What does a Point Process Outside a Domain tell us about What's Inside ?

Yuval Peres¹

joint work with Subhro Ghosh, Fedor Nazarov, Mikhail Sodin

¹Microsoft Research, Redmond

メロメ メタメ メモメ メモメ Yuval Peres [What does a Point Process Outside Domain say about Inside?](#page-76-0)

A Point Process is a random configuration of points in a suitable space, e.g. \mathbb{R}^d

メタメメ ミメメ ミメ

 $2Q$

扂

桐 トラ ミュ エト

 $2Q$

A well studied example:

桐 トラ ミュ エト

A well studied example: Poisson Point Process

桐 トラ ミュ エト

 $2Q$

A well studied example: Poisson Point Process

Analogue of "uniform distribution" in the world of point processes

桐 トラ ミュ エト

A well studied example: Poisson Point Process

Analogue of "uniform distribution" in the world of point processes Key Characteristics:

 $4.60 \times 4.75 \times 4.75 \times$

A well studied example: Poisson Point Process

Analogue of "uniform distribution" in the world of point processes Key Characteristics:

• Independence between spatially disjoint domains

イ押 トライチ トラチャ

A well studied example: Poisson Point Process

Analogue of "uniform distribution" in the world of point processes Key Characteristics:

- Independence between spatially disjoint domains
- \bullet In any given domain D, the number of points N follows Poisson distribution, with parameter \propto area (D)

 $4.60 \times 4.75 \times 4.75 \times$

A well studied example: Poisson Point Process

Analogue of "uniform distribution" in the world of point processes Key Characteristics:

- Independence between spatially disjoint domains
- \bullet In any given domain D, the number of points N follows Poisson distribution, with parameter \propto area (D)
- \bullet The N points are distributed uniformly in D and independently of each other

メラト メミト メミト

→ イ団 ト イ ヨ ト イ ヨ ト

 $2Q$

≣

Limitation: Does not take into account Spatial Correlation Solution: Look for new models

→ 伊 ▶ → ヨ ▶ → ヨ ▶

 $2Q$

扂

Solution: Look for new models

• Ginibre Ensemble

→ 伊 ▶ → ヨ ▶ → ヨ ▶

 $2Q$

后

Solution: Look for new models

- **Ginibre Ensemble**
- Zeroes of Gaussian Analytic Function

 $4.60 \times 4.75 \times 4.75 \times$

 Ω

 \leftarrow \Box

Solution: Look for new models

- **o** Ginibre Ensemble
- Zeroes of Gaussian Analytic Function
- Interesting mathematical structures as (limits of) eigenvalues of random matrices and zeroes of random polynomials

K 御 ▶ K 唐 ▶ K 唐 ▶

Solution: Look for new models

- **o** Ginibre Ensemble
- Zeroes of Gaussian Analytic Function
- Interesting mathematical structures as (limits of) eigenvalues of random matrices and zeroes of random polynomials
- Exhibit local repulsion

 $4.60 \times 4.75 \times 4.75 \times$

Solution: Look for new models

- **o** Ginibre Ensemble
- Zeroes of Gaussian Analytic Function
- Interesting mathematical structures as (limits of) eigenvalues of random matrices and zeroes of random polynomials
- Exhibit local repulsion
- Arise in physics as mathematical models

 $4.60 \times 4.75 \times 4.75 \times$

Poisson Process

ð **B** 硅 290

重

×

E

Poisson Process Ginibre Ensemble

×. A \sim 41 造 目

 299

≣

 \leftarrow \Box

Poisson Process Ginibre Ensemble Gaussian Zeroes

● → → ミ

€

≣

 299

×.

 \leftarrow \Box

Intensity ρ_1 :

Determines expected number of points in a domain $\mathbb{E}[n(\mathbb{D})] = \int_{\mathbb{D}} \rho_1(z) dm(z)$

メタトメ ミトメ ミト

 $2Q$

目

Intensity ρ_1 :

Determines expected number of points in a domain $\mathbb{E}[n(\mathbb{D})] = \int_{\mathbb{D}} \rho_1(z) dm(z)$

$$
\bullet \ \mathbb{E}[\int \varphi d\nu] = \int \varphi(z) \rho_1(z) dm(z)
$$

メタトメ ミトメ ミト

 $2Q$

目

Intensity ρ_1 :

