Conformal blocks in 2d CFT, the Calogero-Sutherland model and the AGT conjecture

D. Serban Institut de Physique Théorique, Saclay

with B. Estienne, V. Pasquier and R. Santachiara

arXiv:1110.1101

MSRI, March 30th, 2012

Fractional Quantum Hall Effect (anyons) with non-abelian statistics $g \leftrightarrow -g$ AGT conjecture Nekrasov's partition function ~ Liouville conformal blocks

Integrable structure of the Calogero-Sutherland model

$$\mathcal{O}^{g}(z) = \frac{\partial^{2}}{\partial z^{2}} - g\left(\sum_{j=1}^{N} \frac{\Delta_{i}}{(z-z_{j})^{2}} + \frac{1}{z-z_{j}} \frac{\partial}{\partial z_{j}}\right)$$

Friday, March 30, 12

AGT conjecture

Link between a supersymetric 4d theory and a 2d CFT (via an integrable model)

n-point correlation function of Liouville theory Nekrasov's instanton partition function of a gauge theory with gauge group $su(2)_1 \otimes ... \otimes su(2)_{n-3}$

 $Z^{u(2)} = Z^{u(1)} Z^{su(2)}$

$$\langle V_{\Delta_{-1}}(\infty) \ V_{\Delta_0}(1) \ V_{\Delta_1}(q_1) \dots V_{\Delta_{n-3}}(q_1 \dots q_{n-3}) \ V_{\Delta_{n-2}}(0) \rangle = c \prod_i f(\Delta_i) \int \prod_i a_i^2 da_i \ |Z(q|\Delta, \widetilde{\Delta})|^2$$

[Nekrasov, 02]

$$\alpha_i = Q/2 + a_i$$

$$Q = b + \frac{1}{b}$$

$$\Delta_i = m_i(Q - m_i), \quad \widetilde{\Delta}_i = \alpha_i(Q - \alpha_i)$$

AGT dictionary:

Gauge theory	Liouville theory
	Liouville parameters
Deformation parameters ϵ_1, ϵ_2	$\epsilon_1:\epsilon_2=b:1/b$
	$c = 1 + 6Q^2, Q = b + 1/b$
four free hypermultiplets	a three-punctured sphere
Mass parameter m	Insertion of
associated to an $SU(2)$ flavor	a Liouville exponential $e^{2m\phi}$
one $SU(2)$ gauge group	a thin neck (or channel)
with UV coupling τ	with sewing parameter $q = \exp(2\pi i \tau)$
Vacuum expectation value a	Primary $e^{2\alpha\phi}$ for the channel,
of an $SU(2)$ gauge group	$\alpha = Q/2 + a$
Instanton part of Z	Conformal blocks
One-loop part of Z	Product of DOZZ factors
Integral of $ Z_{\text{full}}^2 $	Liouville correlator

 $\langle V_{\Delta_{-1}}(\infty) \ V_{\Delta_0}(1) \ V_{\Delta_1}(q_1) \dots V_{\Delta_{n-3}}(q_1 \dots q_{n-3}) \ V_{\Delta_{n-2}}(0) \rangle = c \prod_i f(\Delta_i) \int \prod_i a_i^2 da_i \ |Z(q|\Delta, \widetilde{\Delta})|^2$

CFT side: computing the conformal blocks

$$\langle V_{\Delta_{-1}}(\infty) \ V_{\Delta_0}(1) \ V_{\Delta_1}(q_1) \dots V_{\Delta_{n-3}}(q_1 \dots q_{n-3}) \ V_{\Delta_{n-2}}(0) \rangle = c \prod_i f(\Delta_i) \int \prod_i a_i^2 da_i \ |Z(q|\Delta, \widetilde{\Delta})|^2$$

[Belavin, Polyakov, Zamolodchikov, 84]

- insert complete set of states $\sum_{\mu_i} |\mu_i\rangle\langle\mu_i|$ in the intermediate channels

$$|\mu_i\rangle \sim L_{-n_1} \dots L_{-n_k} |\widetilde{\Delta}_i\rangle$$

- compute the matrix elements elements

 $\frac{\langle \nu_i | V_{\Delta_{i-1}}(1) | \mu_{i+1} \rangle}{\langle \nu_i | \mu_{i+1} \rangle}$

