t(z) = g_t(z) \mathbf{S}(p-t, g_t(z)/e^{i\xi(t)}), \quad g_0(z) = z.
$$

Hulls:

$$
\mathcal{K}_t := \{ z \in \mathbb{A}_p : \tau_g(z) \leq t \}, \quad 0 \leq t < p.
$$

イロメ イ押メ イヨメ イヨメー

重

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Properties of g_t and K_t :

メロトメ 倒 トメ 君 トメ 君 ト

目

 299

[Intermediate Whole-Plane SLE](#page-18-0) [Restriction](#page-100-0) [Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Properties of g_t and K_t :

1.
$$
g_t : \mathbb{A}_p \setminus K_t \stackrel{\text{Conf}}{\rightarrow} \mathbb{A}_{p-t}
$$
;

重

 299

メロト メ都 トメ 君 トメ 君 ト

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Properties of g_t and K_t :

1.
$$
g_t: \mathbb{A}_p \setminus K_t \stackrel{\text{Conf}}{\rightarrow} \mathbb{A}_{p-t}
$$
;

2. dist $(K_t, \mathbb{T}_p) > 0$ and mod $(\mathbb{A}_p \setminus K_t) = p - t$;

イロメ イ押メ イヨメ イヨメ

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Properties of g_t and K_t :

1.
$$
g_t : \mathbb{A}_p \setminus \mathcal{K}_t \stackrel{\text{Conf}}{\rightarrow} \mathbb{A}_{p-t};
$$

- 2. dist $(K_t, \mathbb{T}_p) > 0$ and mod $(\mathbb{A}_p \setminus K_t) = p t$;
- 3. If $z \in \mathbb{T}$, $g_t(z)$ stays on \mathbb{T} before it blows up;

 \leftarrow \Box

●■→

и.

医重新性黄疸

 $2Q$

э

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Properties of g_t and K_t :

1.
$$
g_t : \mathbb{A}_p \setminus K_t \stackrel{\text{Conf}}{\rightarrow} \mathbb{A}_{p-t}
$$
;
\n2. $dist(K_t, \mathbb{T}_p) > 0$ and $mod(\mathbb{A}_p \setminus K_t) = p - t$;

3. If
$$
z \in \mathbb{T}
$$
, $g_t(z)$ stays on \mathbb{T} before it blows up;

4. If
$$
z \in \mathbb{T}_p
$$
, $g_t(z) \in \mathbb{T}_{p-t}$ for $0 \leq t < p$.

メロト メ都 トメ 君 トメ 君 ト

目

 299

Properties of g_t and K_t :

\n- 1.
$$
g_t : \mathbb{A}_p \setminus K_t \stackrel{\text{Conf}}{\rightarrow} \mathbb{A}_{p-t}
$$
;
\n- 2. $\text{dist}(K_t, \mathbb{T}_p) > 0$ and $\text{mod}(\mathbb{A}_p \setminus K_t) = p - t$;
\n- 3. If $z \in \mathbb{T}$, $g_t(z)$ stays on \mathbb{T} before it blows up;
\n- 4. If $z \in \mathbb{T}_p$, $g_t(z) \in \mathbb{T}_{p-t}$ for $0 \leq t < p$.
\n

Trace (when $\xi(t) = \sqrt{\kappa}B(t) +$ drift):

$$
\beta(t):=\lim_{\mathbb{A}_{p-t}\ni z\to e^{i\xi(t)}}\mathsf{g}_{t}^{-1}(z),\quad 0\leq t
$$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Properties of β :

Dapeng Zhan [Restriction Properties of Annulus SLE](#page-0-0)

重

メロトメ 倒 トメ 君 トメ 君 ト

 299

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Properties of β :

1. β is continuous in $\mathbb{A}_p \cup \mathbb{T}$.

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶

目

 299

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Properties of β :

1. β is continuous in $\mathbb{A}_p \cup \mathbb{T}$. 2. $\beta(0) = e^{i\xi(0)} \in \mathbb{T}$.

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶

G

Properties of β :

- 1. β is continuous in $\mathbb{A}_p \cup \mathbb{T}$.
- 2. $\beta(0) = e^{i\xi(0)} \in \mathbb{T}$.
- 3. If $\kappa \in (0, 4]$, β is simple, $\beta(t) \notin \mathbb{T}$ for $t > 0$, and $K_t = \beta((0, t])$ for $0 \leq t < p$.

 \leftarrow \Box

 $\mathcal{A} \cap \mathbb{P} \rightarrow \mathcal{A} \supseteq \mathcal{A} \rightarrow \mathcal{A} \supseteq \mathcal{A}$

G

Properties of β :

- 1. β is continuous in $\mathbb{A}_p \cup \mathbb{T}$.
- 2. $\beta(0) = e^{i\xi(0)} \in \mathbb{T}$.
- 3. If $\kappa \in (0, 4]$, β is simple, $\beta(t) \notin \mathbb{T}$ for $t > 0$, and $K_t = \beta((0, t])$ for $0 \le t \le p$.
- 4. In the above case, β satisfies mod $(\mathbb{A}_{p} \setminus \beta((0,t])) = p t$. On the other hand, if a simple curve satisfies these properties, then it is an annulus Loewner trace driven by some continuous ξ .

 $4.17 +$

●■→

イヨメ イヨメ

∍

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

We may lift everything to the covering space. Symbols $(p > 0)$:

$$
e^{i}(z) = e^{iz}, \quad \mathbb{S}_{p} = \{p > \text{Im } z > 0\}, \quad \mathbb{R}_{p} = \{\text{Im } z = p\}.
$$

イロン イ伊 メ イヨン イヨン

G
[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

We may lift everything to the covering space. Symbols $(p > 0)$:

$$
e^{i}(z) = e^{iz}, \quad \mathbb{S}_p = \{p > \mathsf{Im}\, z > 0\}, \quad \mathbb{R}_p = \{\mathsf{Im}\, z = p\}.
$$

Special function $(r > 0, \cot_2(z) := \cot(z/2))$:

$$
H(r, z) = -iS(r, e^{i}(z)) = P.V. \sum_{2|n} \cot_2(z - int).
$$

イロメ イ押メ イヨメ イヨメー

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

We may lift everything to the covering space. Symbols $(p > 0)$:

$$
e^{i}(z) = e^{iz}, \quad \mathbb{S}_{p} = \{p > \text{Im } z > 0\}, \quad \mathbb{R}_{p} = \{\text{Im } z = p\}.
$$

Special function $(r > 0, \cot_2(z) := \cot(z/2))$:

$$
H(r, z) = -iS(r, e^{i}(z)) = P.V. \sum_{2|n} \cot_2(z - int).
$$

Properties of H:

イロメ イ押メ イヨメ イヨメ

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

We may lift everything to the covering space. Symbols $(p > 0)$:

$$
e^{i}(z) = e^{iz}, \quad \mathbb{S}_{p} = \{p > \text{Im } z > 0\}, \quad \mathbb{R}_{p} = \{\text{Im } z = p\}.
$$

Special function ($r > 0$, $cot₂(z) := cot(z/2)$):

$$
\mathbf{H}(r,z) = -i\mathbf{S}(r,e^{i}(z)) = \mathsf{P.V.}\sum_{2|n}\cot_{2}(z-int).
$$

Properties of H:

1. $H(r, \cdot)$ is meromorphic in $\mathbb C$ with poles $\{2n\pi + i2mr : n, m \in \mathbb Z\}$, and each pole is simple with residue 2;

 \leftarrow \Box

 \rightarrow \Box

- 4 周 8 34 周 8

∍

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

We may lift everything to the covering space. Symbols $(p > 0)$:

$$
e^{i}(z) = e^{iz}, \quad \mathbb{S}_{p} = \{p > \text{Im } z > 0\}, \quad \mathbb{R}_{p} = \{\text{Im } z = p\}.
$$

Special function ($r > 0$, $cot₂(z) := cot(z/2)$):

$$
\mathbf{H}(r,z) = -i\mathbf{S}(r,e^{i}(z)) = \mathsf{P.V.}\sum_{2|n}\cot_{2}(z-int).
$$

Properties of H:

- 1. $H(r, \cdot)$ is meromorphic in $\mathbb C$ with poles $\{2n\pi + i2mr : n, m \in \mathbb Z\}$, and each pole is simple with residue 2;
- 2. $H(r, \cdot)$ is odd, and has period 2π ;

 \leftarrow \Box

 \leftarrow \leftarrow \leftarrow

- 4 周 8 34 周 8

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

We may lift everything to the covering space. Symbols $(p > 0)$:

$$
e^{i}(z) = e^{iz}, \quad \mathbb{S}_{p} = \{p > \text{Im } z > 0\}, \quad \mathbb{R}_{p} = \{\text{Im } z = p\}.
$$

Special function ($r > 0$, $cot₂(z) := cot(z/2)$):

$$
H(r, z) = -iS(r, e^{i}(z)) = P.V. \sum_{2|n} \cot_2(z - int).
$$

Properties of H:

- 1. $H(r, \cdot)$ is meromorphic in $\mathbb C$ with poles $\{2n\pi + i2mr : n, m \in \mathbb Z\}$, and each pole is simple with residue 2;
- 2. $H(r, \cdot)$ is odd, and has period 2π ;
- 3. $H(r, z) \in \mathbb{R}$ for $z \in \mathbb{R} \setminus \{\text{poles}\},$ and $\text{Im } H(r, z) = -1$ for $z \in \mathbb{R}_r$.

4 0 8

→ (何) > → (日) → (日) →

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering annulus Loewner equation of modulus p driven by $\xi \in C([0, p))$:

$$
\partial_t \widetilde{g}_t(z) = \mathbf{H}(p-t, \widetilde{g}_t(z) - \xi(t)), \quad \widetilde{g}_0(z) = z.
$$

イロン イ伊ン イヨン イヨン

÷.

