What does a Point Process Outside a Domain tell us about What's Inside ?

Yuval Peres¹

joint work with Subhro Ghosh, Fedor Nazarov, Mikhail Sodin

¹Microsoft Research, Redmond

Yuval Peres

◆ □ > < @ > < き > < き > き = つ へ ??What does a Point Process Outside Domain say about Inside?

A Point Process is a random configuration of points in a suitable space, e.g. \mathbb{R}^d

▲□→ ▲ □→ ▲ □→

æ

・日・ ・ ヨ・ ・ ヨ・

A well studied example:

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A well studied example: Poisson Point Process

(日本) (日本) (日本)

A well studied example: Poisson Point Process

Analogue of "uniform distribution" in the world of point processes

・ 同 ト ・ ヨ ト ・ ヨ ト

A well studied example: Poisson Point Process

Analogue of "uniform distribution" in the world of point processes Key Characteristics:

(1) マン・ション・

A well studied example: Poisson Point Process

Analogue of "uniform distribution" in the world of point processes Key Characteristics:

• Independence between spatially disjoint domains

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A well studied example: Poisson Point Process

Analogue of "uniform distribution" in the world of point processes Key Characteristics:

- Independence between spatially disjoint domains
- In any given domain D, the number of points N follows Poisson distribution , with parameter $\propto area(D)$

(日本) (日本) (日本)

A well studied example: Poisson Point Process

Analogue of "uniform distribution" in the world of point processes Key Characteristics:

- Independence between spatially disjoint domains
- In any given domain D, the number of points N follows Poisson distribution , with parameter $\propto area(D)$
- The *N* points are distributed uniformly in *D* and independently of each other

(4月) (4日) (4日)

<u>Limitation</u>: Does not take into account Spatial Correlation Solution: Look for new models

(1日) (日) (日)

æ

Solution: Look for new models

• Ginibre Ensemble

(1日) (日) (日)

э

Solution: Look for new models

- Ginibre Ensemble
- Zeroes of Gaussian Analytic Function

・ 回 ト ・ ヨ ト ・ ヨ ト

Solution: Look for new models

- Ginibre Ensemble
- Zeroes of Gaussian Analytic Function
- Interesting mathematical structures as (limits of) eigenvalues of random matrices and zeroes of random polynomials

・ 同 ト ・ ヨ ト ・ ヨ ト

Solution: Look for new models

- Ginibre Ensemble
- Zeroes of Gaussian Analytic Function
- Interesting mathematical structures as (limits of) eigenvalues of random matrices and zeroes of random polynomials
- Exhibit local repulsion

・ 同 ト ・ ヨ ト ・ ヨ ト

Solution: Look for new models

- Ginibre Ensemble
- Zeroes of Gaussian Analytic Function
- Interesting mathematical structures as (limits of) eigenvalues of random matrices and zeroes of random polynomials
- Exhibit local repulsion
- Arise in physics as mathematical models

(1) マン・ション・

Poisson Process

-

< ∃⇒

Poisson Process Ginibre Ensemble

< ∃⇒

Poisson Process Ginibre Ensemble Gaussian Zeroes

周▶ 《 ≧ ▶

< ∃⇒

Intensity ρ_1 :

• Determines expected number of points in a domain $\mathbb{E}[n(\mathbb{D})] = \int_{\mathbb{D}} \rho_1(z) dm(z)$

(4回) (4回) (4回)

Intensity ρ_1 :

• Determines expected number of points in a domain $\mathbb{E}[n(\mathbb{D})] = \int_{\mathbb{D}} \rho_1(z) dm(z)$

•
$$\mathbb{E}[\int \varphi d\nu] = \int \varphi(z)\rho_1(z)dm(z)$$

(4回) (4回) (4回)

Intensity ρ_1 :

• Determines expected number of points in a domain $\mathbb{E}[n(\mathbb{D})] = \int_{\mathbb{D}} \rho_1(z) dm(z)$

•
$$\mathbb{E}[\int \varphi d\nu] = \int \varphi(z)\rho_1(z)dm(z)$$

Convergence of Point Processes:

•
$$\mu_n \xrightarrow{d} \mu$$
 iff $\int \varphi d\mu_n \xrightarrow{d} \int \varphi d\mu \quad \forall \varphi \in C_c(\mathbb{C})$

・ 回 と ・ ヨ と ・ ヨ と …

• Finite *n*: μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \le i,j \le n}$, ξ_{ij} i.i.d $N_{\mathbb{C}}(0,1)$ (NO normalization by \sqrt{n})

• Finite *n*: μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \le i,j \le n}$, ξ_{ij} i.i.d $N_{\mathbb{C}}(0,1)$ (NO normalization by \sqrt{n})

•
$$\underline{n = \infty}$$
: $\mu = \lim_{n \to \infty} \mu_n$ (Ginibre ensemble)