- compare with the gauge theory result [Nekrasov, 02]
- (physicist's) proof of the AGT conjecture [Alba, Fateev, Litvinov, Tarnoplosky, 10]

Friday, March 30, 12

Proof of AGT in mathematical literature:

general proof : [Maulik, Okounkov, unpublished]

u(1) case : [Carlsson, Okounkov, 08]

W_k case : [Schiffmann, Vasserot, 12]

also:

q-deformed analog (Ding-Iohara algebra) :

[Awata, Feigin, Hoshino, Kanai, Shiraishi, Yanagida, 11]

Overview

- Review of the Calogero-Sutherland model
- CS model and the conformal blocks of Virasoro theories
- Bosonisation and CS integrals of motion
- W_k symmetry

$$z_j = e^{2i\pi x_j/L}$$

 $\alpha^{-1} = g \quad \text{or} \quad 1 - g$

 λ_i

2d CFT and the Fractional Quantum Hall Effect

holomorphic correlators \iff wave functions for the FQHE

free boson (c=1): $\langle \phi(z)\phi(w)\rangle = -\ln(z-w)$

$$J(z) = i\partial_z \varphi(z) = \sum_{n \in \mathbb{Z}} \frac{a_n}{z^n} \qquad [a_n, a_m] = n\delta_{n+m,0}$$

primary fields: vertex operators $V_{\beta} =: e^{i\beta\phi(z)}:$

"electron" operator:

$$V_e(z) =: e^{i\sqrt{m}\phi(z)}:$$
 "quasi-hole" operator:
 $V_q(w) =: e^{i/\sqrt{m}\phi(w)}:$

$$\langle V_e(z_1) \dots V_e(z_N) V_q(w_1) \dots V_q(w_M) \rangle \sim \prod_{i < j} z_{ij}^m \prod_{i < j} w_{ij}^{1/m} \prod_{i,j} (z_i - w_j)$$

2d CFT and the Calogero-Sutherland model

 $\alpha^{-1} = g \quad \text{or} \quad 1 - g$

Apply this property to the state: Marstay, September 13, 2011

$$\langle V_e(z_1) \dots V_e(z_N) V_q(w_1) \dots V_q(w_M) \rangle \sim \prod_{i < j} z_{ij}^m \prod_{i < j} w_{ij}^{1/m} \prod_{i,j} (z_i - w_j)$$

States with non-abelian monodromy and Virasoro theories

Virasoro models with central charge :

$$c = 1 - 6 \frac{(g-1)^2}{g}$$
 Ising: $g = 4/3$

Degenerate field with dimensions :

$$\Delta_{(r|s)} = \frac{1}{4} \left(\frac{r^2 - 1}{g} + (s^2 - 1)g + 2(1 - rs) \right)$$

Two second-level degenerate fields :

$$(L_{-1}^2 - gL_{-2}) \Phi_{(1|2)} = 0, \qquad (L_{-1}^2 - \frac{1}{g}L_{-2}) \Phi_{(2|1)} = 0$$

When inserted in correlation function, the null-vector conditions translate into differential equations:

$$\mathcal{O}^{g}(z)\langle\Phi_{(1|2)}(z)\Phi_{\Delta_{1}}(z_{1})\dots\Phi_{\Delta_{N}}(z_{N})\rangle=0$$

with

$$\mathcal{O}^{g}(z) = \frac{\partial^{2}}{\partial z^{2}} - g\left(\sum_{j=1}^{N} \frac{\Delta_{i}}{(z-z_{j})^{2}} + \frac{1}{z-z_{j}} \frac{\partial}{\partial z_{j}}\right)$$

States with non-abelian monodromy and Virasoro theories

The correlators of second order degenerate fields

$$\langle \Phi_{(2|1)}(w_1) \cdots \Phi_{(2|1)}(w_M) \rangle^a$$
 and $\langle \Phi_{(1|2)}(z_1) \cdots \Phi_{(1|2)}(z_N) \rangle^b$

are groundsates of the CS model with non-abelian monodromy [Cardy, 04]