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering annulus Loewner equation of modulus p driven by $\xi \in C([0, p))$:

$$
\partial_t \widetilde{g}_t(z) = \mathbf{H}(p-t, \widetilde{g}_t(z) - \xi(t)), \quad \widetilde{g}_0(z) = z.
$$

Covering hulls:

$$
\widetilde{K}_t:=\{z\in\mathbb{S}_p:\tau_{\widetilde{g}}(z)\leq t\},\quad 0\leq t
$$

4 0 8 - ∢ 母 →

医毛囊 医牙骨膜炎

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering annulus Loewner equation of modulus p driven by $\xi \in C([0, p))$:

$$
\partial_t \widetilde{g}_t(z) = \mathbf{H}(p-t, \widetilde{g}_t(z) - \xi(t)), \quad \widetilde{g}_0(z) = z.
$$

Covering hulls:

$$
\widetilde{K}_t:=\{z\in\mathbb{S}_p:\tau_{\widetilde{g}}(z)\leq t\},\quad 0\leq t
$$

Properties of \widetilde{g}_t and K_t :

 \leftarrow \Box

 \rightarrow \Box

医重新性黄疸

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering annulus Loewner equation of modulus p driven by $\xi \in C([0, p))$:

$$
\partial_t \widetilde{g}_t(z) = \mathbf{H}(p-t, \widetilde{g}_t(z) - \xi(t)), \quad \widetilde{g}_0(z) = z.
$$

Covering hulls:

$$
\widetilde{K}_t:=\{z\in\mathbb{S}_p:\tau_{\widetilde{g}}(z)\leq t\},\quad 0\leq t
$$

Properties of \widetilde{g}_t and K_t :

1.
$$
\widetilde{g}_t : \mathbb{S}_p \setminus \widetilde{K}_t \stackrel{\text{Conf}}{\rightarrow} \mathbb{S}_{p-t};
$$

 \leftarrow \Box

 \leftarrow \Box

医重新性黄疸

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering annulus Loewner equation of modulus p driven by $\xi \in C([0, p))$:

$$
\partial_t \widetilde{g}_t(z) = \mathbf{H}(p-t, \widetilde{g}_t(z) - \xi(t)), \quad \widetilde{g}_0(z) = z.
$$

Covering hulls:

$$
\widetilde{K}_t:=\{z\in\mathbb{S}_p:\tau_{\widetilde{g}}(z)\leq t\},\quad 0\leq t
$$

Properties of \widetilde{g}_t and K_t :

1. $\widetilde{g}_t : \mathbb{S}_p \setminus \widetilde{K}_t \stackrel{\text{Conf}}{\twoheadrightarrow} \mathbb{S}_{p-t};$ 2. dist $(\widetilde{K}_t,\mathbb{R}_p)>0;$

 \leftarrow \Box

メミメ メミメ

э

 Ω

 \mathbf{p}

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering annulus Loewner equation of modulus p driven by $\xi \in C([0, p))$:

$$
\partial_t \widetilde{g}_t(z) = \mathbf{H}(p-t, \widetilde{g}_t(z) - \xi(t)), \quad \widetilde{g}_0(z) = z.
$$

Covering hulls:

$$
\widetilde{K}_t:=\{z\in\mathbb{S}_p:\tau_{\widetilde{g}}(z)\leq t\},\quad 0\leq t
$$

Properties of \widetilde{g}_t and K_t :

1. $\widetilde{g}_t : \mathbb{S}_p \setminus \widetilde{K}_t \stackrel{\text{Conf}}{\twoheadrightarrow} \mathbb{S}_{p-t};$ 2. dist $(\widetilde{K}_t,\mathbb{R}_p)>0;$ 3. If $z \in \mathbb{R}$, $\widetilde{g}_t(z)$ stays on $\mathbb R$ before it blows up;

 $4.17 +$

ヨメ イヨメ

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering annulus Loewner equation of modulus p driven by $\xi \in C([0, p))$:

$$
\partial_t \widetilde{g}_t(z) = \mathbf{H}(p-t, \widetilde{g}_t(z) - \xi(t)), \quad \widetilde{g}_0(z) = z.
$$

Covering hulls:

$$
\widetilde{K}_t:=\{z\in\mathbb{S}_p:\tau_{\widetilde{g}}(z)\leq t\},\quad 0\leq t
$$

Properties of \widetilde{g}_t and K_t :

\n- 1.
$$
\widetilde{g}_t : \mathbb{S}_p \setminus \widetilde{K}_t \stackrel{\text{Conf}}{\rightarrow} \mathbb{S}_{p-t};
$$
\n- 2. $\text{dist}(\widetilde{K}_t, \mathbb{R}_p) > 0;$
\n- 3. If $z \in \mathbb{R}, \widetilde{g}_t(z)$ stays on \mathbb{R} before it blows up;
\n- 4. If $z \in \mathbb{R}_p$, $\widetilde{g}_t(z) \in \mathbb{R}_{p-t}$ for $0 \leq t < p$.
\n

 \leftarrow \Box

 \leftarrow \Box

医重新性黄疸

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering trace (when $\xi(t) = \sqrt{\kappa}B(t) +$ drift):

$$
\widetilde{\beta}(t):=\lim_{\mathbb{S}_p\ni z\to \xi(t)}\widetilde{g}_t^{-1}(z),\quad 0\leq t
$$

すロト オ部 ト すき ト すき ト

 299

目

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering trace (when $\xi(t) = \sqrt{\kappa}B(t) +$ drift):

$$
\widetilde{\beta}(t):=\lim_{\mathbb{S}_p\ni z\to \xi(t)}\widetilde{g}_t^{-1}(z),\quad 0\leq t
$$

Properties of $\tilde{\beta}$:

すロト オ部 ト すき ト すき ト

÷.

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering trace (when $\xi(t) = \sqrt{\kappa}B(t) +$ drift):

$$
\widetilde{\beta}(t):=\lim_{\mathbb{S}_p\ni z\to \xi(t)}\widetilde{g}_t^{-1}(z),\quad 0\leq t
$$

Properties of $\widetilde{\beta}$:

1. $\widetilde{\beta}$ is continuous in $\mathbb{S}_{p} \cup \mathbb{R}$.

 \leftarrow \Box \mathcal{A} . Æ. \sim 医重新性黄疸

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering trace (when $\xi(t) = \sqrt{\kappa}B(t) +$ drift):

$$
\widetilde{\beta}(t):=\lim_{\mathbb{S}_p\ni z\to \xi(t)}\widetilde{g}_t^{-1}(z),\quad 0\leq t
$$

Properties of $\widetilde{\beta}$:

1. $\widetilde{\beta}$ is continuous in $\mathbb{S}_{p} \cup \mathbb{R}$. 2. $\widetilde{\beta}(0) = \xi(0) \in \mathbb{R}$.

 \leftarrow \Box

メミメ メミメ

 \mathbf{p}

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering trace (when $\xi(t) = \sqrt{\kappa}B(t) +$ drift):

$$
\widetilde{\beta}(t):=\lim_{\mathbb{S}_p\ni z\to \xi(t)}\widetilde{g}_t^{-1}(z),\quad 0\leq t
$$

Properties of β :

- 1. $\widetilde{\beta}$ is continuous in $\mathbb{S}_p \cup \mathbb{R}$.
- 2. $\widetilde{\beta}(0) = \xi(0) \in \mathbb{R}$.
- 3. If $\kappa \in (0, 4]$, $\widetilde{\beta}$ is simple, $\widetilde{\beta}(t) \notin \mathbb{R}$ for $t > 0$, $\widetilde{\beta}$ does not intersect $2n\pi + \widetilde{\beta}$ for any $n \in \mathbb{Z} \setminus \{0\}$, and $\widetilde{K}_t = \bigcup_{n \in \mathbb{Z}} (2n\pi + \widetilde{\beta}((0, t]))$.

 -10.5

ミドイミド

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Covering trace (when $\xi(t) = \sqrt{\kappa}B(t) +$ drift):

$$
\widetilde{\beta}(t):=\lim_{\mathbb{S}_p\ni z\to \xi(t)}\widetilde{g}_t^{-1}(z),\quad 0\leq t
$$

Properties of β :

1. $\widetilde{\beta}$ is continuous in $\mathbb{S}_p \cup \mathbb{R}$.

2.
$$
\widetilde{\beta}(0) = \xi(0) \in \mathbb{R}
$$
.

3. If $\kappa \in (0, 4]$, $\tilde{\beta}$ is simple, $\tilde{\beta}(t) \notin \mathbb{R}$ for $t > 0$, $\tilde{\beta}$ does not intersect $2n\pi + \widetilde{\beta}$ for any $n \in \mathbb{Z} \setminus \{0\}$, and $\widetilde{K}_t = \bigcup_{n \in \mathbb{Z}} (2n\pi + \widetilde{\beta}((0, t]))$.

Relations between (g_t, K_t, β) and $(\widetilde{g}_t, K_t, \beta)$.

$$
g_t \circ e^i = e^i \circ \widetilde{g}_t, \quad \widetilde{K}_t = (e^i)^{-1}(K_t), \quad \beta = e^i \circ \widetilde{\beta}.
$$

 -10.5

ミャマミャ

つひへ

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Another special function $(r > 0)$:

$$
\mathsf{H}_1(r,z)=i+\mathsf{H}(r,z+ir)=\mathsf{P}.\,\mathsf{V}.\sum_{2\nmid n}\cot_2(z-int).
$$

メロト メ都 トメ 君 トメ 君 ト

目

 299

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Another special function $(r > 0)$:

$$
\mathsf{H}_1(r,z)=i+\mathsf{H}(r,z+ir)=\mathsf{P}.\,\mathsf{V}.\sum_{2\nmid n}\cot_2(z-int).
$$

Facts:

1. $H_1(r, \cdot)$ takes real values on \mathbb{R} ;

- 4 君 8 - 4 君 8

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Another special function $(r > 0)$:

$$
\mathsf{H}_1(r,z)=i+\mathsf{H}(r,z+ir)=\mathsf{P}.\,\mathsf{V}.\sum_{2\nmid n}\cot_2(z-int).
$$

Facts:

1. $H_1(r, \cdot)$ takes real values on \mathbb{R} ; 2. If $z \in \mathbb{R}_p$, then $\text{Re } \widetilde{g}_t(z)$ satisfies

$$
\partial_t \operatorname{Re} \widetilde{g}_t(z) = \mathbf{H}_l(p-t, \operatorname{Re} \widetilde{g}_t(z) - \xi(t)), \quad 0 \leq t < p.
$$

 \leftarrow \Box

 \leftarrow \Box

医重新性黄疸

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $4.17 +$

ほき メミト

 $2Q$

∍

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Annulus SLE_{κ} (without additional force point) is the annulus Loewner Process driven by $\xi(t) = \sqrt{\kappa}B(t)$. The trace starts from 1 on T, and ends at a random point on \mathbb{T}_p . The process satisfies DMP.

 \leftarrow

つへへ

 $4.17 +$

Э× in the se э

1. the force point and the initial point lie on the same boundary component;

 -10.5

 \rightarrow \equiv \rightarrow

∍

- 1. the force point and the initial point lie on the same boundary component;
- 2. the two marked points lie on different boundary components.