Determines expected number of points in a domain $\mathbb{E}[n(\mathbb{D})] = \int_{\mathbb{D}} \rho_1(z) dm(z)$

$$
\bullet \ \mathbb{E}[\int \varphi d\nu] = \int \varphi(z)\rho_1(z) dm(z)
$$

Convergence of Point Processes:

$$
\bullet \ \mu_n \xrightarrow{d} \mu \text{ iff } \int \varphi d\mu_n \xrightarrow{d} \int \varphi d\mu \quad \forall \varphi \in C_c(\mathbb{C})
$$

 \leftarrow \Box

K 御 ⊁ K 唐 ⊁ K 唐 ⊁

 $2Q$

• Finite n: μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \le i,j \le n}$, ξ_{ij} i.i.d $\frac{\sum_{n=0}^{n} \mu_n - \sum_{n=0}^{n}}{N_{\mathbb{C}}(0,1)}$ (NO normalization by \sqrt{n})

イロト イ部 トイヨ トイヨ トー

 $2Q$

唾

• Finite n: μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \le i,j \le n}$, ξ_{ij} i.i.d $\frac{\sum_{n=0}^{n} \mu_n - \sum_{n=0}^{n}}{N_{\mathbb{C}}(0,1)}$ (NO normalization by \sqrt{n})

•
$$
n = \infty
$$
: $\mu = \lim_{n \to \infty} \mu_n$ (Ginibre ensemble)

イロト イ部 トイヨ トイヨ トー

 $2Q$

唾

• Finite n: μ_n = Eigenvalues of $G_n = ((\xi_{ij}))_{1 \le i,j \le n}$, ξ_{ij} i.i.d $\frac{\sum_{n=0}^{n} \mu_n - \sum_{n=0}^{n}}{N_{\mathbb{C}}(0,1)}$ (NO normalization by \sqrt{n})

•
$$
\underline{n = \infty}
$$
: $\mu = \lim_{n \to \infty} \mu_n$ (Ginibre ensemble)

Translation Invariant (in fact Ergodic)

メ 御 メ メ ヨ メ ス ヨ メ

• Finite n:
$$
f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}} z + \ldots + \frac{\xi_k}{\sqrt{k!}} z^k + \ldots + \frac{\xi_n}{\sqrt{n!}} z^n
$$
 $\nu_n = \text{Zeros of } f_n \quad (\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$

メロメ メ御 メメ ミメ メミメ

重

 299

- Finite *n*: $f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}$ $\frac{k}{k!}z^k + \ldots + \frac{\xi_n}{\sqrt{n}}$ $\frac{n}{n!}$ zⁿ $\nu_n =$ Zeroes of f_n $(\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$
- \bullet $n = \infty$:

\n- $$
\nu = \lim_{n \to \infty} \nu_n
$$
\n- Zeros of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k!}} z^k$
\n

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

 200

- Finite *n*: $f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}$ $\frac{k}{k!}z^k + \ldots + \frac{\xi_n}{\sqrt{n}}$ $\frac{n}{n!}$ zⁿ $\nu_n =$ Zeroes of f_n $(\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$
- \bullet $n = \infty$:
	- $\nu = \lim_{n \to \infty} \nu_n$ Zeroes of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k}}$ $\frac{k}{k!}z^k$
- \bullet ν is Translation Invariant (and Ergodic)

メ御き メミメ メミメー

- Finite *n*: $f_n(z) = \xi_0 + \frac{\xi_1}{\sqrt{1!}}z + \dots + \frac{\xi_k}{\sqrt{k!}}$ $\frac{k}{k!}z^k + \ldots + \frac{\xi_n}{\sqrt{n}}$ $\frac{n}{n!}$ zⁿ $\nu_n =$ Zeroes of f_n $(\xi_i \text{ iid } N_{\mathbb{C}}(0,1))$
- \bullet $n = \infty$:
	- $\nu = \lim_{n \to \infty} \nu_n$ Zeroes of $f(z) = \sum_{k=0}^{\infty} \frac{\xi_k}{\sqrt{k}}$
- \bullet ν is Translation Invariant (and Ergodic)

Theorem (Sodin rigidity)

 $f(z)$ is the unique (up to a deterministic multiplier) Gaussian entire function with a translation invariant zero process of intensity 1.

