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2D Ising model:
(square grid) Spins o; = +1 or —1.

Hamiltonian:

H==3 0o
Partition function:
P(conf.) ~ e PH ~ x# {7}
where

x=ePc0,1].




Phase transition, criticality:

X > Xerit X = Xcrit X < Xerit

(Dobrushin boundary values: two marked points a, b on the
boundary; +1 on the arc (ab), —1 on the opposite arc (ba))



Phase transition, criticality:

X > Xerit X = Xcrit X < Xerit

(Dobrushin boundary values: two marked points a, b on the
boundary; +1 on the arc (ab), —1 on the opposite arc (ba))

[Kramers-Wannier ~41]: xcyit = ﬁ
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(0(2)ap _ i Eaplo(2’)]

(0(2)r 40 By fo(2)]

(same for several bulk zp, ..., zx and boundary ay, ..., az, points)



Basic fermionic observable and its discrete holomorphicity.

Basic fermionic observable:

i

Fé(z) = ZCO"ﬁg.:awz[e_2Winding(awz)]

i

Y s
Zconfig.:awb[ei 2W1nd1ng(awb)]



Basic fermionic observable and its discrete holomorphicity.

The function F° is discrete
holomorphic, i.e., satisfies some
discrete version of the Cauchy-
Riemann identities.

Proof: Natural combinatorial
bijection between the two sets
of configurations involved into
F¥(z1), F°(z) gives one real
equation for any neighbors z; 5.
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Remarks: (i) there is a strong physical motivation for this definition
(coming from the “order and disorder operators” technique),

but one can easily define the observable and derive holomorphicity
using simple combinatorial arguments (“local rearrangements”);
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Basic fermionic observable and its discrete holomorphicity.

The function F° is discrete
holomorphic, i.e., satisfies some
discrete version of the Cauchy-
Riemann identities.

Proof: Natural combinatorial
bijection between the two sets
of configurations involved into
F¥(z1), F°(z) gives one real
equation for any neighbors z; 5.

Remarks: (i) there is a strong physical motivation for this definition
(coming from the “order and disorder operators” technique);

(ii) this observable was suggested by S.Smirnov (~06) as a crucial
tool for the rigorous proof of the Ising model conformal invariance;
(i) (hard) technical problems arises when passing to the limit
(Riemann-type boundary conditions etc).



Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).

Theorem: As § — 0, properly normalized (at the point b) discrete
holomorphic observables 6~1/2F? converge to holomorphic
functions W(q., ) such that

V(.a6)(2) = (8/(2))"? - V(y0.60.00)(62)

for any conformal mapping ¢ : Q — ¢S.



Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).

Theorem: As § — 0, properly normalized (at the point b) discrete
holomorphic observables 6~1/2F? converge to holomorphic
functions W(q., ) such that

V(.a6)(2) = (8/(2))"? - V(y0.60.00)(62)

for any conformal mapping ¢ : Q — ¢S.

Corollary: [Smirnov et al, ~09-11]
Convergence of Dobrushin interfaces to SLE3 curves.



Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, Hongler ~10).

Definition: For an edge a in
Q°, denote

£ (a) = B [o(a)o(2)]




Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, Hongler ~10).

Theorem: As § — 0, properly
renormalized discrete energy
densities 071 - (£9.(a) — v/2/2)
converge to the continuum
limit &q having the following
covariance under conformal
mappings:

€a(a) = |¢/(2)] - Esa(da).




Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, Hongler ~10).

Moreover, all  correlations
of the renormalized discrete
energy densities

51 (e (&) — V2/2)

converge to the continuum
limits, and this result extends
to any number of boundary
points bi,..., by, where the
boundary conditions change
from “+" to “—".




Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, Hongler ~10).

Main idea: Consider the
similar observable with a
“source point” ay. Then
F(ay) counts configurations
without a, while —F(a.)
counts configurations with a:

_ Flay) ~ (~F(a))
Flas) + (—F(a0)”

e(a)




Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, Hongler ~10).
e Ratios of spin correlations (“+—"/“+"): done (lzyurov-Ch., ~11).
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cos[rhmgq(z, (ba))]).
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Theorem: As 6 — 0, the ratio

Eaplo(2°)]
Ei[o(29)]
tends to the conformally
invariant limit (namely,

cos[rhmgq(z, (ba))]), and the
same holds for any number of
inner and boundary points.




Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, Hongler ~10).
e Ratios of spin correlations (“+—"/“+"): done (lzyurov-Ch., ~11).

F(S(W) ‘= ZLconfig.:a~w

[ e éwinding(aw w)

% (_1)#[loops around z]

x sign +1 depending
on the sheet of Q7 ]

Fo is a spinor holomorphic
observable Eivefined on a
double-cover Q9 of Q9.




Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).
e Energy density field: done (Hongler-Smirnov, Hongler ~10).
e Ratios of spin correlations (“+—"/“+"): done (lzyurov-Ch., ~11).

F(S(W) ‘= ZLconfig.:a~w
[ e—éwinding(aww)

% (_1)#[loops around z]

x sign +1 depending
on the sheet of Q7 ]

Then
Eap[0(2°)] _ FO(b)F’(a)
Eilo(2°)]  Fo(b)Fi(a)’




Theorem (Izyurov-Ch., arXiv:1105.5709): Let Q C C be a
bounded multiple connected domain with two marked points
a, b on the outer boundary 7g, and 71, ...,¥m be some of
the inner components of Q. If Q% — Q as § — 0, then

Eaplo (Zf)a(w) o(vm)] 9D (1, )
) — yeeey Im)
M

E [o(1])o(73)...o(7)]

where the limit is a conformal invariant of (€2; a, b) which can be
written explicitly for Q = C4 \ {z1,...,zZm}.

Remark: For multiply connected €2, we consider
monochromatic (constant, but unknown) boundary
conditions on the inner components of 09).
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bounded multiple connected domain with two marked points
a, b on the outer boundary 7g, and 71, ...,¥m be some of
the inner components of Q. If Q% — Q as § — 0, then

Eaplo (Zf)a(w) o(vm)] 9D (1, )
) — yeeey Im)
M

E [o(1])o(73)...o(7)]

where the limit is a conformal invariant of (€2; a, b) which can be
written explicitly for Q = C4 \ {z1,...,zZm}.

Corollary: For 2n + 2 boundary points the following is fulfilled:

Ey.a, [003) - a(3)] PG IS0 (1. vm) 1k
Epfo(1])- . o(vm)] Pf[(a Jocjckeznis

where ($t = (§t are conformal invariants of (Q; a, b) independent of

single-point inner components. In particular, (C+\{Zl’ nam} = |b—a|.



Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).

e Energy density field: done (Hongler-Smirnov, Hongler ~10).

e Ratios of spin correlations (“+—"/“+"): done (lzyurov-Ch., ~11).

e Spin correlations with “+" boundary conditions: done
(Hongler-lzyurov-Ch., arXiv:1202.2838).
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(Hongler-lzyurov-Ch., arXiv:1202.2838).

Theorem: Let Qs be discretizations of a simply connected domain
Q by the refining square grids. Then, for any k,

kel
o(6)" 2 .Egé [020a ---0a] P (Cap0ay -+ Ta) gy s

where the functions (04,04, ...04,)¢ have the covariance

1
5 (TpagTpa - - - J¢ak>;rﬂ'

k
(020021 - -2 )h = [Tj=ol¢ (3))

under conformal mappings ¢ : Q — ¢£0.
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Conformal invariance (in the scaling limit):

e Basic fermionic observables: done (Smirnov-Ch., ~09).

e Energy density field: done (Hongler-Smirnov, Hongler ~10).

e Ratios of spin correlations (“+—"/“+"): done (lzyurov-Ch., ~11).

e Spin correlations with “+" boundary conditions: done
(Hongler-lzyurov-Ch., arXiv:1202.2838).

Theorem: Let Qs be discretizations of a simply connected domain
Q by the refining square grids. Then, for any k,

kel
o(6)" 2 .Egé [020a ---0a] P (Cap0ay -+ Ta) gy s

where the normalizing factors o(d) are given by the two-point
full-plane correlations: o(9) := Ec,[o0;01,].

Remark: It is known (T.T.Wu, ~73) that o(d) ~ C - 54 as 6 —0
for some (lattice-dependent) constant C.



Explicit formulae for (02,04, ...04,)4:

Predicted by CFT methods [Cardy, ~84].