不良 下

- 1. the force point and the initial point lie on the same boundary component;
- 2. the two marked points lie on different boundary components.

We now focus on the second case.

不良 下

Suppose $\mathsf{A}(t,x)$ is C^1 on $(0,\infty)\times\mathbb{R}$, and has period 2π in its second variable. Let $a \in \mathbb{T}$ and $b \in \mathbb{T}_p$. The annulus $\mathsf{SLE}(\kappa, \Lambda)$ process in \mathbb{A}_p started from a with force point b is defined as follows:

 $4.17 +$

ぼう メラう

э

Suppose $\mathsf{A}(t,x)$ is C^1 on $(0,\infty)\times\mathbb{R}$, and has period 2π in its second variable. Let $a \in \mathbb{T}$ and $b \in \mathbb{T}_p$. The annulus $SLE(\kappa, \Lambda)$ process in \mathbb{A}_p started from a with force point b is defined as follows:

1. Pick $x, y \in \mathbb{R}$ such that $a = e^{ix}$ and $b = e^{-p+iy}$.

 $4.17 +$

EXIST

∍

Suppose $\mathsf{A}(t,x)$ is C^1 on $(0,\infty)\times\mathbb{R}$, and has period 2π in its second variable. Let $a \in \mathbb{T}$ and $b \in \mathbb{T}_p$. The annulus $SLE(\kappa, \Lambda)$ process in \mathbb{A}_p started from a with force point b is defined as follows:

- 1. Pick $x, y \in \mathbb{R}$ such that $a = e^{ix}$ and $b = e^{-p+iy}$.
- 2. Solve the following SDE:

$$
d\xi(t) = \sqrt{\kappa}B(t) + \Lambda(p - t, \xi(t) - \text{Re}\,\widetilde{g}_t^{\xi}(y + ip)), \quad \xi(0) = x
$$

 -10.5

ヨメ イヨメ

∍

Suppose $\mathsf{A}(t,x)$ is C^1 on $(0,\infty)\times\mathbb{R}$, and has period 2π in its second variable. Let $a \in \mathbb{T}$ and $b \in \mathbb{T}_p$. The annulus $SLE(\kappa, \Lambda)$ process in \mathbb{A}_p started from a with force point b is defined as follows:

- 1. Pick $x, y \in \mathbb{R}$ such that $a = e^{ix}$ and $b = e^{-p+iy}$.
- 2. Solve the following SDE:

$$
d\xi(t) = \sqrt{\kappa}B(t) + \Lambda(p - t, \xi(t) - \text{Re}\,\widetilde{g}_t^{\xi}(y + ip)), \quad \xi(0) = x
$$

3. The annulus Loewner process driven by ξ is the annulus $\mathsf{SLE}(\kappa,\Lambda)$ process to be defined.

 -10.5

ぼう メラう

Remarks.

1. The definition does not depend on the choices of x and y because of the periodicity of Λ.

4 0 8 - 4 n¶ \mathbf{p} ほき メミト

G

Remarks.

- 1. The definition does not depend on the choices of x and y because of the periodicity of Λ.
- 2. For any Λ , the annulus $SLE(\kappa, \Lambda)$ process satisfies DMP.

 \leftarrow \Box

ミメ メミメ

 $2Q$

э

Remarks.

- 1. The definition does not depend on the choices of x and y because of the periodicity of Λ.
- 2. For any Λ , the annulus $SLE(\kappa, \Lambda)$ process satisfies DMP.
- 3. In general, the trace may not end at the force point. Even it does, the reversibility may not hold.

 $4.17 +$

不良 下

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

It was proved earlier that, if Λ satisfies the PDE:

$$
\partial_t \Lambda = \frac{\kappa}{2} \Lambda'' + \left(3 - \frac{\kappa}{2}\right) \mathbf{H}_I'' + \Lambda \mathbf{H}_I' + \Lambda' \mathbf{H}_I + \Lambda' \Lambda,\tag{1}
$$

Kロト K伊ト

- 4 君 8 - 4 君 8

目

It was proved earlier that, if Λ satisfies the PDE:

$$
\partial_t \Lambda = \frac{\kappa}{2} \Lambda'' + \left(3 - \frac{\kappa}{2}\right) \mathbf{H}_I'' + \Lambda \mathbf{H}_I' + \Lambda' \mathbf{H}_I + \Lambda' \Lambda, \tag{1}
$$

then an annulus $SLE(\kappa; \Lambda)$ process commutes with an annulus SLE(κ ; Λ^-) process growing in the same domain with the initial point and force point exchanged, where $\Lambda^{-}(t, x) = -\Lambda(t, -x)$.

 -10.5

ALCOHOL:

∍
It was proved earlier that, if Λ satisfies the PDE:

$$
\partial_t \Lambda = \frac{\kappa}{2} \Lambda'' + \left(3 - \frac{\kappa}{2}\right) \mathbf{H}_I'' + \Lambda \mathbf{H}_I' + \Lambda' \mathbf{H}_I + \Lambda' \Lambda, \tag{1}
$$

then an annulus $SLE(\kappa; \Lambda)$ process commutes with an annulus SLE(κ ; Λ^-) process growing in the same domain with the initial point and force point exchanged, where $\Lambda^{-}(t, x) = -\Lambda(t, -x)$.

If, in addition, an annulus $SLE(\kappa; \Lambda)$ trace a.s. ends at the force point, then the reversal of an annulus $SLE(\kappa; \Lambda)$ trace is an annulus $SLE(\kappa; \Lambda^{-})$ trace, up to some reparametrization. So the reversibility holds.

 \rightarrow \equiv \rightarrow

つひへ

If we condition an annulus SLE without force point to end at a marked point on \mathbb{T}_p , then we get an annulus $SLE(\kappa, \Lambda)$ process. The Λ satisfies a different PDE:

$$
\partial_t \Lambda = \frac{\kappa}{2} \Lambda'' + \kappa \mathbf{H}_I'' + \Lambda \mathbf{H}_I' + \Lambda' \mathbf{H}_I + \Lambda' \Lambda.
$$

 \leftarrow \Box

- b

 $2Q$

э

ぼう メラう

If we condition an annulus SLE without force point to end at a marked point on \mathbb{T}_p , then we get an annulus $SLE(\kappa, \Lambda)$ process. The Λ satisfies a different PDE:

$$
\partial_t \Lambda = \frac{\kappa}{2} \Lambda'' + \kappa \mathbf{H}_I'' + \Lambda \mathbf{H}_I' + \Lambda' \mathbf{H}_I + \Lambda' \Lambda.
$$

This agrees with (1) only when $\kappa = 2$. For other κ , we need some different method to find a solution of (1).

 $4.17 +$

GARAGE

∍

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $4.17 +$

ほき メミメ

 $2Q$

∍

For $\kappa \in (0, 4]$, there is a special drift function Λ_{κ} which solves (1). Moreover, the annulus $SLE(\kappa; \Lambda_{\kappa})$ process satisfies reversibility, and serves as the intermediate process of a whole-plane SLE_{κ} process. Such Λ_{κ} is defined by the following.

 -10.5

in the se

∍

For $\kappa \in (0, 4]$, there is a special drift function Λ_{κ} which solves (1). Moreover, the annulus $SLE(\kappa; \Lambda_{\kappa})$ process satisfies reversibility, and serves as the intermediate process of a whole-plane SLE_{κ} process. Such Λ_{κ} is defined by the following.

First, we may transform (1) into a linear PDE using $\Lambda = \kappa \frac{\Gamma'}{\Gamma}$ Γ :

$$
\partial_t \Gamma = \frac{\kappa}{2} \Gamma'' + \mathbf{H}_I \Gamma' + \frac{6 - \kappa}{2\kappa} \mathbf{H}_I' \Gamma. \tag{2}
$$

 -10.5

ミドイミド

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Define a rescaled Jacobi's theta function $\Theta_I(t,z) = \theta_2(\frac{z}{2\pi},\frac{it}{\pi})$

$$
=\prod_{m=1}^{\infty}(1-e^{-2mt})(1-e^{-(2m-1)t}e^{iz})(1-e^{-(2m-1)t}e^{-iz}).
$$

Such Θ , solves $\partial_t \Theta$, $= \Theta''_1$, and \mathbf{H}_1 can be expressed by $\mathbf{H}_1 = 2 \frac{\Theta'_1}{\Theta_1}$.

イロメ イ押メ イヨメ イヨメー

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Define a rescaled Jacobi's theta function $\Theta_I(t,z) = \theta_2(\frac{z}{2\pi},\frac{it}{\pi})$

$$
=\prod_{m=1}^{\infty}(1-e^{-2mt})(1-e^{-(2m-1)t}e^{iz})(1-e^{-(2m-1)t}e^{-iz}).
$$

Such Θ , solves $\partial_t \Theta$, $= \Theta''_1$, and \mathbf{H}_1 can be expressed by $\mathbf{H}_1 = 2 \frac{\Theta'_1}{\Theta_1}$.

