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A point process is a random configuration of points in a space such as Rd. Equivalently, a point
process is a random discrete measure.

The most well studied example is the Poisson point process, though it’s important to emphasize
that there are many other models, not related to this one, which are important and have been
studied by physicists.

One limitation of PPP is the lack of spatial correlations. We look for new models, such as the
Ginibre model (take a large matrix of complex Gaussians NC(0, 1), and look at the eigenvalues
and let the size of the matrix go to infinity with no normalization – not a Hermitian matrix, so
the eigenvalues aren’t real) and the zeros of Gaussian analytic functions. These models have some
natural repulsion, meaning that points tend not to clump.

We say that a sequence point processes µn converges to µ if
∫
φdµn → ∫

φdµ for all φ ∈ Cc(C).

In the Ginibre ensemble, we get a translation invariant distribution by following the above-described
procedure.

For the second model, we define

fn(z) = ξ0 + ξ1/
√
1!z+ · · ·+ ξn/

√
n!z.

Consider the set νn of zeros of fn and let n→ ∞. It turns out that this set gives the zeros of the
analytic function f(z) =

∑
ξk/
√
k!zk. The resulting process is translation invariant and ergodic.

Theorem 1. (Sodin rigidity) f(z) is the unique Gaussian entire function with a translation invariant
zero process of intensity 1.

A Gaussian analytic function is one for which (f(z1), . . . f(zk)) is a jointly normal vector, for every
collection of points {zi}.

We say that π is deletion tolerant if with probability 1 we fail to detect the change when we delete
all points of π from a bounded domain, i.e., π̃� π.

Example. Let f(z) = anz
n with an iid Gaussians. This function is only analytic in the disk, and

the zeros of this function are deletion tolerant in the sense that removing the zeros in a finite
hyperbolic-area region gives a measure which is absolutely continuous with respect to the original
process (i.e., you can’t tell something is wrong).

We consider the conditional law of the points inside a disk given the points outside the disk.
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Theorem 2. (Ghosh, Nazarov, P., Sodin, 12)
(i) The set ω of points outside D determine exactly the number of points inside D, “and nothing
more:” (ii) For almost every ω, the conditional measure ρω(ζ) is absolutely continuous with respect
to Lebesgue measure on DN(ω).

Moreover, bounds can be determined for the derivative, in terms of Vandermonde determinants.

We say that a process is rigid if with probability 1 we can determine exactly how many zeros are
inside the disk, given the points outside the disk.

Theorem 3. (Ghosh, Nazarov, P., Sodin, 12)
(i) For the GAF zero ensemble, the set ω of points outside D determine exactly the number of
points inside D, and their sum, “and nothing more:” (ii) For almost every ω, the conditional
measure ρω(ζ) is absolutely continuous with respect to Lebesgue measure on σS(ω), i.e., the set of
points with the correct center of mass.

For example, if there are two points, they can be anywhere such that they’re both in the domain
and their midpoint is in the correct location.

We say that π is rigid at level k if the points outside D determine 0, 1, . . ., k-1 moments of the points
in D. Also, we insist that the conditional distribution of the points inside given the configuration
outisde has nonvanishing density with respect to Lebesgue measure on the submanifold of DN(ω)

defined by 0, 1, . . ., k− 1 moments being conserved.

Poisson is Level 0, Ginibre is level 1, GAF zeros is at level 2. Are there natural processes for higher
levels?

The rigidity of the number of points of the GAF is the easiest part. The idea is to use a calculation
of Sodin and Tsirelson, (letting ϕL(z) = ϕ(z/L)), we have

Var
∫
φL dν = O(L−2).

Let ϕ be roughly 1D and C2c. By Sodin Tsirelson,∫
ϕL dν ≈ E

∫
ϕL dν =

∫
ϕL(z)ρ1(z)dm(z).

But
∫
ϕL dν = n(D) +

∫
DL\DϕL dν. This means we can compute n(D) approximately; now let

L→ ∞.

Let’s compare properties of this function to f(z) =
∑
anz

n.

Theorem 4. (Hannay, Zelditch-Shiffman, etc) The law of the zeros of f is invariant under Möbius
transformations preserving the disk.

Note that, letting f =
∑
anz

n/
√
n!, we have

Cov(f(z), f(w)) =
∑ znwn

n!
= ezw,
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because many terms in E
∑
n
anzn√
n!

∑
k
akz

k
√
k!

cancel. From this point of view, we can see why 1/
√
n!

is natural from the point of view of trying to characterize the process by covariance structure. Note
that

Cov[f(z+ a), f(w+ a)] = ez+aew+a,

which means that the zeros of the original function has a translation invariant distribution.

We define pε(z1, . . . , zn) to be the probability that a random function f has zeros in the ε balls
around every zi. The joint intensity of zeros is defined by the limit of this probability normalized
by (πε2)n, if this limit exists.

One may calculate this probability for a Gaussian analytic function in a planar domain D. Also, the
joint intensity of zeros for the disk GAF is given by the Berman kernel det[K(zi, zj)]. This makes
available the tools of the well-developed theory of determinantal processes. One consequence of
this connection is
Theorem 5. Let Xk be 1 with probability r2k and 0 with probability 1 − r2k. Then

∑∞
k=1 Xk and

Nr = the number of zeros in the disk of radius r centered at the origin have the same distribution.
Corollary 1. Let hr = 4πr2/(1− r2) denote the hyperbolic area of B(0, r). Then

P(Nr = 0) = e−hr
π
24

+o(hr).

These results generalize to other simply connected domains with smooth boundary. The idea is to
consider conformal images of the functions zn on the disk, which form a basis fn of H2(Ω), the set
of analytic functions in Ω in L2(∂Ω).
Conjecture 1. For any function h analytic in L2(U(0, 1)) which vanishes at zj for every j is the zero
function.

For all the Gaussian analytic functions, there is a natural dynamics. Let

fU(t, z) =
∑

an(t)z
n,

where an(t) is an Ornstein Uhlenbeck diffusion, i.e.,

an(t) = e
−t/2Wn(e

t).

Suppose that the zero set of fU contains the origin. Movement of this zero locally satisfies the SDE

dz = σdW,

where the diffusion constant σ depends on the locations of all the other points. In fact, this
dependence is rather explicit: one multiplies together the inverse distances to the nearby points
(the effect of the others being minimized by a dampening factor).

Watching videos of these dynamics reveals something surprising. The repulsion is achieved by a
time speed-up when points get near to one another, since they cannot use drift to achieve repulsion.

Question: Can you study non-Gaussian polynomials? For example, take a Poisson point process
and form a suitable Weierstrass product? Answer: More work has been done on Dirichlet...

Question: Can you study non-Gaussian coefficients? Answer: Yes: the Kac-Rice formula.