They can be represented as Coulomb integrals [Dotsenko, Fateev, 84]

$$\langle \prod_{i}^{N} \Phi_{\alpha_{i}}(z_{i}) \rangle \propto \prod_{i}^{n} \prod_{j}^{m} \oint_{C_{i}} dx \oint_{S_{j}} dy \quad \langle \prod_{i} e^{i\alpha_{i}\phi(z_{i})} \prod_{j}^{n} V_{+}(x_{j}) \prod_{j}^{m} V_{-}(y_{j}) \rangle$$

$$V_{+}(x_{j}) \qquad V_{-}(y_{j}) \qquad \begin{array}{c} \text{screening operators} \\ \text{with charges} \end{array} \qquad \alpha_{+} = \sqrt{\frac{2}{g}}, \quad \alpha_{-} = -\sqrt{2g},$$

$$2\alpha_{0} = \alpha_{+} + \alpha_{-}$$

neutrality condition: $\sum_{i} \alpha_{i} + n\alpha_{+} + m\alpha_{-} = 2\alpha_{0}$

$$h = \frac{3g}{4} - \frac{1}{2}$$
$$\widetilde{h} = \frac{3}{4g} - \frac{1}{2}$$

Calogero-Sutherland

$$\mathcal{F}^{a,b}_{M,N}(w;z) = \sum_{\lambda} P^{\widetilde{\alpha},a}_{\lambda'}(w) P^{\alpha,b}_{\lambda}(z)$$

v, September 15, 2011 February 6, 12 λ

basis for the Hilbert space:

 $a_{-m_1} \dots a_{m_l} L_{-n_1} \dots L_{-n_k} |q\rangle$

c =

 $I_n^{(\pm)}(g) \propto I_n^{(\mp)}(1/g)$

9çr<u>11</u>25, 2011

• related to the Benjamin-Ono hierarchy, e.g. [Abanov, Bettelheim, Wiegmann, 09]

[Schiffmann, Vasserot, 12]

$$\langle \Psi(z_1) \dots \Psi(z_N) \rangle = \Pr\left(\frac{1}{z_{ij}}\right) = \prod_{i < j} z_{ij}^{-1} J_{\lambda_0}^{-3}(z)$$

$$H = \sum_{i \neq j \neq k} \delta^{(2)}(x_i - x_j) \delta^{(2)}(x_j - x_k)$$

$$\langle \Phi_{12}(z_1) \dots \Phi_{12}(z_N) \rangle_a \prod_{i < j} z_{ij}^{2h}$$

$$c = 1 - 12\alpha_0^2$$

$$\lambda_1 \ge \dots \ge \lambda_N \ge 0$$

$$N \quad M$$

$$(42) \quad MR_gs$$

 $\left[\mathcal{H}^{1/g} + g \,\mathcal{H}^g + C(N, M)\right] \prod_{i=1} \prod_{i=1} (1 + z_i w_j) = 0$ $\lambda_i - \lambda_{i+2} \ge 2$

 λ

 λ_i

 $|n^{o}, n^{e}; q\rangle$ is the basis used by AFLT to compute the matrix elements $(c; g) + \mathcal{I}_{3}^{+}(\tilde{c}; g) + and prove the AGT_{0}(conjecture)) + 2(1 - g) \sum_{m>0} mc_{-m}\tilde{c}_{m}$.

Friday, March 30, 12

 $c \dots \sim n_n = \sum r_n^n$

[Fateev, Zamolodchikov, 85] [Fateev, Lukyanov, 87]

$$c_m^j$$

$$I_3^+(g) = \sum_{j=1}^k \mathcal{I}^{\pm}(c^j;g) + 2(1-g) \sum_{j < l} \sum_{m \ge 1} m : c_{-m}^j c_m^l : + \dots$$

Conclusions and remarks

- The states of the Vir x H CFT, or WA_{k-1} x H can be characterized in terms of eigenstates of the CS integrals of motion
- The CS integrable structure lies behind the AGT relation
- Extension to a large number of cases (e.g. coset and superconformal theories [Belavin, Bershtein,

Feigin, Litvinov, Tarnopolsky, 11]; parafermionic theories [Alfimov, Tarnopolsky, 11])

Open problems

- Theory of non-polynomial CS eigenfunctions?
- How to systematically generate the integrals of motion (transfer matrix, Q operators) in CFT?
- Relation with the integrable structure uncovered by [Bazhanov, Lukyanov, Zamolodchikov, 94-98]