Let $\Psi = \Gamma \Theta_I^{2/\kappa}$. It is straightforward to check that Γ solves (2) iff Ψ solves another linear PDE $(\sigma=\frac{4}{\kappa}-1)$:

$$
\partial_t \Psi = \frac{\kappa}{2} \Psi'' + \sigma \mathbf{H}'_I \Psi.
$$
 (3)

イロメ イ押メ イヨメ イヨメー

重

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

We now rescale Ψ. The followings are equivalent:

$$
\widehat{\Psi}(t,x) = e^{\frac{x^2}{2\kappa t}} \left(\frac{\pi}{t}\right)^{\sigma + \frac{1}{2}} \Psi\left(\frac{\pi^2}{t}, \frac{\pi}{t}x\right);
$$

$$
\Psi(t,x) = e^{-\frac{x^2}{2\kappa t}} \left(\frac{\pi}{t}\right)^{\sigma + \frac{1}{2}} \widehat{\Psi}\left(\frac{\pi^2}{t}, \frac{\pi}{t}x\right).
$$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶

目

 299

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

We now rescale Ψ. The followings are equivalent:

$$
\widehat{\Psi}(t,x) = e^{\frac{x^2}{2\kappa t}} \left(\frac{\pi}{t}\right)^{\sigma+\frac{1}{2}} \Psi\left(\frac{\pi^2}{t}, \frac{\pi}{t}x\right);
$$

$$
\Psi(t,x) = e^{-\frac{x^2}{2\kappa t}} \left(\frac{\pi}{t}\right)^{\sigma+\frac{1}{2}} \widehat{\Psi}\left(\frac{\pi^2}{t}, \frac{\pi}{t}x\right).
$$

Define another special function \hat{H}_I by (tanh₂(z) := tanh(z/2))

$$
\widehat{H}_I(t,z) = P.V. \sum_{2|n} \tanh_2(z-nt).
$$

 \leftarrow \Box

D

ミド メミド

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

We now rescale Ψ. The followings are equivalent:

$$
\widehat{\Psi}(t,x) = e^{\frac{x^2}{2\kappa t}} \left(\frac{\pi}{t}\right)^{\sigma+\frac{1}{2}} \Psi\left(\frac{\pi^2}{t}, \frac{\pi}{t}x\right);
$$

$$
\Psi(t,x) = e^{-\frac{x^2}{2\kappa t}} \left(\frac{\pi}{t}\right)^{\sigma+\frac{1}{2}} \widehat{\Psi}\left(\frac{\pi^2}{t}, \frac{\pi}{t}x\right).
$$

Define another special function \hat{H}_I by (tanh₂(z) := tanh(z/2))

$$
\widehat{H}_I(t,z) = P.V. \sum_{2|n} \tanh_2(z-nt).
$$

One may check that Ψ solves (3) iff $\widehat{\Psi}$ solves another linear PDE:

$$
-\partial_t \widehat{\Psi} = \frac{\kappa}{2} \widehat{\Psi}'' + \sigma \widehat{\mathbf{H}}'_I \widehat{\Psi}.
$$
 (4)

 $4.17 +$

不良 下

つへへ

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

As $t \to \infty$, $\hat{H}_I \to \tanh_2$, so equation (4) tends to

$$
-\partial_t \widehat{\Psi} = \frac{\kappa}{2} \widehat{\Psi}'' + \sigma \tanh'_2 \widehat{\Psi},
$$

すロト オ部 トメ 君 トメ 君 ト

目

 299

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

As $t \to \infty$, $\hat{H}_I \to \tanh_2$, so equation (4) tends to

$$
-\partial_t \widehat{\Psi} = \frac{\kappa}{2} \widehat{\Psi}'' + \sigma \tanh'_2 \widehat{\Psi},
$$

which has a simple solution $(\tau = \frac{\kappa}{2} - 2, \cosh_2(x) := \cosh(x/2))$:

$$
\widehat{\Psi}_{\infty}(t,x)=e^{-\frac{\tau^2t}{2\kappa}}\cosh^{\frac{2}{\kappa}\tau}_{2}(x).
$$

 \leftarrow \Box

AT H

化重新润滑剂

G

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

As $t \to \infty$, $\hat{H}_I \to \tanh_2$, so equation (4) tends to

$$
-\partial_t \widehat{\Psi} = \frac{\kappa}{2} \widehat{\Psi}'' + \sigma \tanh'_2 \widehat{\Psi},
$$

which has a simple solution $(\tau = \frac{\kappa}{2} - 2, \cosh_2(x) := \cosh(x/2))$:

$$
\widehat{\Psi}_{\infty}(t,x)=e^{-\frac{\tau^2t}{2\kappa}}\cosh^{\frac{2}{\kappa}\tau}_{2}(x).
$$

Let $\hat{\Psi}_q = \hat{\Psi}/\hat{\Psi}_{\infty}$ and $\hat{\mathbf{H}}_{I,q} = \hat{\mathbf{H}}_I - \tanh_2$. Then $\hat{\Psi}$ solves (4) iff $\hat{\Psi}_q$ solves another linear PDE:

 \leftarrow \Box

イヨメ イヨメ

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

As $t \to \infty$, $\hat{H}_I \to \tanh_2$, so equation (4) tends to

$$
-\partial_t \widehat{\Psi} = \frac{\kappa}{2} \widehat{\Psi}'' + \sigma \tanh'_2 \widehat{\Psi},
$$

which has a simple solution $(\tau = \frac{\kappa}{2} - 2, \cosh_2(x) := \cosh(x/2))$:

$$
\widehat{\Psi}_{\infty}(t,x)=e^{-\frac{\tau^2t}{2\kappa}}\cosh^{\frac{2}{\kappa}\tau}_{2}(x).
$$

Let $\hat{\Psi}_q = \hat{\Psi}/\hat{\Psi}_{\infty}$ and $\hat{\mathbf{H}}_{I,q} = \hat{\mathbf{H}}_I - \tanh_2$. Then $\hat{\Psi}$ solves (4) iff $\hat{\Psi}_q$ solves another linear PDE:

$$
-\partial_t \widehat{\Psi}_q = \frac{\kappa}{2} \widehat{\Psi}_q'' + \tau \tanh_2 \widehat{\Psi}_q' + \sigma \widehat{\mathbf{H}}'_{I,q} \widehat{\Psi}_q.
$$
 (5)

 \leftarrow \Box

イヨメ イヨメ

PDE (5) can be solved by a Feynman-Kac formula. Let $X_x(t)$ be a diffusion process which satisfies SDE:

$$
dX_x(t) = \sqrt{\kappa}dB(t) + \tau \tanh_2(X_x(t))dt, \quad X_x(0) = x.
$$

 \leftarrow \Box

 \leftarrow \Box

医重新性黄疸

G

PDE (5) can be solved by a Feynman-Kac formula. Let $X_x(t)$ be a diffusion process which satisfies SDE:

$$
dX_x(t) = \sqrt{\kappa}dB(t) + \tau \tanh_2(X_x(t))dt, \quad X_x(0) = x.
$$

One solution of (5) is given by

$$
\widehat{\Psi}_q(t,x) = \mathbf{E}\Big[\exp\Big(\sigma \int_0^\infty \widehat{\mathbf{H}}'_{1,q}(t+s,X_x(s))ds\Big)\Big].
$$

 \leftarrow \Box

メミメ メミメ

 \sim

G

PDE (5) can be solved by a Feynman-Kac formula. Let $X_{x}(t)$ be a diffusion process which satisfies SDE:

$$
dX_x(t) = \sqrt{\kappa}dB(t) + \tau \tanh_2(X_x(t))dt, \quad X_x(0) = x.
$$

One solution of (5) is given by

$$
\widehat{\Psi}_q(t,x) = \mathbf{E}\left[\exp\left(\sigma \int_0^\infty \widehat{\mathbf{H}}'_{1,q}(t+s,X_x(s))ds\right)\right].
$$

It takes some work (using estimation of diffusion processes and Fubini's theorem) to show that $\hat{\Psi}_q$ is $C^{1,2}$ differentiable. Once this is done, we may apply Itô's formula to show that $\widehat{\Psi}_a$ solves (5).

 $2Q$

一个 医小

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Let $\hat{\Psi}_0 = \hat{\Psi}_{\infty} \hat{\Psi}_a$. Then $\hat{\Psi}_0$ solves (4). Define Ψ_0 using the rescaling rule. Then Ψ_0 solves (3). Let $\Gamma_0 = \Psi_0 \Theta_I^{-2/\kappa}$ $I_I^{2/\kappa}$. Then Γ_0 solves (2). All of these functions are positive. Let $\Lambda_0 = \kappa \frac{\Gamma_0'}{\Gamma_0}$. Then Λ_0 solves (1).

 $4.17 +$

ALCOHOL:

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Let $\hat{\Psi}_{0} = \hat{\Psi}_{\infty} \hat{\Psi}_{a}$. Then $\hat{\Psi}_{0}$ solves (4). Define Ψ_{0} using the rescaling rule. Then Ψ_0 solves (3). Let $\Gamma_0 = \Psi_0 \Theta_I^{-2/\kappa}$ $I_I^{2/\kappa}$. Then Γ_0 solves (2). All of these functions are positive. Let $\Lambda_0 = \kappa \frac{\Gamma_0'}{\Gamma_0}$. Then Λ_0 solves (1).

However, Λ_0 does not have period 2π in its second variable. To fix this problem, we do the following. Let $\Gamma_m(t,x) = \Gamma_0(t,x - 2m\pi)$, $m \in \mathbb{Z}$. Since **H** has period 2π in its second variable, every Γ_m also solves the linear PDE (2). Let

$$
\Gamma = \sum_{m \in \mathbb{Z}} \Gamma_m.
$$

 -10.5

EXIST

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

Let $\hat{\Psi}_{0} = \hat{\Psi}_{\infty} \hat{\Psi}_{a}$. Then $\hat{\Psi}_{0}$ solves (4). Define Ψ_{0} using the rescaling rule. Then Ψ_0 solves (3). Let $\Gamma_0 = \Psi_0 \Theta_I^{-2/\kappa}$ $I_I^{2/\kappa}$. Then Γ_0 solves (2). All of these functions are positive. Let $\Lambda_0 = \kappa \frac{\Gamma_0'}{\Gamma_0}$. Then Λ_0 solves (1).

However, Λ_0 does not have period 2π in its second variable. To fix this problem, we do the following. Let $\Gamma_m(t, x) = \Gamma_0(t, x - 2m\pi)$, $m \in \mathbb{Z}$. Since **H** has period 2π in its second variable, every Γ_m also solves the linear PDE (2). Let

$$
\Gamma = \sum_{m \in \mathbb{Z}} \Gamma_m.
$$

Some estimations show that the series of functions together with all of their derivatives converge locally uniformly. Thus, Γ also solves (2). The special drift function Λ_κ is defined to be $\Lambda_\kappa = \kappa \frac{\Gamma'}{\Gamma}$ Γ .

→ (何) > → (日) → (日) →

つひへ

[Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $4.17 +$

ほき メミメ

 $2Q$

∍

[Introduction](#page-4-0) [Intermediate Whole-Plane SLE](#page-18-0) [Restriction](#page-100-0) [Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

The annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ trace starts from the initial point $a=e^{i\chi},$ and ends at the force point $b=e^{-p+jy}$. The covering trace starts from $x,$ and may end at $y + 2m\pi + pi$ for some $m \in \mathbb{Z}$. We may decompose this process according to the endpoint of the covering trace.

 -10.5

[Introduction](#page-4-0) [Intermediate Whole-Plane SLE](#page-18-0) [Restriction](#page-100-0) [Annulus Loewner equation](#page-19-0) [Annulus SLE with one force point](#page-58-0) [The particular drift function](#page-76-0) [Decomposition in the covering space](#page-94-0)

The annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ trace starts from the initial point $a=e^{i\chi},$ and ends at the force point $b=e^{-p+jy}$. The covering trace starts from $x,$ and may end at $y + 2m\pi + pi$ for some $m \in \mathbb{Z}$. We may decompose this process according to the endpoint of the covering trace.