• Finite *n*: μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \le i,j \le n}$, ξ_{ij} i.i.d $N_{\mathbb{C}}(0,1)$ (NO normalization by \sqrt{n})

•
$$\underline{n = \infty}$$
: $\mu = \lim_{n \to \infty} \mu_n$ (Ginibre ensemble)

• Translation Invariant (in fact Ergodic)

▲帰▶ ★ 国▶ ★ 国▶

• Finite n:
$$f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$$

 $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0, 1))$

- Finite n: $f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$ $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$
- $\underline{n = \infty}$:

•
$$\nu = \lim_{n \to \infty} \nu_n$$

• Zeroes of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k!}} z^k$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- Finite n: $f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$ $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$
- $\underline{n = \infty}$:
 - $\nu = \lim_{n \to \infty} \nu_n$
 - Zeroes of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k!}} z^k$
- ν is Translation Invariant (and Ergodic)

▲□→ ▲ 国→ ▲ 国→

- Finite n: $f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}z^k + \dots + \frac{\xi_n}{\sqrt{n!}}z^n$ $\nu_n = \text{Zeroes of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$
- $\underline{n = \infty}$:
 - $\nu = \lim_{n \to \infty} \nu_n$
 - Zeroes of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k!}} z^k$
- ν is Translation Invariant (and Ergodic)

Theorem (Sodin rigidity)

f(z) is the unique (up to a deterministic multiplier) Gaussian entire function with a translation invariant zero process of intensity 1.

- 4 周 ト 4 日 ト 4 日 ト - 日

• Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$

(4回) (1日) (日)

э

Motivation

- Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$
- Insertion Tolerance π is insertion tolerant if w.p. 1 we fail to detect the change when we add a random point uniformly in a bounded domain

・ 回 ト ・ ヨ ト ・ ヨ ト

- Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$
- Insertion Tolerance π is insertion tolerant if w.p. 1 we fail to detect the change when we add a random point uniformly in a bounded domain
- Deletion and Insertion Tolerance well studied in probability theory

- Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$
- Insertion Tolerance π is insertion tolerant if w.p. 1 we fail to detect the change when we add a random point uniformly in a bounded domain
- Deletion and Insertion Tolerance well studied in probability theory
 - Burton and Keane in studying uniqueness of infinite cluster in lattice percolation

・ 回 と ・ ヨ と ・ ヨ と

- Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$
- Insertion Tolerance π is insertion tolerant if w.p. 1 we fail to detect the change when we add a random point uniformly in a bounded domain
- Deletion and Insertion Tolerance well studied in probability theory
 - Burton and Keane in studying uniqueness of infinite cluster in lattice percolation
 - Study of Continuum Percolation on point processes
 - Study of Fair Allocation in the plane by Hoffman, Holroyd and Peres

・ロト ・回ト ・ヨト ・ヨト

- Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$
- Insertion Tolerance π is insertion tolerant if w.p. 1 we fail to detect the change when we add a random point uniformly in a bounded domain
- Deletion and Insertion Tolerance well studied in probability theory
 - Burton and Keane in studying uniqueness of infinite cluster in lattice percolation
 - Study of Continuum Percolation on point processes
 - Study of Fair Allocation in the plane by Hoffman, Holroyd and Peres
 - Holroyd and Soo (2010)

・ロト ・回ト ・ヨト ・ヨト
We consider the conditional distribution ρ_ω(ζ) of the points (denoted by ζ) inside a disk D given the points outside D (denoted by ω)

▲祠 → ▲ 臣 → ▲ 臣 →

- We consider the conditional distribution ρ_ω(ζ) of the points (denoted by ζ) inside a disk D given the points outside D (denoted by ω)
- $\bullet\,$ In Poisson point process, the points inside and outside $\mathbb D$ are independent of each other

(4回) (1日) (日)

In the Ginibre ensemble, (i)The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D}

| 4 回 2 4 U = 2 4 U =

In the Ginibre ensemble, (i)The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more"

In the Ginibre ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more" (ii) A.e. ω ,

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$,

In the Ginibre ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more" (ii) A.e. ω ,

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$

伺い イヨト イヨト

In the Ginibre ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more" (ii) A.e. ω ,

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$

 $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$

In the Ginibre ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more" (ii) A.e. ω ,

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$

(c) $m(\omega)|\Delta(\zeta)|^2 \leq f_{\omega}(\zeta) \leq M(\omega)|\Delta(\zeta)|^2$

In the Ginibre ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ of the points ζ inside \mathbb{D} "and nothing more" (ii) A.e. ω .

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ (b) $f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$ (c) $m(\omega)|\Delta(\zeta)|^2 < f_{\omega}(\zeta) < M(\omega)|\Delta(\zeta)|^2$

 $M(\omega)$ and $m(\omega)$ positive constants $\Delta(\zeta) = \prod_{i < j} (\zeta_i - \zeta_j)$ (Vandermonde)

• Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.