 $\frac{k}{k!}z^k$

イロト イ部 トイヨ トイヨ トー

• Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$

メタト メミト メミト

 $2Q$

Motivation

- Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$
- Insertion Tolerance π is insertion tolerant if w.p. 1 we fail to detect the change when we add a random point uniformly in a bounded domain

イ押 トライチ トラチャ

- Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$
- **•** Insertion Tolerance π is insertion tolerant if w.p. 1 we fail to detect the change when we add a random point uniformly in a bounded domain
- Deletion and Insertion Tolerance well studied in probability theory

 $4.60 \times 4.75 \times 4.75 \times$

- Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$
- Insertion Tolerance π is insertion tolerant if w.p. 1 we fail to detect the change when we add a random point uniformly in a bounded domain
- Deletion and Insertion Tolerance well studied in probability theory
	- Burton and Keane in studying uniqueness of infinite cluster in lattice percolation

メタトメ ミトメ ミト

- Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$
- **•** Insertion Tolerance π is insertion tolerant if w.p. 1 we fail to detect the change when we add a random point uniformly in a bounded domain
- Deletion and Insertion Tolerance well studied in probability theory
	- Burton and Keane in studying uniqueness of infinite cluster in lattice percolation
	- Study of Continuum Percolation on point processes
	- Study of Fair Allocation in the plane by Hoffman, Holroyd and Peres

イロト イ押 トイモト イモト

- Deletion Tolerance π is deletion tolerant if w.p. 1 we fail to detect the change when we delete all points of π from a bounded domain, i.e. $\tilde{\pi} << \pi$
- **•** Insertion Tolerance π is insertion tolerant if w.p. 1 we fail to detect the change when we add a random point uniformly in a bounded domain
- Deletion and Insertion Tolerance well studied in probability theory
	- Burton and Keane in studying uniqueness of infinite cluster in lattice percolation
	- Study of Continuum Percolation on point processes
	- Study of Fair Allocation in the plane by Hoffman, Holroyd and Peres
	- Holroyd and Soo (2010)

イロト イ押 トイモト イモト
• We consider the conditional distribution $\rho_{\omega}(\zeta)$ of the points (denoted by ζ) inside a disk $\mathbb D$ given the points outside $\mathbb D$ (denoted by ω)

メ御 トメ ミト メモト

- We consider the conditional distribution $\rho_{\omega}(\zeta)$ of the points (denoted by ζ) inside a disk $\mathbb D$ given the points outside $\mathbb D$ (denoted by ω)
- \bullet In Poisson point process, the points inside and outside $\mathbb D$ are independent of each other

 $4.60 \times 4.75 \times 4.75 \times$

In the Ginibre ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ of the points ζ inside $\mathbb D$

A + + = + + =

In the Ginibre ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more"

AD - 4 E - 1

In the Ginibre ensemble,

(i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more" (ii) A.e. ω .

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$,

In the Ginibre ensemble,

(i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more" (ii) A.e. ω .

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$

In the Ginibre ensemble,

(i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more" (ii) A.e. ω .

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$

In the Ginibre ensemble,

(i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more" (ii) A.e. ω .

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$ (c) $m(\omega)|\Delta(\zeta)|^2 \le f_{\omega}(\zeta) \le M(\omega)|\Delta(\zeta)|^2$

In the Ginibre ensemble,

(i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ of the points ζ inside $\mathbb D$ "and nothing more" (ii) A.e. ω .

(a) The conditional measure $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$, and hence has a probability density function $f_{\omega}(\zeta)$ $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\mathbb{D}^{N(\omega)}$ (c) $m(\omega)|\Delta(\zeta)|^2 \le f_{\omega}(\zeta) \le M(\omega)|\Delta(\zeta)|^2$

 $M(\omega)$ and $m(\omega)$ positive constants $\Delta(\zeta)=\prod_{i< j}(\zeta_i-\zeta_j)$ (Vandermonde)

K 御 ▶ (唐) (唐)

• Rigidity A process is said to be rigid if, given the points outside a domain D , we can predict the exact number of points in D with probability 1.

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in D with probability 1.
- \bullet E.g. :
	- **•** Ginibre ensemble

メロメ メ御き メミメ メミメー

 $2Q$

重

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in D with probability 1.
- \bullet E.g. :
	- **•** Ginibre ensemble
	- Finite point process (fixed size *n*) e.g. eigenvalues of a $n \times n$ random matrix

メロメ メ御き メミメ メミメー

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in D with probability 1.
- \bullet E.g. :
	- Ginibre ensemble
	- Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid

イロメ イ押 トイラ トイラメー

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in D with probability 1.
- \bullet E.g. :
	- Ginibre ensemble
	- Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

イロメ イ押 ビスティスティー

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in D with probability 1.
- \bullet E.g. :
	- Ginibre ensemble
	- Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

Take *n* points in a disk of area *n*. Finite, rigid.