FNT

2 1 1
(oa)¢, = ——— = 25-(rad§"(a)) e
7 (2Im a)b ?
+ V €3b+£;b1 b—a %
<Uaab>(c+ = 1 1 §ab = —
(2Im a)s(21m b)3 b—-3

(02)g (ob)4

(1 — exp[—2dR"(a, b)])1/4

[ <U;,,JbUC)E+ = ...(explicit)... ,etc ...]



Explicit formulae for (c,,0,, ... Uak>$:

For k > 2, we define (04, ...04,)¢ :=exp| [L(ao, ..., ak)], where

La(ag,...,ak) = ijzo Re[Aa(aj; a0, .., &j, ..., ak)daj ],

coefficients Aq(a; a1, ..., ax) = (ﬁ - imila) log(0a0a; - .. 0a,) %

are given explicitly (see below) and the primitive is chosen so that

(0a0ay .. Oa) g ~ (0a) (0 .. 02 ) as a— ON.



Explicit formulae for (c,,0,, ... Uak>$:

For k > 2, we define (04, ...04,)¢ :=exp| [L(ao, ..., ak)], where

La(ag,...,ak) = ijzo Re[Aa(aj; a0, .., &j, ..., ak)daj ],

coefficients Aq(a; a1, ..., ax) = (ﬁ - ial‘?na) log(0a0a; - .. 0a,) %

are given explicitly (see below) and the primitive is chosen so that

(0a0ay .. Oa) g ~ (0a) (0 .. 02 ) as a— ON.

Remark: (i) Aq(a; a1, ..., ax) can be found as a solution to some
k x k linear system with explicit coefficients;

(ii) both existence of the primitive [ Lq(ao,- .., ak) and consistent
multiplicative normalizations for different k resemble properties of
the lattice spin correlations and are proven along the way without
the complete analysis of logarithmic derivatives Aq.
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Explicit formulae for (c,,0,, ... Uak>$:

For k > 2, we define (04, ...04,)¢ :=exp| [L(ao, ..., ak)], where

La(ag,...,ak) = ijzo Re[Aa(aj; a0, .., &j, ..., ak)daj ],

coefficients Aq(a; a1, ..., ax) = (ﬁ - ial‘?na) log(0a0a; - .. 0a,) %

are given explicitly (see below) and the primitive is chosen so that

(0a0ay .. Oa) g ~ (0a) (0 .. 02 ) as a— ON.

CFT prediction: [k > 2: Burkhardt, Guim, ~93]

k l
<O’ao Uak H 1 |: k+1 Z H gasam “S“m:|

m—=0 (2Im a,,)® fig=t1s<m

Remark: Formulae agree (i) for small k; (ii) if all ag,...,ax € iRy.
Open question: to check in full generality.



Two parts of the proof:

Notation:

We work on the
square grid rotated
by 45° of diagonal
mesh  sizes  2)
(thus, the distance
between  adjacent
spins is ﬁé) and
define s-holomorphic
observables at both
‘midedges” Vg, and
T T, LT, (four types of)
“corners” Vg = Véé U Vgi)a U Vf/\la U Vf’\zé, so that the value at the
corner is a common projection of the values at nearby midedges.




Two parts of the proof:
I. Convergence of logarithmic derivatives:

Theorem 1:
1 (ES [0a4250a ...0
= Q5+[ a+26Ca; ak] -1 .y Re AQ(a;al,...,ak),
20 Eg, [0202, .. 0] 50
1 (Ed [04242i50a ...0
- Q‘:L[ A 2] -1 — —1Im Ag(a; a1,...,ak).
20 Eg, [0202, .. 0a,] 50



Two parts of the proof:
I. Convergence of logarithmic derivatives:

Theorem 1:
1 (ES [0a4250a ...0
= Q:—[ a+26Ca; ak] -1 .y Re AQ(a;al,...,ak),
20 Eg, [0202, .. 0] 50
1 (Ed [04242i50a ...0
- Q‘:L[ A 2] -1 — —1Im Ag(a; a1,...,ak).
20 Eg, [0202, .. 0a,] 50
Corollary:

Eg(; (0202, 0] ~ 0k1(6,5) - (0208, ... Ta) )

for some normalizing factors px41(, Q5) that might depend on Q
and the number of points a, a1, ..., ax but not on their positions.