・ロット (日本) (日本) (日本)

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble

(ロ) (同) (E) (E) (E)

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix

(ロ) (同) (E) (E) (E)

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

Take n points in a disk of area n. Finite, rigid.

- Rigidity A process is said to be rigid if, given the points outside a domain *D*, we can predict the exact number of points in \mathbb{D} with probability 1.
- E.g. :
 - Ginibre ensemble
 - Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

Take *n* points in a disk of area *n*. Finite, rigid. Limit as $n \to \infty$ is Poisson : Not Rigid !

・ロン ・回 と ・ ヨ と ・ ヨ と

Our Results: Zeroes of Gaussian Analytic Function

Theorem (Ghosh, Nazarov, P., Sodin, '12)

In the GAF Zero ensemble, (i)The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$

In the GAF Zero ensemble, (i)The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} ,

< 同 > < 臣 > < 臣 >

In the GAF Zero ensemble, (i)The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$),

・同・ ・ヨ・ ・ヨ・

In the GAF Zero ensemble, (i)The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more"

In the GAF Zero ensemble, (i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$,

In the GAF Zero ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more" (ii) A.e. ω ,

(a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$

In the GAF Zero ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$

 $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$

In the GAF Zero ensemble,

(i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ (b) $f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$

(c) $m(\omega)|\Delta(\zeta)|^2 \leq f_{\omega}(\zeta) \leq M(\omega)|\Delta(\zeta)|^2$ a.e.

In the GAF Zero ensemble, (i) The points ω outside \mathbb{D} determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)} \subset \mathbb{D}^{N(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ (b) $f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$ (c) $m(\omega) |\Delta(\zeta)|^2 \leq f_{\omega}(\zeta) \leq M(\omega) |\Delta(\zeta)|^2$ a.e.

 $\Sigma_{S(\omega)}$: constant sum hypersurface $\sum_{i=1}^{N(\omega)} \zeta_i = S(\omega)$ inside $\mathbb{D}^{N(\omega)}$

 $M(\omega)$, $m(\omega)$ and $\Delta(\zeta)$ are as before.

・ロン ・回と ・ヨン・

A Hierarchy of Point Processes

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$

イロト イヨト イヨト イヨト

A Hierarchy of Point Processes

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1,..., (k − 1) moments being conserved.

A Hierarchy of Point Processes

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1,..., (k − 1) moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1, ..., (k − 1) moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1,..., (k − 1) moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)
- GAF Zeros is at Level 2 (i.e. only 0th and 1st moment conserved)

・ロト ・回ト ・ヨト ・ヨト

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1,..., (k − 1) moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)
- GAF Zeros is at Level 2 (i.e. only 0th and 1st moment conserved)
- Natural, translation invariant processes for Levels $k \ge 3$??

- π is rigid at level k if
 - The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in $\mathbb D$
 - Conditional distribution of the points of π inside D given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of D^{N(ω)} defined by 0, 1,..., (k − 1) moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)
- GAF Zeros is at Level 2 (i.e. only 0th and 1st moment conserved)
- Natural, translation invariant processes for Levels $k \ge 3$??
- Application to continuum percolation

• Given: outside zeroes of GAF Want: number of inside zeroes

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$

- ∢ ⊒ ⊳

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) var[$\int \varphi_L d\nu$] = $O\left(\frac{1}{L^2}\right)$
- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) var[$\int \varphi_L d\nu$] = $O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in C_c^2$)

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) var[$\int \varphi_L d\nu$] = $O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}_{c}^{2}$)
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z) \rho_1(z) dm(z)$

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) var[$\int \varphi_L d\nu$] = $O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}_{c}^{2}$)
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z)\rho_1(z)dm(z)$
- But $\int \varphi_L d\nu = n(\mathbb{D}) + \int_{\mathbb{D}_L \setminus \mathbb{D}} \varphi_L d\nu$

・ 同 ト ・ 三 ト ・ 三 ト

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C^2_c(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$
- (Sodin Tsirelson) $\operatorname{var}[\int \varphi_L d\nu] = O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}} \leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c$)
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z) \rho_1(z) dm(z)$
- But $\int \varphi_L d\nu = n(\mathbb{D}) + \int_{\mathbb{D}_L \setminus \mathbb{D}} \varphi_L d\nu$
- Know outside zeroes \Rightarrow Know $\int_{\mathbb{D}_L \setminus \mathbb{D}} \varphi_L d\nu \Rightarrow$ Compute $n(\mathbb{D})$ approximately, now let $L \to \infty$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition (Reconstruction of Gaussian Analytic Function)

The zeroes of the GAF determine the function a.s. (up to a multiplicative factor of modulus 1). In other words, if ν denotes the zeroes of the GAF f, then \exists an analytic function $g(z) = \sum_{k=0}^{\infty} a_k(\nu) z^k \text{ such that } f(z) = \gamma . g(z)$ Here γ follows Unif(S¹) and is independent of ν .

・ 同 ト ・ ヨ ト ・ ヨ ト