- オ海 レ オ ヨ レ オ ヨ レ

- Rigidity A process is said to be rigid if, given the points outside a domain D, we can predict the exact number of points in D with probability 1.
- \bullet E.g. :
	- Ginibre ensemble
	- Finite point process (fixed size n) e.g. eigenvalues of a $n \times n$ random matrix
- Non e.g.: Poisson point process is NOT rigid
- Rigidity does Not pass to the Limit!

Take *n* points in a disk of area *n*. Finite, rigid. Limit as $n \to \infty$ is Poisson : Not Rigid !

イロメ イ押 トイラ トイラメー

Our Results: Zeroes of Gaussian Analytic Function

Theorem (Ghosh,Nazarov,P., Sodin,'12)

In the GAF Zero ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$

A + + = +

In the GAF Zero ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside $\mathbb D$,

In the GAF Zero ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)}\subset \mathbb{D}^{N(\omega)}$),

In the GAF Zero ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)}\subset {\mathbb{D}}^{{\sf N}(\omega)}$), "and nothing more"

In the GAF Zero ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)}\subset {\mathbb{D}}^{{\sf N}(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$,

In the GAF Zero ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)}\subset {\mathbb{D}}^{{\sf N}(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_\omega(\zeta)$

In the GAF Zero ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)}\subset {\mathbb{D}}^{{\sf N}(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_\omega(\zeta)$ $(b) f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$

In the GAF Zero ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)}\subset {\mathbb{D}}^{{\sf N}(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_\omega(\zeta)$ $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$ $\mathcal{L}(\mathcal{L}) |m(\omega)| |\Delta(\zeta)|^2 \leq f_{\omega}(\zeta) \leq M(\omega) |\Delta(\zeta)|^2$ a.e.

御 ▶ イ君 ▶ イ君 ▶

In the GAF Zero ensemble, (i) The points ω outside $\mathbb D$ determine exactly the Number $N(\omega)$ and Sum $S(\omega)$ of points ζ inside \mathbb{D} , (so $\zeta \in$ constant sum hypersurface $\Sigma_{S(\omega)}\subset {\mathbb{D}}^{{\sf N}(\omega)}$), "and nothing more" (ii) A.e. ω , (a) $\rho_{\omega}(\zeta)$ is absolutely continuous wrt Lebesgue measure on $\Sigma_{S(\omega)}$, and hence has a probability density function $f_\omega(\zeta)$ $(b)f_{\omega}(\zeta) > 0$ a.e. wrt Lebesgue measure on $\Sigma_{S(\omega)}$ $\mathcal{L}(\mathcal{L}) |m(\omega)| |\Delta(\zeta)|^2 \leq f_{\omega}(\zeta) \leq M(\omega) |\Delta(\zeta)|^2$ a.e.

 $\Sigma_{S(\omega)}$: constant sum hypersurface $\sum_{i=1}^{N(\omega)} \zeta_i = S(\omega)$ inside $\mathbb{D}^{N(\omega)}$

 $M(\omega)$, $m(\omega)$ and $\Delta(\zeta)$ are as before.

メロメ メ御 メメ きょ メモメ

A Hierarchy of Point Processes

- $\bullet \pi$ is rigid at level k if
	- The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in D

マーター マートマート

 $2Q$

A Hierarchy of Point Processes

- $\bullet \pi$ is rigid at level k if
	- The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in D
	- Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb{D}^{\mathcal{N}(\omega)}$ defined by $0, 1, \ldots, (k-1)$ moments being conserved.