Two parts of the proof:
Il. Matching the normalizations ox1(0,Qs):
Theorem 2:

E%;e (02450 b+]

: = _ 1 qhyp
By [0a05) -0 Ba(a; b) = exp[—3dg(a, b)]

(in particular, we also prove convergence of two-point correlations
with free boundary conditions).
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(where o(6) := Ec; [0001]).



Two parts of the proof:
Il. Matching the normalizations ox1(0,Qs):
Theorem 2:

Eg? (02450 b+]

: = _ 1 qhyp
By [0a05) -0 Ba(a; b) = exp[~3d3"(a, b)]

(in particular, we also prove convergence of two-point correlations
with free boundary conditions).

E;‘z_ [020p]
1= lIJT;]a (gl_rpo Ec, [020b) 02(9,25) ~ o(9)

(where o(6) := Ec;, [0001]). Further, asymptotic decorrelation as
one of the points a, a1, ..., ax approaches the boundary 02 gives

k+1

0k+1(6,Q2s) ~ 01(0,5)0k(0,25) = 0k+1(0,K5) ~ 0(d) 2 .



Main tool: observable branching at the source a € 2.

1 d
F@) =z L Y G (02),
Q; [0ala; - Oay 1eCay(23.2)

Bason, oy (7, 2) 1= € 2RO (1) #oPsOPO) . gheet (p (7) , 2)

e wind (p (7)) is the winding of
the path p(y) :a+ 3 ~ z

e #loops — those containing an
odd number of a,..., a inside;
e sheet (p(7),z) = +1, if p(7)
defines z, and —1 otherwise.

/ \l A




Main tool: observable branching at the source a € 2.

1 d
F@) =z L Y G (02),
Q; [0ala; - Oay 1eCay(23.2)

Daan,....a a(y,z)=e —fwind(p()) (- 1)#100PS("/\P(’Y)),Sheet (p(),2).

e wind (p (7)) is the winding of
the path p(y) :a+ 3 ~ z

e #loops — those containing an
odd number of a,..., a inside;

e sheet (p (), 2) = +1, if p(7)
defines z, and —1 otherwise.

/ \l A

Remark: Z [03031' ‘Uak] -
E X#edges(w) (_1)#loops(w).

w6095 crit




Main tool: observable branching at the source a € 2.

1 d
F(Z) = z+ [ ] Z Xi“éii ge=(1) ¢a;a17~-~,ak (’y,z),
Q5 172021 -+ Tay v€Cq;s(a+5.2)

Gaion (v,z) = —wind(p(7)) (- 1)#100PS("/\P(’Y)),Sheet (p(),2).

Proposition 1: e wind (p (7)) is the winding of
Egé [0at25...0a] thepath p(7):a+ 3~ z

e #loops — those containing an
odd number of a,..., ax inside;
e sheet (p(7),z) = +1, if p(y)
defines z, and —1 otherwise.

F(at+%®) =

E—iﬂ_s [0a...04.]

Remark: 2} 0200, . 0] =
Z #cdges(w) (_1)#100ps(w).

UJECQ(S crit



Main tool: observable branching at the source a € 2.

1 d
F@) =z L Y G (02),
Q; [0ala; - Oay 1eCay(23.2)

Gaion (v,z) = —wind(p(7)) (- 1)#100PS("/\P(’Y)),Sheet (p(),2).

Proposition 1: e wind (p (7)) is the winding of
Egé [0at25...0a] thepath p(7):a+ 3~ z

e #loops — those containing an
odd number of a,..., ax inside;
Proposition 2: if k = 1, then, ¢ sheet (p(v),z) = +1, if p(7)
due to Kramers-Wannier duality, defines z, and —1 otherwise.

free
EQE [7a+50b+4] Remark: 2} oa0s .. 0a] =
Eg, [0204] D fedies(s) (—1)#loops(e),

UJECQ(S crit

F(at+%®) =

E—iﬂ_s [0a...04.]

F(b+%) =



Main tool: observable branching at the source a € 2.

