- Monday, April 30, 2012
- Speaker: Alexander Fribergh
- Title: On the monotonicity of the speed of biased random walk on a Galton-Watson tree without leaves
- Note taker: Xiaoqin Guo
- 1. Model

Z : offspring distribution of the G-W tree. Assume *EZ >* 1 (super critical)

 $p_k := P(Z = k)$. (If $p_0 > 0$, the tree has "leaves".) Biased random walk $(X_n^{\beta}), \beta > 0$:

2. Q: transient/recurrent?

 $-$ A: (Lyons 91) $\lim_{n\to\infty} |X_n^{\beta}| = \infty$ if $\beta > 1/E[Z].$ Q:Speed?

-A: (Lyons, Pemantle, Peres 96) $\lim \frac{|X_n^{\beta}|}{n} = v(\beta)$ almost surely. In this talk, we will focus on how $v(\beta)$ depends on β .

Open problem(Lyons-Pemantle-Peres 96):

If $p_0 = 0$, is $v(\beta)$ increasing ?

Remark: Example (Deterministic tree without leaves. *v* is not increasing) : For a binary tree+spikes:

- $\beta = \frac{1}{2} + \epsilon$, then $v \approx 0$;
- $\beta = 1 \epsilon$, $v \approx 0$;
- $\beta = \frac{3}{4}$ $\frac{3}{4}$, $v > 0$.

3. **Theorem**(BenArous, F., Sidoravicius)

Assume $p_0 = 0$. If $\beta > 717$, then $v(\beta)$ is increasing. *Remarks:*

- (BenArous, Hu, Olla, Zeiotuni)When $p_0 = 0$, $\frac{dv}{d\beta}(\frac{1}{EZ}) = D_0 > 0$.
- (Aidekon)Explicit expression for $v(\beta)$.($\Rightarrow v \nearrow$ for $\beta \geq 2$. use environment viewed from the particle.)
- 4. The proof of the Theorem.
	- *Idea does not work*: take two walks X^{β} , $X^{\beta+\epsilon}$ and couple them to stay as long as possible.
	- *• Idea that works*: take a third walk *Y* which is a *β*-biased random walk on \mathbb{Z} such that (i)When X^{β} and $X^{\beta+\epsilon}$ decouple, $X^{\beta+\epsilon}$ goes down and X^{β} goes up; (ii)If *Y* goes from *x* to $x + 1$, then both $X^{\beta+\epsilon}$ and X^{β} go down.

Why introduce Y ?

–They have common regeneration times!

 $\tau_1^{\mathbb{Z}} :=$ the regeneration time of *Y*. (When *β* is large, $\tau_1^{\mathbb{Z}}$ is small.)

$$
v(\beta) = \frac{EX_{\tau_1^2}^{\beta}}{E\tau_1^{\mathbb{Z}}}, \qquad v(\beta + \epsilon) = \frac{EX_{\tau_1^2}^{\beta + \epsilon}}{E\tau_1^{\mathbb{Z}}}.
$$

We only need to compare $EX_{\tau_1^{\mathbb{Z}}}^{\beta}$ and $EX_{\tau_1^{\mathbb{Z}}}^{\beta+\epsilon}$.

Proof:

......

Let $\Delta_n = |X_{n+1}^{\beta+\epsilon}| - |X_{n+1}^{\beta}| - (|X_n^{\beta+\epsilon}| - |X_n^{\beta}|) \in \{-2, 0, 2\}$. If Y goes forward at time *n*, $\Delta_n = 0$. When X^{β} and $X^{\beta+\epsilon}$ decouple, $\Delta_n = 2$. <u>Case 1</u> ("*C*"): X^{β} and $X^{\beta+\epsilon}$ stay coupled till $\tau_1^{\mathbb{Z}}$, the difference of the walks $\Delta = 0$.

Case 2 (" D_1 "): they decouple and *Y* goes back only once before τ_1 , then $\Delta = 2$.

 $\text{Case } k(\text{``}D_k\text{''})$: △ ≥ 2 − 2(*k* − 1).

$$
E[|X_{\tau_1^{\mathbb{Z}}}^{\beta+\epsilon}| - |X_{\tau_1^{\mathbb{Z}}}^{\beta}|] \ge 0P(C) + 2P(D_1) + \sum_{k \ge 2} [2 - 2(k-1)]P(D_k).
$$

Note that

$$
P(D_k) = P(\text{decouple}, Y \text{ goes back } k \text{ times before } \tau_1^{\mathbb{Z}})
$$

$$
\approx P(decouple)[P(Y \text{ back})]^{k-1},
$$

$$
E[|X_{\tau_1^{\mathbb{Z}}}^{\beta+\epsilon}| - |X_{\tau_1^{\mathbb{Z}}}^{\beta}|] \ge 2P(decouple) + P(decouple) \sum_{k \ge 2} [2 - 2(k-1)]\beta^{-(k-1)}
$$

$$
\approx P(decouple)[1 - \Theta(\beta^{-1})] \stackrel{\beta \text{ large}}{>} 0. \quad \Box
$$

- 5. Open problems:
	- Conjecture: monotonicity for $\beta \geq 1$, $\beta \geq \frac{1}{EZ}$?
	- This is a "baby problem" of: for a GW tree with $p_0 > 0$, show:

- *•* Same question for biased random walks on percolation cluster.
- Is there a tree/graph without leaves where $v(\beta)$ is not increasing for $\beta > 1$?

so