- Speaker:Alejandro Ramirez
- Title: Criteria for ballistic behavior of random walks in random environment
- Note taker:Xiaoqin Guo
- 0. *•* Definition and overview
	- *•* Renormalization methods: weaken ballisticity conditions
	- *•* Atypical quenched exit estimates (more powerful renormalization methods)
- 1. Notation:

 $U = \{e \in \mathbb{Z}^d : |e| = 1\}$ is the set of unit vectors. $\mathcal{P} = \{(p(e))_{e \in U} : p(e) \geq 0, \sum p(e) = 1\}$: jump probabilities $\Omega = \mathcal{P}^{\mathbb{Z}^d}$: the environment space. $\omega = {\omega(x \in \mathcal{P} : x \in \mathbb{Z}^d} \in \Omega$: a typical environment. X_n : random walks on lattice \mathbb{Z}^d . *P*_{*x*, ω}: transition probability, $P_{x,\omega}(X_{n+1} = x + e|X_n = x) = \omega(x, e)$. μ : the law of the environment. $P_x := \int P_{x,\omega} d\mu$ is the annealed law. Assume: 1) $\{\omega(x) : x \in \mathbb{Z}^d\}$ is iid 2) uniform ellipticity, ie, $\omega(x) \geq \kappa$ for positive constant κ , μ -a.s.

2. Transience and ballisticity: for $\ell \in S^{d-1}$, we say the RWRE is *transient* in the direction ℓ if

$$
\lim_{n \to \infty} X_n \cdot \ell = \infty \quad P_0
$$
-almost surely,

and *ballistic* in the direction ℓ if

$$
\lim_{n \to \infty} \frac{X_n \cdot \ell}{n} > 0 \quad P_0\text{-almost surely.}
$$

3. Open problem: Is it true that for $d \geq 2$ and μ iid and uniformly elliptic,

transience in $\ell \implies$ ballisticity in ℓ ?

Remark: When $d = 1$, the conjecture is not true. Explain:

1) For $d = 1$, we say that a box of length $c \log n$ is "bad" if

$$
P_{x,\omega}
$$
(exit time from the box > n) \geq 0.5.

For $s < 1, \epsilon > 0$, let

$$
G_n = \{ \text{#bad boxes in}[0, n^s] \ge n^{\epsilon} \}.
$$

It turns out that (if we choose μ carefully) $\mu(G_n) \to 1$ as $n \to 1$. Hence with high probability, the time the RW exits $[0, n^s]$ is more than $n \Longrightarrow$ no ballisticity!

2) For $d \geq 2$, the cost $e^{-c(\log n)^d}$ of a trap (ie, a bad box) of radius *c* log *n* is not big enough.

4.

Transience in
$$
\ell \Longrightarrow \lim_{L \to \infty} P_0(T_{-L} < T_L) = 0.
$$

Sznitman's conditions quantify how fast the limit goes to 0.

Figure 1: *T−^L* and *T^L* are exit times from the right and left sides of the slab.

Definitions:

• $(T)_{\gamma}|_{\ell}$: We say that condition $(T)_{\gamma}$ with respect to ℓ is satisfied if for large *L*,

$$
P_0(T_{-L}^{\ell'} < T_L^{\ell'}) \le \exp(-cL^\gamma), \quad \gamma \in (0,1)
$$

for all ℓ' in a neighborhood of ℓ .

- $(T) := (T)_1.$
- $(T') := (T)_{\gamma}$ is satisfied for all $\gamma \in (0,1)$.

It is conjectured that for $d \geq 2$,

 $(T) \Leftrightarrow (T') \Leftrightarrow (T)_{\gamma} \Leftrightarrow$ transience \Leftrightarrow ballisticity.

History:

- Sznitman(2002): $(T') \Rightarrow$ ballisticity+LLN+annealed CLT
- Sznitman(2002): For $\gamma \in (0.5, 1), (T)_{\gamma} \Leftrightarrow (T')$.
- Drewitz-R.(2012): $d \ge 4, \gamma \in (0,1)$, then $(T)_{\gamma} \Rightarrow (T')$.
- 5. Renormalization.

• Effective criterion (EC): Denote

$$
\rho_{L,\tilde{L}} = \frac{P_{0,\omega}(\text{does not exit from }\partial_+B)}{P_{0,\omega}(\text{exit }B \text{ from }\partial_+B)}.
$$

We say that the EC with respect to ℓ holds if

$$
\inf_{a \in (0,1], L, \tilde{L}} L^{d-1} \tilde{L}^{3(d-1)+1} E_{\mu} [\rho^a_{L, \tilde{L}}] \le 1.
$$
 (EC)

Sznitman (2002) : EC \Leftrightarrow (T') . We want to show: $(T)_{\gamma} \Rightarrow EC$. Strategy:

• Assuming $(T)_{\gamma}$, to get (EC), write

$$
E_{\mu}[\rho_{L,\tilde{L}}^a] = A_0 + \sum_{j=1}^n A_j,
$$

where

$$
A_0 = E_{\mu}[\rho_{L,\tilde{L}}^a; P_{0,\omega}(\text{exit from }\partial B_+) \ge e^{-cL^{\gamma}}],
$$

\n
$$
A_j = E_{\mu}[\rho_{L,\tilde{L}}^a; e^{-c_j L^{\beta_j}} \le P_{0,\omega}(\text{exit from }\partial B_+) \le e^{-c_{j-1}L^{\beta_{j-1}}}] \text{ for } 1 \le j \le n,
$$

and $\gamma = \beta_0 < \beta_1 < \ldots < \beta_n$ is an increasing sequence with β_n > 1*.* (Note that $P_{0,\omega}$ (exit from ∂B_+) is never smaller than *e [−]cL* due to uniform ellipticity.)

• Take

 $a = L^{-\alpha}, \quad 0 < \alpha < \gamma.$

Suppose we know that for a square (ie, $L = L$) box *B* and $\beta \in (0, 1),$

$$
\mu[P_{0,\omega}(\text{exit from }\partial B_+) \le \exp(-L^{\beta})] \le \exp(-L^{f(\beta)})
$$

for some nice function $f(\beta)$, then Jensen's inequality and $(T)_{\gamma}$ yield

$$
A_0 \le e^{c_1 L^{\gamma - \alpha}} e^{-c L^{\gamma - \alpha}},
$$

\n
$$
A_j \le e^{c_j L^{\beta_j - \alpha}} e^{-L^{f(\beta_{j-1})}}, \quad 1 \le j \le n.
$$

We need $\alpha < \gamma$, $\beta_j < f(\beta_{j-1}) + \gamma$ for $j \leq n$ and $1 < f(\beta_n) + \gamma$.

 $\frac{\gamma}{2} + (d-1)(\beta - \frac{1}{2})$

 $\frac{1}{2}$).

• Example: if we get $f(x) = x$, then $\beta_j \approx j\gamma$.

 $f(\beta) = (\beta - 2) \wedge \frac{\gamma}{2}$

6. Atypical quenched exit estimate **Lemma** For $\beta \in (\frac{1}{2})$ $\frac{1}{2}, 1),$

Figure 2:

Sketch: Divide a box as in the graphs into small blocks (of the same size as the box B in the graph). Call B "bad" if

$$
P_{x,\omega}(\text{exit from }\partial_{+}B) < \frac{1}{2}.
$$

It turns out that μ (a box is bad) $\leq \exp(-L^{(\beta-\frac{1}{2})\wedge \frac{\gamma}{2}})$. Let

$$
G = \{ \text{\#bad boxes} \le L^{(d-1)(\beta - \frac{1}{2})} \}.
$$

Computations show $\mu(G^c) \leq e^{f(\beta)}$. Note that on the event *G*, we can find a "tube" of good boxes that connects the top and the bottom. This, together with uniform ellipticity yields

$$
P_{x,\omega}(\text{exit from }\partial_{+}B) \geq \kappa^{L^{\beta}}(\frac{1}{2})^{L^{\beta}-\frac{1}{2}}(\kappa^{L^{1/2}})^{L^{\beta-1/2}} \geq e^{-cL^{\beta}}.\quad \Box
$$

Corollary. For $\gamma > \frac{1}{3}$, $(T)_{\gamma} \Rightarrow (T')$.

7. Second renormalization method

Assume $(T)_{\gamma L}$, $\gamma(L) = \frac{c}{\ln \ln L}$. Divide the square box into small boxes of side L^{ϵ} (see Fig 3). Call B "good" if

$$
\inf_{x \in \tilde{B}} P_{x,\omega}(\text{exit from }\partial_+ B) \ge 1 - e^{-L^{\epsilon}}.
$$

Let

$$
G = \{ \text{\#bad boxes} \} \le L^{\beta}.
$$

On the event *G*, the probability that the walker exits the box from

Figure 3: \tilde{B} is the middle-third box in *B*.

the front is $\geq e^{L^{\beta+\epsilon}}$. Computations show that

$$
\mu(G^c) \le e^{-L^{\beta}}.
$$

Corollary. For $\gamma(L) = \frac{c}{\ln \ln L}$, $(T)_{\gamma} \Rightarrow (T')$.

8. Criteria $(P)_{M}|_{\ell}$: for directions in a neighborhood of ℓ and L large,

$$
P_0(T_{-L} - T_L) \le \frac{1}{L^M}.\tag{ (P)_{M} }
$$

Theorem(Berger,Drewitz,R.) $(P)_M \Rightarrow (T')$ for some $M = M(d)$. Strategy: show that $(P)_M \Rightarrow (T)_{\gamma(L)}$, where $\gamma(L) = \frac{c}{\ln \ln L}$.