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Consider a (noncompact) convex polyhedron ∆ in R3, such as an octant. Consider ∆Z := ∆ ∩ Z3,
and consider the convex polyhedra obtained by removing lattice points from ∆Z. For example,
removing the origin from the octant leaves a convex polyhedron, or removing the origin and a
neighbor (shown in the figure below).

This is the same as removing stacks of boxes in ∆. We define the partition function

Z∆(q) =
∑

stacks of boxes in∆
q# of boxes.

At q → 1, the configuration that dominates the partition function is determined by a Riemann
surface σD. How can we describe this limit shape? For a corner of a room, it looks like this:

and is the solution of P∆ = ex + e−p − 1 = 0, where x and p are complex numbers. We would like
to obtain such a function P∆ for general ∆. We define

R(ex, ep) =

∫
dθdφ| logP∆(ex+iθ, ep+iϕ)|.

More generally, we can define Ri to be two dimensional partitions. Then

Z∆(q) → ZR1,...,Rn,∆(q),

where n is the number of infinite edges of ∆.
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Claim:
Z∆,R1,...,Rn(q)/Z∆ = ẐR1,...,Rn,∆(q).

The classical W1+α algebra is Wn,m = enxemp, {p, x} = 1. Note that Ẑ∆,R1,...,Rn has a W1+∞
symmetry that can be used to find it. Note that the set of two-dimensional partitions {R} is equal
as a Hilbert space to theory of a free fermion with Nf = 0.

Consider the quantum algebra acting on Z∆

ψ(x) =
∑

n∈Z+1/2

ψne
nx(dx)1/2ψ∗(x) =

∑
ψ∗ne

nx(dx)1/2,

where {ψn, ψ
∗
m} = δn+m,0. Recall our Riemann surface P∆(ex, ep) = 0.

P1

P2

Pn

At each puncture Pi, choose a set of coordinates (xi, pi) for which xi → ∞ at Pi and pi = 0 at Pi.
Then Hi of Pi is a Hilbert space

ψ(i)(xi) =
∑

n∈Z+1/2

ψ
(i)
n e

nxi , (ψ∗)(i)(xi) =
∑

n∈Z+1/2

(ψ∗)
(i)
n e

nxi .

Consider an action of
W

(i)
n,m =

∮
ψ∗(i)(xi)e

nxiempiψ(i)(xi).
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Then the symmetry of |Z∆〉 is
W

(i)
n,m = −

∑
j6=i
W

(j)
ni,j,mi,j

,

where nxi +mpi = nijxj +mijpj + eij. This explains how to translate the action of one W1,+∞
operator to the other punctures.

Example. Consider the octant again. Shown in the figure are the coordinates we associate with
each puncture.

p2 = −p− x

x2 = p

p1 = p

x1 = x

p3 = x

x3 = −x− p

We get ∮
P1

ψ1(x1)e
nx1ψ1(x1) +

∮
P2

ψ2(x1)e
nx2−~∂x2ψ2(x1) +

∮
P3

ψ3(x3)e
n~∂x3ψ3(x1) (1)

Then Z∆(q) satisfies (1) with q = e~. Locally, this theory is just the theory of free fermions.

Moreover, in the ~ → 0 limit, for W1+α the Ward identities of α gives free boson CFT on Σ.∮
ψ∗enxempψ→ ∮

enxemp∂ϕ,

as ~ → 0, where p = p(x) is determined from P∆(x, p) = 0 and ψ(x) = eϕ(x)/n, and ϕ(x) is a free
boson.
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For ~ 6= 0 the theory differs from free CFT in that under change of coordinates on Σ, (x, p) 7→ (x ′, p ′)
gives

ψ(x) → ∫
eS(x,λ

′)/~ψ(x) = ˜ψ(x ′),

with dS = pdx− p ′ dx ′.

The structure is general:

(a) c = 1: H(x, p) = xp = µ = 0, [x, p] = ~.

(b) (r, s) minimal models coupled to growth H(x, p) = pr + xs.