Recall that the driving function ξ solves the SDE:

$$
d\xi(t)=\sqrt{\kappa}dB(t)+\Lambda_{\kappa}(p-t,\xi(t)-\text{Re}\,\widetilde{g}_{t}^{\xi}(y+pi))dt,\quad \xi(0)=x.
$$

The drift function Λ_{κ} is given by $\Lambda_{\kappa} = \kappa \frac{\Gamma'}{\Gamma}$ $\frac{\Gamma}{\Gamma}$, where $\Gamma = \sum_{m \in \mathbb{Z}} \Gamma_m$, and $\Gamma_m(t, x) = \Gamma_0(t, x - 2m\pi).$

EXIST

つひへ

Let $y_m = y + 2m\pi$, $m \in \mathbb{Z}$. Suppose ξ_m solves the following SDE:

 $d\xi_m(t) = \sqrt{\kappa}dB(t) + \Lambda_0(p-t,\xi(t) - \text{Re}\,\widetilde{g}_t^{\xi_m}(y_m+pi))dt, \quad \xi(0) = x.$

4 0 8

メ 伊 メ メ ヨ メ ス ヨ メー

G

Let
$$
y_m = y + 2m\pi
$$
, $m \in \mathbb{Z}$. Suppose ξ_m solves the following SDE:

$$
d\xi_m(t)=\sqrt{\kappa}dB(t)+\Lambda_0(p-t,\xi(t)-\text{Re}\,\widetilde{g}_t^{\xi_m}(y_m+pi))dt,\quad \xi(0)=x.
$$

The covering trace driven by ξ_m starts from x and ends at $y_m + pi$, and μ_ξ is a convex combination of the μ_{ξ_m} 's:

$$
\mu_{\xi} = \sum_{m \in \mathbb{Z}} \frac{\Gamma_m(p, x - y)}{\Gamma(p, x - y)} \, \mu_{\xi_m}.
$$

 \leftarrow \Box

- 4 点 下

メミメ メミメ

G

Let
$$
y_m = y + 2m\pi
$$
, $m \in \mathbb{Z}$. Suppose ξ_m solves the following SDE:

$$
d\xi_m(t)=\sqrt{\kappa}dB(t)+\Lambda_0(p-t,\xi(t)-\text{Re}\,\widetilde{g}_t^{\xi_m}(y_m+pi))dt,\quad \xi(0)=x.
$$

The covering trace driven by ξ_m starts from x and ends at $y_m + pi$, and μ_ξ is a convex combination of the μ_{ξ_m} 's:

$$
\mu_{\xi} = \sum_{m \in \mathbb{Z}} \frac{\Gamma_m(p, x - y)}{\Gamma(p, x - y)} \, \mu_{\xi_m}.
$$

We call the annulus Loewner process driven by ξ_m a conditional annulus $SLE(\kappa, \Lambda_{\kappa})$ process (with initial point x and force point $y_m + pi$).

 \leftarrow \Box

ヨメ イヨメ

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $4.17 +$

ミド メミド

 $2Q$

э

Theorem 1

Let $p > 0$, $a = e^{i\chi} \in \mathbb{T}$, and $b = e^{-p + iy} \in \mathbb{T}_p$. Let β be an annulus $SLE(\kappa, \Lambda_{\kappa})$ trace in \mathbb{A}_{p} from a to b, and let μ denote its distribution. Let L be a relatively closed subset of A_p such that $A_p \setminus L$ is a doubly connected domain and contains the neighborhoods of a and b. Define a new probability measure μ_L by

$$
\frac{d\mu_L}{d\mu} = \frac{\mathbf{1}_{\beta \cap L = \emptyset}}{Z} \exp(c \mu_{\text{loop}}(\mathcal{L}(\mathbb{A}_p; \beta, L))),
$$

where $Z > 0$ is some normalization constant, and $\mathcal{L}(\mathbb{A}_{p}; \beta, L)$ is the set of the loops in A_p that intersect both β and L. Then μ_l is the distribution of a reparameterized annulus $SLE(\kappa, \Lambda_{\kappa})$ curve in $\mathbb{A}_{p} \setminus L$ from a to b.

つひへ

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $4.17 +$

4 日本 4 日本

×

 $2Q$

э

Let $p_L = \mathsf{mod}(\mathbb{A}_\rho \setminus L)$ and $\widetilde{L} = (e^i)^{-1}(L)$. We may find W_L and \widetilde{W}_L such that

$$
W_L: (\mathbb{A}_p \setminus L; \mathbb{T}_p) \stackrel{\text{Conf}}{\rightarrow} (\mathbb{A}_{p_L}; \mathbb{T}_{p_L});
$$

$$
\widetilde{W}_L: (\mathbb{S}_p \setminus \widetilde{L}; \mathbb{R}_p) \stackrel{\text{Conf}}{\rightarrow} (\mathbb{S}_{p_L}; \mathbb{R}_{p_L});
$$

$$
W_L \circ e^i = e^i \circ \widetilde{W}_L.
$$

 \leftarrow \Box

メ御き メミド メミドー

÷.

Let $p_L = \mathsf{mod}(\mathbb{A}_\rho \setminus L)$ and $\widetilde{L} = (e^i)^{-1}(L)$. We may find W_L and \widetilde{W}_L such that

$$
W_L: (\mathbb{A}_{\rho} \setminus L; \mathbb{T}_{\rho}) \stackrel{\text{Conf}}{\rightarrow} (\mathbb{A}_{\rho_L}; \mathbb{T}_{\rho_L});
$$

$$
\widetilde{W}_L: (\mathbb{S}_{\rho} \setminus \widetilde{L}; \mathbb{R}_{\rho}) \stackrel{\text{Conf}}{\rightarrow} (\mathbb{S}_{\rho_L}; \mathbb{R}_{\rho_L});
$$

$$
W_L \circ e^i = e^i \circ \widetilde{W}_L.
$$

Let $\xi(t) = \sqrt{\kappa} B(t)$ plus a drift, $0 \leq t < p$, such that $\xi(0) = x$. Let β be the annulus Loewner trace of modulus p driven by ξ , and let $\hat{\beta}$ and \tilde{g}_t be the covering trace and maps. Recall that $\tilde{\beta}(0) = \xi(0) = x$ and $\beta(0) = e^{i\mathsf{x}} = a$.

- 4 重 8 3 番 8

∍

Let T_L be the first time that $\beta(t) \in L$. If such time does not exist, set $T_L = p$. For $0 \le t < T_L$, let $\beta_L(t) = W_L(\beta(t))$, and

$$
v(t) = p_L - \text{mod}(\mathbb{A}_{p_L} \setminus \beta_L((0, t])).
$$

 \leftarrow \Box

画 \sim и.

メラメ メラメ

G

Let T_L be the first time that $\beta(t) \in L$. If such time does not exist, set $T_L = p$. For $0 \le t < T_L$, let $\beta_L(t) = W_L(\beta(t))$, and

$$
v(t) = p_L - \text{mod}(\mathbb{A}_{p_L} \setminus \beta_L((0, t])).
$$

Then β_L is an annulus Loewner trace via the time-change $v(t)$. This means that there exist $\xi_L \in C([0, T_L))$ and two families of conformal maps g_t^L and \widetilde{g}_t^L , $0 \leq t < \mathcal{T}_L$, such that

 -10.5

ぼう メラう

∍

Let T_L be the first time that $\beta(t) \in L$. If such time does not exist, set $T_L = p$. For $0 \le t < T_L$, let $\beta_L(t) = W_L(\beta(t))$, and

$$
v(t) = p_L - \text{mod}(\mathbb{A}_{p_L} \setminus \beta_L((0, t])).
$$

Then β_L is an annulus Loewner trace via the time-change $v(t)$. This means that there exist $\xi_L \in C([0, T_L))$ and two families of conformal maps g_t^L and \widetilde{g}_t^L , $0 \leq t < \mathcal{T}_L$, such that

$$
g_t^L : \mathbb{A}_{p_L} \setminus \beta_L((0, t]) \stackrel{\text{Conf}}{\twoheadrightarrow} \mathbb{A}_{p_L - v(t)};
$$

$$
g_t^L \circ e^i = e^i \circ \widetilde{g}_t^L;
$$

$$
\partial_t \widetilde{g}_t^L(z) = v'(t) \mathsf{H}(p_L - v(t), \widetilde{g}_t^L(z) - \xi_L(t)).
$$

 -10.5

化重新化生重新

重

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Define

$$
\widetilde{W}_t = \widetilde{g}_t^L \circ \widetilde{W}_L \circ \widetilde{g}_t^{-1}, \quad 0 \leq t < \mathcal{T}_L.
$$

メロメ メ都 メスをおくをおし

 \equiv 990
[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Define

 $W_t = \widetilde{g}_t^L \circ W_L \circ \widetilde{g}_t^{-1}, \quad 0 \leq t < T_L.$

Then

$$
\widetilde{W}_t: \mathbb{S}_{p-t} \setminus \widetilde{g}_t(\widetilde{L}) \stackrel{\text{Conf}}{\rightarrow} \mathbb{S}_{p_L-v(t)}.
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

唐山 2990

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Define

 $W_t = \widetilde{g}_t^L \circ W_L \circ \widetilde{g}_t^{-1}, \quad 0 \leq t < T_L.$

Then

$$
\widetilde{W}_t: \mathbb{S}_{p-t} \setminus \widetilde{g}_t(\widetilde{L}) \stackrel{\text{Conf}}{\rightarrow} \mathbb{S}_{p_L-v(t)}.
$$

Some standard arguments show that

K ロ ▶ K 伊 ▶

医电影 医唇头

÷.