1 d
F@) =z L Y G (02),
Q; [0ala; - Oay 1eCay(23.2)

Bason, oy (7, 2) 1= € 2RO (1) #oPsOPO) . gheet (p (7) , 2)

Proposition 1: e convergence results for
Egé [0at25...04]  the s-hol observable (discrete

F a+ﬁ — . . 2 .
( 2 ) Egé [0...00] !ntegratlon of F<, technical
issues near a, ..., ax)
PI’OpOSition 2: |f k — 1, then, o |oca| analysls near
due to Kramers-Wannier duality, a4, ... a, (technical issues,
(o) — Eg?e [02+50b+6] inde‘;‘)endent constructio? of
(b+5) = the “full-plane observable”)

]Egé [020b]
— Theorems 1,2



Definition and conformal covariance of Aq(a; a1, ..., ax):

Let f = fiq.a.a,.....a,] be the (unique) holomorphic spinor in €,
branching around each of a, a1, ..., ax and satisfying the following:

lim,avz—a-f(z) =1, lim,, \/z—a;-f(2) € iR;
and  Im[f(2)\/Vout(2)] =0 for z € 9Q.



Definition and conformal covariance of Aq(a; a1, ..., ax):

Let f = fiq.a.a,.....a,] be the (unique) holomorphic spinor in €,
branching around each of a, a1, ..., ax and satisfying the following:

lim,avz—a-f(z) =1, lim,, \/z—a;-f(2) € iR;
and  Im[f(2)\/Vout(2)] =0 for z € 9Q.

Then, we define Aq expanding f near a:

1

flo,aan,...a(2) = NET +2Aq(a;a1,---,ak)Vz—a+...




Definition and conformal covariance of Aq(a; a1, ..., ax):

Let f = fiq.a.a,.....a,] be the (unique) holomorphic spinor in €,
branching around each of a, a1, ..., ax and satisfying the following:

lim,avz—a-f(z) =1, lim,, \/z—a;-f(2) € iR;
and  Im[f(2)\/Vout(2)] =0 for z € 9Q.

Then, we define Aq expanding f near a:

1
f[Q,a;al ..... ak](z) = \/2—73

Conformal covariance: If ¢ : Q — ¢Q is conformal, then
f[Q,a;al,‘..,ak](z) = (¢,(Z))1/2 : ﬁ¢Q,¢a;¢al,...,¢ak](¢z) and

Aqa(aar,. . ak) = ¢'(a) - Asa(da; dar, .., pax) + éZ’((j))

+2Aq(a;a1,---,ak)Vz—a+...




Definition and conformal covariance of Aq(a; a1, ..., ax):

Conformal covariance: If ¢ : Q — ¢ is conformal, then

1¢"(a)
8 ¢/(a)

Remark: This covariance property of logarithmic derivatives

Aq(a;ar,...,ak) = ¢'(a) - Aga(oa; dar, . . ., pak) +

./élQ(a;al,...,ak):(m‘gea imma)Iog(az,a,—,,1 Ta)g

directly leads to conformal covariance of spin-spin correlations:

k 1
(02002, - - Uak>$ = Hj:o’(p/ (aj) & - <U¢aoa¢a1 T U¢ak><—;§2'




Definition and conformal covariance of Aq(a; a1, ..., ax):

Conformal covariance: If ¢ : Q — ¢ is conformal, then

Aq(a;a1,...,ax) = ¢'(a) - Aga(da; dar, . . ., dax) + 1¢"(a)

8 ¢/(a)

Remark: This covariance property of logarithmic derivatives

AQ(a;al,...,ak):(aP‘gea imma)log(aaa,-,,1 Ta)g

directly leads to conformal covariance of spin-spin correlations

k
(Uaoo'al cee Uak>$ = Hj:O’(p/ (aj)

1
5 (04a0T0ar -+ Tpar) yr-

Addendum: The method allows one to treat multiply connected
domains and mixed correlations (energies — spins etc) as well

(without PDE analysis usual for CFT methods) — [work in progress].



Definition and conformal covariance of Aq(a; a1, ..., ax):

Conformal covariance: If ¢ : Q — ¢ is conformal, then

Aqa(aiar,. ., ak) = ¢'(a) - Asa(da; dar, .., pax) + éZ’((j))

Remark: This covariance property of logarithmic derivatives

./élQ(a;al,...,ak):(m‘gea iahna)log(aaa,-,,1 Ta)g

directly leads to conformal covariance of spin-spin correlations:

1
5 (04a0T0ar -+ Tpar) yr-

k
(Uaoo'al cee Uak>$ = Hj:O’(p/ (aj)

THANK YOU!