 $4.60 \times 4.75 \times 4.75 \times$

A Hierarchy of Point Processes

- $\bullet \pi$ is rigid at level k if
	- The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in D
	- Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb{D}^{\mathcal{N}(\omega)}$ defined by $0, 1, \ldots, (k-1)$ moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)

 $4.50 \times 4.70 \times 4.70 \times$

- $\bullet \pi$ is rigid at level k if
	- The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in D
	- Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb{D}^{\mathcal{N}(\omega)}$ defined by $0, 1, \ldots, (k-1)$ moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)

 $A \cap B$ is a $B \cap A \cap B$ is

- $\bullet \pi$ is rigid at level k if
	- The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in D
	- Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb{D}^{\mathcal{N}(\omega)}$ defined by $0, 1, \ldots, (k-1)$ moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)
- GAF Zeros is at Level 2 (i.e. only 0th and 1st moment conserved)

マーター マーティング

- $\bullet \pi$ is rigid at level k if
	- The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in D
	- Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb{D}^{\mathcal{N}(\omega)}$ defined by $0, 1, \ldots, (k-1)$ moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)
- GAF Zeros is at Level 2 (i.e. only 0th and 1st moment conserved)
- Natural, translation invariant processes for Levels $k > 3$??

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

- $\bullet \pi$ is rigid at level k if
	- The points of π outside $\mathbb D$ determine $0, 1, \ldots, (k-1)$ moments of the points in D
	- Conditional distribution of the points of π inside $\mathbb D$ given the outside has a non-vanishing density wrt Lebesgue measure on the submanifold of $\mathbb{D}^{\mathcal{N}(\omega)}$ defined by $0, 1, \ldots, (k-1)$ moments being conserved.
- Poisson is at Level 0 (i.e. no moments conserved)
- Ginibre is at Level 1 (i.e. only 0th moment conserved)
- GAF Zeros is at Level 2 (i.e. only 0th and 1st moment conserved)
- Natural, translation invariant processes for Levels $k > 3$??
- Application to continuum percolation

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Given: outside zeroes of GAF Want: number of inside zeroes

A + + = +

ia ≡

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C_c^2(\mathbb{C})$

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C_c^2(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi(\frac{z}{L})$ $\frac{z}{L}$

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C_c^2(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi(\frac{z}{L})$ $\frac{z}{L}$
- (Sodin Tsirelson) var $\iint \varphi_L d\nu = O\left(\frac{1}{L^2}\right)$
- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C_c^2(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$ $\frac{z}{L}$
- (Sodin Tsirelson) var $\iint \varphi_L d\nu = O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}}\leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c)$

へのへ

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C_c^2(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$ $\frac{z}{L}$
- (Sodin Tsirelson) var $\iint \varphi_L d\nu = O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}}\leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c)$
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z) \rho_1(z) dm(z)$

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C_c^2(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$ $\frac{z}{L}$
- (Sodin Tsirelson) var $\iint \varphi_L d\nu = O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}}\leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c)$
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z) \rho_1(z) dm(z)$
- But $\int \varphi_L d\nu = n(\mathbb{D}) + \int_{\mathbb{D}_L\backslash\mathbb{D}} \varphi_L d\nu$

へのへ

- Given: outside zeroes of GAF Want: number of inside zeroes
- Linear Statistic: $\int \varphi d\nu, \varphi \in C_c^2(\mathbb{C})$
- Scaling: $\varphi_L(z) = \varphi\left(\frac{z}{L}\right)$ $\frac{z}{L}$
- (Sodin Tsirelson) var $\iint \varphi_L d\nu = O\left(\frac{1}{L^2}\right)$
- Take φ as roughly $1_{\mathbb{D}}$ (e.g. $1_{\mathbb{D}}\leq \varphi \leq 1_{2\mathbb{D}}, \varphi \in \mathcal{C}^2_c)$
- By Sodin Tsirelson, $\int \varphi_L d\nu \approx \mathbb{E}[\int \varphi_L d\nu] = \int \varphi_L(z) \rho_1(z) dm(z)$
- But $\int \varphi_L d\nu = n(\mathbb{D}) + \int_{\mathbb{D}_L\backslash\mathbb{D}} \varphi_L d\nu$
- Know outside zeroes \Rightarrow Know $\int_{\mathbb{D}_L\setminus\mathbb{D}}\varphi_Ld\nu\Rightarrow$ Compute $n(\mathbb{D})$ approximately, now let $L \to \infty$

 $A \cap B$ is a $B \cap A \cap B$ is

へのへ

Proposition (Reconstruction of Gaussian Analytic Function)

The zeroes of the GAF determine the function a.s. (up to a multiplicative factor of modulus 1). In other words, if ν denotes the zeroes of the GAF f, then \exists an analytic function $g(z) = \sum_{k=0}^{\infty} a_k(\nu) z^k$ such that $f(z) = \gamma . g(z)$ Here γ follows Unif (S^1) and is independent of ν .