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Define

 $W_t = \widetilde{g}_t^L \circ W_L \circ \widetilde{g}_t^{-1}, \quad 0 \leq t < T_L.$

Then

$$
\widetilde{W}_t: \mathbb{S}_{p-t} \setminus \widetilde{g}_t(\widetilde{L}) \stackrel{\text{Conf}}{\rightarrow} \mathbb{S}_{p_L-v(t)}.
$$

Some standard arguments show that

1. $v'(t) = W'_t(\xi(t))^2;$

 \leftarrow \Box

 \leftarrow \Box

化重新润滑剂

G

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Define

$$
\widetilde{W}_t = \widetilde{g}_t^L \circ \widetilde{W}_L \circ \widetilde{g}_t^{-1}, \quad 0 \leq t < \mathcal{T}_L.
$$

Then

$$
\widetilde{W}_t: \mathbb{S}_{p-t} \setminus \widetilde{g}_t(\widetilde{L}) \stackrel{\text{Conf}}{\rightarrow} \mathbb{S}_{p_L-v(t)}.
$$

Some standard arguments show that

1.
$$
v'(t) = \widetilde{W}'_t(\xi(t))^2;
$$

2.
$$
\xi_L(t) = \widetilde{W}_t(\xi(t));
$$

Kロト K伊ト

重

 299

- 大唐 800米 重 80

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Define

$$
\widetilde{W}_t = \widetilde{g}_t^L \circ \widetilde{W}_L \circ \widetilde{g}_t^{-1}, \quad 0 \leq t < \mathcal{T}_L.
$$

Then

$$
\widetilde{W}_t: \mathbb{S}_{p-t} \setminus \widetilde{g}_t(\widetilde{L}) \stackrel{\text{Conf}}{\rightarrow} \mathbb{S}_{p_L-v(t)}.
$$

Some standard arguments show that

1.
$$
v'(t) = \widetilde{W}'_t(\xi(t))^2;
$$

\n2. $\xi_L(t) = \widetilde{W}_t(\xi(t));$
\n3. $\partial_t \widetilde{W}_t(x)|_{x=\xi(t)} = -3\widetilde{W}''_t(\xi(t)).$

Kロト K伊ト

重

 299

- 大唐 800米 重 80

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Define

$$
\widetilde{W}_t = \widetilde{g}_t^L \circ \widetilde{W}_L \circ \widetilde{g}_t^{-1}, \quad 0 \leq t < \mathcal{T}_L.
$$

Then

$$
\widetilde{W}_t: \mathbb{S}_{p-t} \setminus \widetilde{g}_t(\widetilde{L}) \stackrel{\text{Conf}}{\rightarrow} \mathbb{S}_{p_L-v(t)}.
$$

Some standard arguments show that

1.
$$
v'(t) = \widetilde{W}'_t(\xi(t))^2;
$$

\n2.
$$
\xi_L(t) = \widetilde{W}_t(\xi(t));
$$

\n3.
$$
\partial_t \widetilde{W}_t(x)|_{x=\xi(t)} = -3\widetilde{W}''_t(\xi(t)).
$$

Write $A_j(t) = \widetilde{W}_t^{(j)}(\xi(t))$. From Itô's formula, we have

$$
d\xi_L(t) = A_1(t)d\xi(t) + \left(\frac{\kappa}{2} - 3\right)A_2(t)dt.
$$

4 0 8

 \rightarrow \Box

医电影 医唇头

G

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

- [Annulus Loewner equation](#page-19-0)
- [Annulus SLE with one force point](#page-58-0)
- [The particular drift function](#page-76-0)
- [Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $4.17 +$

4 日本 4 日本

×

 $2Q$

э

Fix
$$
m \in \mathbb{Z}
$$
. Let $y_m = y + 2m\pi$. Let
\n
$$
X_m(t) = \xi(t) - \text{Re } \tilde{g}_t(y_m + \rho i), \quad X_{L,m}(t) = \xi_L(t) - \text{Re } \tilde{g}_t^L(\widetilde{W}_L(y_m + \rho i)).
$$
\n
$$
Y_m(t) = \Gamma_0(\rho - t, X_m(t)), \quad Y_{L,m}(t) = \Gamma_0(\rho_L - v(t), X_{L,m}(t)).
$$

メロトメ 御 トメ 差 トメ 差 トッ

 \equiv 990

Fix
$$
m \in \mathbb{Z}
$$
. Let $y_m = y + 2m\pi$. Let
\n
$$
X_m(t) = \xi(t) - \text{Re } \tilde{g}_t(y_m + \rho i), \quad X_{L,m}(t) = \xi_L(t) - \text{Re } \tilde{g}_t^L(\widetilde{W}_L(y_m + \rho i)).
$$
\n
$$
Y_m(t) = \Gamma_0(\rho - t, X_m(t)), \quad Y_{L,m}(t) = \Gamma_0(\rho_L - v(t), X_{L,m}(t)).
$$

Recall that $A_j(t) = \widetilde{W}_t^{(j)}(\xi(t))$. Let

$$
A_I(t)=\widetilde{W}_t'(\widetilde{g}_t(y+pi)),\quad A_S(t)=\frac{A_3(t)}{A_1(t)}-\frac{3}{2}\Big(\frac{A_2(t)}{A_1(t)}\Big)^2.
$$

So $A_S(t)$ is the Schwarzian derivative of \widetilde{W}_t at $\xi(t)$.

 \leftarrow \Box

化重新润滑剂

 \mathbf{p}

G

Let
$$
\alpha = \frac{6-\kappa}{2\kappa}
$$
. Define

$$
M_m(t) = A_1(t)^{\alpha} A_I(t)^{\alpha} \frac{Y_{L,m}(t)}{Y_m(t)} \exp \left(-\frac{c}{6} \int_0^t A_S(s) ds + \alpha \int_{\rho-t}^{\rho_L - v(t)} r(s) ds \right),
$$

メロトメ 御 トメ 差 トメ 差 トッ

 \equiv 990

Let
$$
\alpha = \frac{6-\kappa}{2\kappa}
$$
. Define

$$
M_m(t) = A_1(t)^{\alpha} A_I(t)^{\alpha} \frac{Y_{L,m}(t)}{Y_m(t)} \exp \left(-\frac{c}{6} \int_0^t A_S(s) ds + \alpha \int_{\rho-t}^{\rho_L - v(t)} r(s) ds \right),
$$

where $r(s)$ is a coefficient in the Laurent expansion of $H(s, \cdot)$ at 0:

$$
H(s, z) = \frac{2}{z} + r(s)z + O(z^3).
$$

すロト オ部 ト すき ト すき ト

目

 299

Let
$$
\alpha = \frac{6-\kappa}{2\kappa}
$$
. Define

$$
M_m(t) = A_1(t)^{\alpha} A_I(t)^{\alpha} \frac{Y_{L,m}(t)}{Y_m(t)} \exp \left(-\frac{c}{6} \int_0^t A_S(s) ds + \alpha \int_{\rho-t}^{\rho_L - v(t)} r(s) ds \right),
$$

where $r(s)$ is a coefficient in the Laurent expansion of $H(s, \cdot)$ at 0:

$$
H(s, z) = \frac{2}{z} + r(s)z + O(z^3).
$$

One may check that $M_m(t)$ is a semi-martingale, and satisfies

$$
\frac{dM_m(t)}{M_m(t)} = \left[\left(3 - \frac{\kappa}{2}\right) \frac{A_2(t)}{A_1(t)} + A_1(t)\Lambda_0(p_L - v(t), X_{L,m}(t)) - \Lambda_0(p - t, X_m(t)) \right] \cdot (d\xi(t) - \Lambda_0(p - t, X_m(t))).
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

 \Rightarrow

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Suppose now ξ is the solution of

$$
d\xi(t) = \sqrt{\kappa}dB(t) + \Lambda_0(p - t, X_m(t))dt, \quad \xi(0) = x.
$$
 (6)

メロメ メ都 メメ きょくきょ

重

 2990

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Suppose now ξ is the solution of

$$
d\xi(t) = \sqrt{\kappa}dB(t) + \Lambda_0(p - t, X_m(t))dt, \quad \xi(0) = x.
$$
 (6)

Then M_m is a local martingale. Since $X_m(t) = \xi(t) - \text{Re } \widetilde{g}_t(y_m + pi)$, we see that ξ generates a conditional annulus $SLE(\kappa, \Lambda_{\kappa})$ process, and a.s. $\lim_{t\to p} \beta(t) = y_m + pi$.

 -10.5

ヨメ イヨメ

э

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Suppose now ξ is the solution of

$$
d\xi(t) = \sqrt{\kappa}dB(t) + \Lambda_0(p - t, X_m(t))dt, \quad \xi(0) = x.
$$
 (6)

Then M_m is a local martingale. Since $X_m(t) = \xi(t) - \text{Re}\,\widetilde{g}_t(y_m + pi)$, we see that ξ generates a conditional annulus $SLE(\kappa, \Lambda_{\kappa})$ process, and a.s. $\lim_{t\to p} \beta(t) = y_m + pi$.

Girsanov theorem implies that, if $M_m(t)$ is uniformly bounded on [0, S] for some stopping time $S \leq T_L$, and if the original probability measure is weighted by $M_m(S)/M_m(0)$, then $\xi(t)$, $0 \le t \le S$, satisfies

$$
d\xi(t) = \sqrt{\kappa}d\widetilde{B}(t) + A_1(t)\Lambda_0(p_L - v(t), X_{L,m}(t))dt + \left(3 - \frac{\kappa}{2}\right)\frac{A_2(t)}{A_1(t)}dt, \tag{7}
$$

where $B(t)$ is a Brownian motion under the new measure.

ヨメ イヨメ

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Since
$$
d\xi_L(t) = A_1(t)d\xi(t) + (\frac{\kappa}{2} - 3)A_2(t)dt
$$
, we find

$$
d\xi_L(t) = A_1(t)\sqrt{\kappa}d\widetilde{B}(t) + A_1(t)^2\Lambda_0(p_L - v(t), X_{L,m}(t))dt.
$$

メロトメ 御 トメ 差 トメ 差 トッ

 \equiv 990

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Since
$$
d\xi_L(t) = A_1(t)d\xi(t) + (\frac{\kappa}{2} - 3)A_2(t)dt
$$
, we find

$$
d\xi_L(t) = A_1(t)\sqrt{\kappa}d\widetilde{B}(t) + A_1(t)^2\Lambda_0(p_L - v(t), X_{L,m}(t))dt.
$$

Since $X_{L,m}(t) = \xi_L(t) - \tilde{g}_L^L(W_L(y_m + pi))$ and $v'(t) = A_1(t)^2$, under the new measure, $\beta_L \circ \nu^{-1}$ up to time $\nu(S)$ is a conditional annulus $\mathsf{SLE}(\kappa;\Lambda_\kappa)$ trace in $\mathbb{A}_{\rho_L}.$ So under the new measure, β up to $\mathcal S$ is a reparameterized conditional annulus $SLE(\kappa; \Lambda_{\kappa})$ trace in $\mathbb{A}_{\rho} \setminus L$.

