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Question 1. (Polyakov 1981) Can we define
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, where g is a two dimen-

sional Riemann metric, and µ0 is a cosmological constant.

If so, then we’ll have a two-dimensional theory of quantum gravity. We fix the gauge

g = ĝeφ(z,z),

where ϕ is a conformal factor. Effective theory for ϕ(z, z), conformal or Liouville field. An anomaly
consistency condition and locality is
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where µ = µ0−xΛ
2 is the normalized cosmological constant and g = ĝeγϕ. Note that the curvature

is R = −µ < 0. This is the Liouville theory. There is a relationship between Q and γ, namely
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Conformal invariance of the field translates into a transformation property for ϕ.
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ϕ̃(w) = ϕ(z)−Q log |f ′(z)|

Gravity and matter fields gives Liouville and matter CFT, with cL = 1+ 6Q2.

The KPZ relations can be developed from an algebraic CFT point of view, and also from a geometric
point of view by Duplantier and Sheffield. The relationship between these perspectives is illustrated
by the Venn diagram below. There are many things we learn from the geometric approach, but
there are other important CFT questions to be addressed.
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CFT

Geometric approach

For example, we can ask about the renormalization of
∫
D[g], which can be viewed as a random

triangulation (random planar maps).

Is it possible to measure the fractal dimension of some X in the measure eγϕ, where ϕ is the
Gaussian free field. One approach is to cover with a diffusion process in the metric eγz instead of
with disks. More precisely, we run a diffusion process in the metric eγz and ask how much of X
is “covered” by the diffusion process. We can define K(t) = et∆, where ∆ is the Laplace operator,
which depends on ϕ by

∆ = e−hϕ(z,z)∆0 = e
−hϕ(z,z)(−∂z∂z).

One can compute (at least by CFT methods) the behavior of

measure in flat space︷ ︸︸ ︷
dµ◦X(z, z) −→ dµQx (z, z) = e

−γ(1−xϕ)ϕ(z,z) dµ0x(z, z).

The quantum heat kernel is ∫
dµQx (z, z)K

Q(t)(z, z0) ' t−xQ .

Doing the calculation, we get

x0 = xQ +
γ2

4
(x)(x− 1).

This suggests that properties of random quadrangulations do in fact correspond to properties of
Liouville quantum gravity.

There are many results available when c = 0. For example, work by Schaeffer, Miermont, Le Gall
using the continuum random tree.

If c 6= 0, little is known. Numerical simulations are available for the case c = 2, while the there are
conjectures about (3+

√
17)/2 and 4.

It turns out that geodesics are strange objects in random geometries. Two important properties
are

(a) Confluence: geodesics from A to C and from B to C coincide for a positive length (which is
proved on a combinatorial level).

(b) Macroscopic uniqueness. There are sometimes multiple geodesics, but they are close to one
another on the scale of the lattice mesh.
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Question 2. Consider two points of Euclidean distance r from one another, and consider the geodesic
connecting them in the quantum metric. What is its fractal dimension, and how does its quantum
length depend on r?

It turns out that the dimension of the geodesic is 1 + κ/8, which would suggest that the geodesic
is an SLE path. However, the geodesic is correlated with h, so it is not an SLE path.

Old calculation: Perturbative calculation in Liouville theory, to first order in K. Consider a free
massive scalar field φ, and consider

S[φ] =

∫
d2z
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2
(∂φ)2,

under which
〈VAC|φ(xA)φ(xB)|VAC〉m

2

2
φ2 = exp(−m dist(xA, xB))

Now
dist(xA, xB) = −

1

m
log(〈φ(xA)φ(xB)〉).

Computing this using Liouville theory

〈volume(ball of radius R)〉 = πR2 + κ
√
mR5/2,

the second term being surprising.


