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Notes taken by Samuel S Watson

This work was motivated by the work of Smirnov et al on discrete holomorphicity. He looked at
the O(n) model on a honeycomb lattice. One considers curves along edges of the lattice from a
boundary point to an interior point. One obtains a measure µlattice(z, z0) by considering Boltzmann
weights coming from the O(n) model. We may integrate against that measure∫

e−isθ
γ
z0→z dµlattice(z, z0) = fs(z, z0),

where θ denotes the winding angle. If s = b = (6−κ)/(2κ) and κ has the usual relationship with n,
then one obtains some cancellation for these paths, at the discrete level. Moreover, in the special
case κ = 3, Smirnov was able to show that this function converges to a holomorphic function as
the mesh size goes to 0. Along with some other ingredients, this is enough to show convergence to
SLE3 of the discrete path.

One may consider two interior points z1, z2, in which case we would expect f(z1, z2) to depend
holomorphically on both z1 and z2, and in particular

f(z1, z2) ∼
1

(z1 − z2)2b
.

With four interior points (and in the whole plane), we would expect to a four-point function

f(z1, z2, z3, z4) ∼ [ ]4b F

(
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)

)

z1

z2

z3

z4

We can simplify this problem somewhat by including a boundary and arguing that without loss of
generality we can put two of the points on the boundary. This makes SLE tools available.

Remark: It is difficult to show (and quite possibly isn’t true) that the discrete observables analogous
to these four point functions satisfy the PDEs analogous to those satisfied by the continuous four-
point function.

CFT point of view (2003 Bauer and Bernard - CFT of radial SLE)
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z0

z + εeiθ

We obtain (using the unnormalized version of the SLE measure, as in Greg Lawler’s talk),

fs(z+ εe
iθ, z0) =

∫
e−isθ

γ
z0→z dµ(z+ εeiθ, z0),

and fz(θ+ 2π) = eisθfs(θ).

Results (not theorems since they depend on CFT ideas)

1. If s = b = (6− κ)/(2κ), the limit as ε→ 0 of fs exists.

2. ∂zfs(z, . . .) = 0

3. fs(z1, . . . , zn) satisfies a complexified version of the boundary PDE.

Let’s briefly remind the audience of the CFT approach. Consider usual SLE from 0 to ∞, condi-
tioned on any even A (for example, that the path misses certain regions in the upper half plane).
Then

µ(z0|A) = 〈φ(z0)|A〉

f0〈φ(z0)anything〉 = 〈f ◦ φ(z0)
∫
Tµναµdnµanything〉,

where the integral of the stress tensor is

1

2πi

∫
Γ

α(z)T(z)dz−
1

2πi

∫
Γ

α(z)T(z)dz.

In the case where we have restriction (i.e., κ = 8/3), we are able to say what T and T should be.

We can take α according to the Loewner transform.

α(z) =
2 dt

z− z0
−
√
κdBt

Having chordal SLE, from the conformal field theory point of view, is the same as requiring that(
2L−2 −

κ

2
L2−1

)
φ(z0) = 0

Back to the radial SLE picture, we recall the equation

α(z) = −z

(
z+ εeiθ

z− εeiθ

)
.
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We get (

1

2πi

∫
α(z)T(z)dz+ c.c.

)
φ(εeiθ) =

(
−
1

2
κ
∂2

∂θ2
+ b̃

)
φ(εeθ),

where b̃ = (κ− 4)/2. This in turn equals

L0 + L0 +

(
2

∞∑
n=1

εneinθL−n + 2

∞∑
n=1

εne−inθL−n

)
φ(εeθ).

Write φ(εeiθ) =: φ(θ). We look for solutions of this equation of the form

φ(θ) = eisθ
∑
n∈Z

eimθφs+m,

since it will have spin s. As ε→ 0, we get

(L0 + L0)φs =

(
1

2
κs2 + b̃

)
φs.

If s = b, then the expression in parentheses equals b. We obtain

(L0 + L0)φb = bφb L0φb = bφb

(L0 − L0)φb = bφb L0φb = 0.

It requires a lot more work to show that

L−1φb =
∂

∂z
φb = 0.

We also get (
L−2 −

κ

4
L2−1

)
φb = 0.

which shows that these observables satisfy the appropriate complexifications of the second-order
PDEs mentioned previously.

It turns out that the only way in which these equations are consistent is if s ∈ {−b, b, 0}.