GARAGE

∍

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Since
$$
d\xi_L(t) = A_1(t)d\xi(t) + (\frac{\kappa}{2} - 3)A_2(t)dt
$$
, we find

$$
d\xi_L(t) = A_1(t)\sqrt{\kappa}d\widetilde{B}(t) + A_1(t)^2\Lambda_0(p_L - v(t), X_{L,m}(t))dt.
$$

Since $X_{L,m}(t) = \xi_L(t) - \tilde{g}_L^L(W_L(y_m + pi))$ and $v'(t) = A_1(t)^2$, under the new measure, $\beta_L \circ \nu^{-1}$ up to time $\nu(S)$ is a conditional annulus $\mathsf{SLE}(\kappa;\Lambda_\kappa)$ trace in $\mathbb{A}_{\rho_L}.$ So under the new measure, β up to $\mathcal S$ is a reparameterized conditional annulus $SLE(\kappa; \Lambda_{\kappa})$ trace in $\mathbb{A}_{p} \setminus L$.

Let μ_m and $\mu_{L,m}$ denote the distributions of the solutions to (6) and (7), respectively. Then we have

$$
\frac{M_m(S)}{M_m(0)}=\frac{d\mu_{L,m}|_{\mathcal{F}_S}}{d\mu_m|_{\mathcal{F}_S}}.
$$

K 何 ▶ | K ヨ ▶ | K ヨ ▶ | |

重

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

- [Annulus Loewner equation](#page-19-0)
- [Annulus SLE with one force point](#page-58-0)
- [The particular drift function](#page-76-0)
- [Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

- [Change of domains](#page-102-0)
- [Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $4.17 +$

4 日本 4 日本

×

 $2Q$

э

We may decompose $M_m(t)$ into the product $M_m(t) = N_m(t) \exp(c U(t)),$ where $U(t) = \mu_{\textsf{loop}}(\mathcal{L}(\mathbb{A}_p; \beta((0, t]), L))$. The integral $\int_0^t A_S(s) ds$ is included in the formula for $U(t)$. Let \mathcal{E}_m denote the event that $\lim_{t\to p} \tilde{\beta}(t) = y_m + pi$, which happens a.s. if ξ solves (6).

 -10.5

不重 医不重 医

∍

We may decompose $M_m(t)$ into the product $M_m(t) = N_m(t) \exp(c U(t)),$ where $U(t) = \mu_{\textsf{loop}}(\mathcal{L}(\mathbb{A}_p; \beta((0, t]), L))$. The integral $\int_0^t A_S(s) ds$ is included in the formula for $U(t)$. Let \mathcal{E}_m denote the event that $\lim_{t\to p} \hat{\beta}(t) = y_m + pi$, which happens a.s. if ξ solves (6).

There are two lemmas for $N_m(t)$.

Lemma 1

On the event $\{T_l = p\} \cap \mathcal{E}_m$, we have

$$
\lim_{t\to p}N_m(t)=C_{p,p_L},
$$

which is a positive constant depending only on p and p_L .

不重 医不重 医

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Let \mathcal{P}_m denote the set of (ρ_1, ρ_2) with the following properties.

4 0 8 → 伊 ▶ 医电影 医唇头

目

 299

Let P_m denote the set of (ρ_1, ρ_2) with the following properties.

1. For $j = 1, 2$, ρ_j is a polygonal crosscut in \mathbb{S}_p that grows from $\mathbb R$ to \mathbb{R}_p , whose line segments are parallel to either x-axis or y-axis, and whose vertices other than the end points have rational coordinates.

 -10.5

E K **ALCOHOL:** ∍

Let P_m denote the set of (ρ_1, ρ_2) with the following properties.

- 1. For $j = 1, 2$, ρ_j is a polygonal crosscut in \mathbb{S}_p that grows from $\mathbb R$ to \mathbb{R}_p , whose line segments are parallel to either x-axis or y-axis, and whose vertices other than the end points have rational coordinates.
- 2. $\rho_1 + 2i\pi$, $\rho_2 + 2k\pi$, $i, k \in \mathbb{Z}$, and \tilde{L} are mutually disjoint.

一个 医小

Let P_m denote the set of (ρ_1, ρ_2) with the following properties.

- 1. For $j = 1, 2$, ρ_j is a polygonal crosscut in \mathbb{S}_p that grows from $\mathbb R$ to \mathbb{R}_p , whose line segments are parallel to either x-axis or y-axis, and whose vertices other than the end points have rational coordinates.
- 2. $\rho_1 + 2i\pi$, $\rho_2 + 2k\pi$, $i, k \in \mathbb{Z}$, and \tilde{L} are mutually disjoint.
- 3. $\rho_1 \cup \rho_2$ disconnects x and $v_m + pi$ from \tilde{L} in \mathbb{S}_p .

in the se

For each $(\rho_1, \rho_2) \in \mathcal{P}_m$, let $\mathcal{T}_{\rho_1, \rho_2}$ denote the first time that $\widetilde{\beta}$ hits $\rho_1 \cup \rho_2$. If such time does not exist, set $\mathcal{T}_{\rho_1,\rho_2} = p$. Since $\tilde{\beta}$ starts from x, and $\rho_1 \cup \rho_2$ separates x from \widetilde{L} , $\mathcal{T}_{\rho_1,\rho_2} \leq \mathcal{T}_L$.

 $4.17 +$

ヨメ イヨメ

∍

For each $(\rho_1, \rho_2) \in \mathcal{P}_m$, let $\mathcal{T}_{\rho_1, \rho_2}$ denote the first time that $\widetilde{\beta}$ hits $\rho_1 \cup \rho_2$. If such time does not exist, set $\mathcal{T}_{\rho_1,\rho_2} = \rho$. Since $\widetilde{\beta}$ starts from x, and $\rho_1 \cup \rho_2$ separates x from L, $T_{\rho_1,\rho_2} \leq T_L$.

Lemma 2

For each $(\rho_1,\rho_2)\in \mathcal{P}_m$, ln $(\mathcal{N}_m(t))$ is uniformly bounded on $[0,\mathcal{T}_{\rho_1,\rho_2})$ by a constant depending only on p, L, ρ_1 , ρ_2 .

ミドイミド

つひへ

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Now we study the properties of $U(t)$. We know that U is nonnegative and increasing in t. For any $(\rho_1, \rho_2) \in \mathcal{P}_m$, we have

 $U(\mathcal{T}_{\rho_1,\rho_2}) \leq \mu_{\mathsf{loop}}(\mathcal{L}(\mathbb{A}_p;e^i(\rho_1) \cup e^i(\rho_2),L)).$

 $4.17 +$

イヨメ イヨメ

 \mathbf{p}

 $2Q$

重

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Now we study the properties of $U(t)$. We know that U is nonnegative and increasing in t. For any $(\rho_1, \rho_2) \in \mathcal{P}_m$, we have

$$
U(\mathcal{T}_{\rho_1,\rho_2})\leq \mu_{\textsf{loop}}(\mathcal{L}(\mathbb{A}_p;e^i(\rho_1)\cup e^i(\rho_2),L)).
$$

Since dist $(e^i(\rho_1)\cup e^i(\rho_2),L)>0$, it is shown [Lawler-Werner] that the righthand side is finite. Thus, $\mathit{U}(t)$ is uniformly bounded on $[0,T_{\rho_1,\rho_2}].$

 -10.5

ヨメ イヨメ

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Now we study the properties of $U(t)$. We know that U is nonnegative and increasing in t. For any $(\rho_1, \rho_2) \in \mathcal{P}_m$, we have

$$
U(\mathcal{T}_{\rho_1,\rho_2})\leq \mu_{\textsf{loop}}(\mathcal{L}(\mathbb{A}_p;e^i(\rho_1)\cup e^i(\rho_2),L)).
$$

Since dist $(e^i(\rho_1)\cup e^i(\rho_2),L)>0$, it is shown [Lawler-Werner] that the righthand side is finite. Thus, $\mathit{U}(t)$ is uniformly bounded on $[0,T_{\rho_1,\rho_2}].$

Since $M_m(t) = N_m(t) \exp(c U(t))$, $M_m(t)$ is uniformly bounded on $[0, T_{\rho_1,\rho_2}].$ So $\frac{M_m(\mathcal{T}_{\rho_1,\rho_2})}{M_m(0)} =$ $d\mu_{L,m}|_{\mathcal{F}_{\mathcal{T}_{\rho_1,\rho_2}}}$ $\frac{d\mu_m|_{\mathcal{F}_{\mathcal{T}_{\rho_1,\rho_2}}}}{d\mu_m|_{\mathcal{F}_{\mathcal{T}_{\rho_1,\rho_2}}}}.$

Especially, on the event $\{T_{\rho_1,\rho_2} = p\},\$

$$
\frac{d\mu_{L,m}}{d\mu_m} = \frac{M_m(p)}{M_m(0)} = \frac{C_{p,p_L}}{M_m(0)} \exp(c\,\mu_{\text{loop}}(\mathcal{L}(\mathbb{A}_p;\beta,L))). \tag{8}
$$

 $,$ ρ ₂

目

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Recall that $\mathcal{E}_m = \{\lim_{t \to p} \tilde{\beta}(t) = y_m + pi\}$. It is easy to check that

$$
\{T_L=p\}\cap \mathcal{E}_m\subset \bigcup_{(\rho_1,\rho_2)\in \mathcal{P}_m}\{T_{\rho_1,\rho_2}=p\}.
$$

4日下

← 向 →

医毛菌 医牙毛囊 的

÷.

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Recall that $\mathcal{E}_m = \{\lim_{t\to p} \tilde{\beta}(t) = y_m + pi\}$. It is easy to check that

$$
\{T_L=p\}\cap \mathcal{E}_m\subset \bigcup_{(\rho_1,\rho_2)\in \mathcal{P}_m}\{T_{\rho_1,\rho_2}=p\}.
$$

Since μ_m is supported by \mathcal{E}_m , we find that (8) holds on the event $\{T_1 = p\} = \{\beta \cap L = \emptyset\}.$

 \leftarrow \Box

 \sim

医电影 化重新分

G

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Recall that $\mathcal{E}_m = \{\lim_{t \to p} \tilde{\beta}(t) = y_m + pi\}$. It is easy to check that

$$
\{T_L=p\}\cap \mathcal{E}_m\subset \bigcup_{(\rho_1,\rho_2)\in \mathcal{P}_m}\{T_{\rho_1,\rho_2}=p\}.
$$

Since μ_m is supported by \mathcal{E}_m , we find that (8) holds on the event $\{T_1 = p\} = \{\beta \cap L = \emptyset\}.$

On the other hand, since $\mu_{L,m}$ is supported by $\{\beta \cap L = \emptyset\}$, we have

$$
\frac{d\mu_{L,m}}{d\mu_m} = \frac{\mathbf{1}_{\beta \cap L = \emptyset}}{M_m(0)} C_{p,p_L} \mu_{\text{loop}}(\mathcal{L}(\mathbb{A}_p; \beta, L)).
$$

 $4.17 +$

イヨメ イヨメ

重

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Recall that $\mathcal{E}_m = \{\lim_{t\to p} \tilde{\beta}(t) = y_m + pi\}$. It is easy to check that

$$
\{T_L=p\}\cap \mathcal{E}_m\subset \bigcup_{(\rho_1,\rho_2)\in \mathcal{P}_m}\{T_{\rho_1,\rho_2}=p\}.
$$

Since μ_m is supported by \mathcal{E}_m , we find that (8) holds on the event $\{T_1 = p\} = \{\beta \cap L = \emptyset\}.$

On the other hand, since $\mu_{L,m}$ is supported by $\{\beta \cap L = \emptyset\}$, we have

$$
\frac{d\mu_{L,m}}{d\mu_m} = \frac{\mathbf{1}_{\beta \cap L = \emptyset}}{M_m(0)} C_{p,p_L} \mu_{\text{loop}}(\mathcal{L}(\mathbb{A}_p; \beta, L)).
$$

Setting $x_L = \widetilde{W}_L(x)$ and $y_L = \text{Re } \widetilde{W}_L(y + \rho i)$, we get

$$
M_m(0)=\frac{\Gamma_m(p_L,x_L-y_L)}{\Gamma_m(p,x-y)}.
$$

4 0 8

メ 何 ト メ ヨ ト メ ヨ ト ー

重

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Recall that if μ is the distribution of the driving function of an annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ trace in \mathbb{A}_p from $e^{i\chi}$ to e^{-p+iy} , then

$$
\mu = \sum_{m \in \mathbb{Z}} \frac{\Gamma_m(p, x - y)}{\Gamma(p, x - y)} \mu_m.
$$

 \leftarrow \Box \mathcal{A} . 画 \sim 医重新性黄疸

÷.

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Recall that if μ is the distribution of the driving function of an annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ trace in \mathbb{A}_p from $e^{i\chi}$ to e^{-p+iy} , then

$$
\mu = \sum_{m \in \mathbb{Z}} \frac{\Gamma_m(p, x - y)}{\Gamma(p, x - y)} \mu_m.
$$

Similarly, if μ_L is the distribution of the driving function of an annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ trace in $\mathbb{A}_p\setminus L$ from $e^{i\chi}$ to $e^{-p+i\gamma}$, then

$$
\mu_L = \sum_{m \in \mathbb{Z}} \frac{\Gamma_m(p_L, x_L - y_L)}{\Gamma(p_L, x_L - y_L)} \mu_{L,m}.
$$

 $4.17 +$

4 日本 4 日本

重

 200
[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Recall that if μ is the distribution of the driving function of an annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ trace in \mathbb{A}_p from $e^{i\chi}$ to e^{-p+iy} , then

$$
\mu = \sum_{m \in \mathbb{Z}} \frac{\Gamma_m(p, x - y)}{\Gamma(p, x - y)} \mu_m.
$$

Similarly, if μ_L is the distribution of the driving function of an annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ trace in $\mathbb{A}_p\setminus L$ from $e^{i\chi}$ to $e^{-p+i\gamma}$, then

$$
\mu_L = \sum_{m \in \mathbb{Z}} \frac{\Gamma_m(p_L, x_L - y_L)}{\Gamma(p_L, x_L - y_L)} \mu_{L,m}.
$$

Therefore,

$$
\frac{d\mu_L}{d\mu} = \frac{\Gamma(p_L, x_L - y_L)}{\Gamma(p, x - y)} C_{p, p_L} \mathbf{1}_{\beta \cap L = \emptyset} \exp(c \mu_{\text{loop}}(\mathcal{L}(\mathbb{A}_p; \beta, L))),
$$

which finishes the proof with $Z = \Gamma(p, x - y) / (\Gamma(p_L, x_L - y_L)C_{p,L}).$

ぼき メラメー

重

 Ω

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

[Introduction](#page-4-0)

[Intermediate Whole-Plane SLE](#page-18-0)

[Annulus Loewner equation](#page-19-0)

[Annulus SLE with one force point](#page-58-0)

[The particular drift function](#page-76-0)

[Decomposition in the covering space](#page-94-0)

[Restriction](#page-100-0)

[Change of domains](#page-102-0)

[Radon-Nikodym derivative](#page-115-0)

[The proof](#page-127-0)

[Other results](#page-146-0)

 $4.17 +$

4 日本 4 日本

×

 $2Q$

э

The following theorem connects annulus $SLE(\kappa, \Lambda_{\kappa})$ with chordal SLE_{κ} . This theorem shows that the annulus $SLE(\kappa, \Lambda_{\kappa})$ process agrees with the annulus SLE_{k} defined by Lawler.

Theorem 2

With other conditions the same as in Theorem 1 except that now $\mathbb{A}_{p} \setminus L$ is a simply connected domain, μ_L is the distribution of a reparameterized chordal SLE_κ trace in $\mathbb{A}_p \setminus L$ from a to b.

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Theorem 2 can be used to construct multiple disjoint SLE_{κ} curves crossing an annulus.

Definition

Let $n \ge 2$. Let a_1, \ldots, a_n (resp. b_1, \ldots, b_n) be distinct points on $\mathbb T$ (resp. \mathbb{T}_p) that are oriented counterclockwise. A random *n*-tuple of disjoint curves (β_1,\ldots,β_n) is called a multiple SLE_κ in \mathbb{A}_p from (a_1,\ldots,a_n) to (b_1, \ldots, b_n) , if for any $j \in \{1, \ldots, n\}$, conditioned on all other $n-1$ curves, β_j is a chordal SLE($\kappa)$ trace from \pmb{a}_j to \pmb{b}_j that grows in D_j , which is the subregion in \mathbb{A}_p bounded by β_{i-1} and β_{i+1} ($\beta_0 := \beta_n$ and $\beta_{n+1} := \beta_1$) that has a_i and b_i as its boundary points.

4 E X 4 E X

[Introduction](#page-4-0) [Intermediate Whole-Plane SLE](#page-18-0) [Restriction](#page-100-0) [Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

The picture shows multiple SLE with $n = 4$. When the 3 blue curves are known, the red curve is a chordal SLE_{κ} that grows in the grey region.

 $4.17 +$

 $2Q$

モミト

Ξ

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

The following result resembles the work by Kozdron and Lawler for simply connected domains.

Corollary

Let $\mathbb{A}_p, n, a_j, b_j$ be as in the definition. For $1 \leq j \leq n$, let β_j be an annulus $\mathsf{SLE}(\kappa,\Lambda_\kappa)$ curve in \mathbb{A}_p from a_j to b_j , and let μ_{β_j} denote its distribution. Define a new probability measure μ^M by

$$
\frac{d\mu^M}{\prod_j \mu_{\beta_j}} = \frac{\mathbf{1}_{\mathcal{E}_{\text{disj}}}}{Z} \exp\Big(c \sum_{k=1}^n (k-1) \mu_{\text{loop}}(\mathcal{L}_k)\Big),\tag{9}
$$

where $Z\,>\,0$ is some normalization constant, $\mathcal{E}_{\mathsf{disj}}$ is the event that $\beta_j,$ $1 \leq j \leq n$, are mutually disjoint, and \mathcal{L}_k is the set of loops in \mathbb{A}_p that intersect at exactly k curves among $\beta_1,\ldots,\beta_n.$ Then $\mu^{\textsf{M}}$ is the distribution of a multiple SLE_{κ} in \mathbb{A}_p from (a_1, \ldots, a_n) to (b_1, \ldots, b_n) .

4 E X 4 E X

[Introduction](#page-4-0) [Intermediate Whole-Plane SLE](#page-18-0) [Restriction](#page-100-0) [Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Proof. Fix $j \in \{1, \ldots, n\}$. Let $\mathcal{E}^j_{\text{disj}}$ denote the event that β_k , $k \neq j$, are mutually disjoint. When $\mathcal{E}_{\mathsf{disj}}^j$ occurs, let D_j be as in the definition, and $L_j = \mathbb{A}_p \setminus D_j$. The key step is that the righthand side of (9) can be written as

 $C_j \mathbf{1}_{\{\beta_j \cap L_j = \emptyset\}} \exp(c \mu_{\text{loop}}(\mathcal{L}(\mathbb{A}_p; \beta_j, L_j))),$

where \mathcal{C}_j is measurable w.r.t. the σ -algebra generated by β_k , $k\neq j$.

EXIST

 Ω

[Introduction](#page-4-0) [Intermediate Whole-Plane SLE](#page-18-0) [Restriction](#page-100-0) [Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Proof. Fix $j \in \{1, \ldots, n\}$. Let $\mathcal{E}^j_{\text{disj}}$ denote the event that β_k , $k \neq j$, are mutually disjoint. When $\mathcal{E}_{\mathsf{disj}}^j$ occurs, let D_j be as in the definition, and $L_j = \mathbb{A}_p \setminus D_j$. The key step is that the righthand side of (9) can be written as

$$
C_j \mathbf{1}_{\{\beta_j \cap L_j = \emptyset\}} \exp(c \mu_{\text{loop}}(\mathcal{L}(\mathbb{A}_p; \beta_j, L_j))),
$$

where \mathcal{C}_j is measurable w.r.t. the σ -algebra generated by β_k , $k\neq j$.

Let $\mu_j^{\mathcal M}$ denote the conditional distribution of β_j when $(\beta_1,\ldots,\beta_n)\sim\mu^{\mathcal M}$ and all β_k other than β_i are given. Then

$$
\frac{d\mu_j^M}{d\mu_j}\Big|_{\{\beta_k:k\neq j\}}=C_j\mathbf{1}_{\{\beta_j\cap L_j=\emptyset\}}\exp(c\,\mu_{\text{loop}}(\mathcal{L}(\mathbb{A}_p;\beta_j,L_j))).
$$

From Theorem 2 we conclude that μ_j^M is the distribution of a time-change of a chordal SLE($\kappa)$ trace in $\mathbb{A}_p\setminus L_j=D_j$ from a_j to $b_j.$ \Box

不重 医不重 医

[Change of domains](#page-102-0) [Radon-Nikodym derivative](#page-115-0) [The proof](#page-127-0) [Other results](#page-146-0)

Thank you!

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶

目

 299