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1. Model. Place the lattice inside two metal plates (see graph). Each
edge has an conductance Cxy. Then the effective conductance on the

N

L

lattice ΛN,L is

R−1
N,L = inf

f |∂ΛN,L
=ϕ
QΛN,L

(f) = O(Nd−1/L)
If N=L
= O(Nd−2).

Here for a finite set Λ ⊂ Zd, d ≥ 2,

QΛ(f) =
∑

(x,y)∈B(Λ)

Cxy(f(x)− f(y))2.

B(Λ): edges with one endpoint in Λ.
Cxy = Cyx ∈ (0,∞): conductance.
rxy = 1/Cxy.

2. Homogenization: whenever (Cxy) is stationary ergodic and ECxy <∞,

lim
N→∞

inf
f |∂ΛN

=ϕ
inf QN (f)/Nd−2 = inf

f |∂Λ1
=ϕ

∫
Λ⊂Rd

d∑
i,j=1

Ĉij
∂f

∂xi

∂f

∂xj
dx

almost surely. (Ref: Jikov-Kozlov-Oleinik)

3. Simplest nontrivial problem:

- linear boundary condition: ϕ(x) = t · x.
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- cubic box

Subadditive ergodic theorem=⇒ limN→∞ inff |∂Λ=t·x
QΛN

(f)

Nd exists.(Kunnemann)
Theorem(B.-Salvi-Wolff)
Suppose d ≥ 2, (Cxy)x∼y is iid and elliptic with small ellipticity con-
trast. Then(

inf
f |∂ΛN

=t·x
QΛN

(f)− E inf
f |∂ΛN

=t·x
QΛN

(f)

)
/|ΛN |1/2

=⇒ N (0, σ2t ) as N → ∞.

σ2t ∈ (0,∞) when t 6= 0.
(Related works: Benjamini-Rossignol (Wehr lower bound), Gloria-
Otto)

4. Homogenization again.
Let the operator (“random Laplacian”)

Lf(x) :=
∑
y:y∼x

Cxy[f(y)− f(x)].

Fact: inff |∂Λ=t·xQΛ(f) is achieved at f(x) = t · ΨΛ(x), where ΨΛ(x)
satisfies {

LΨΛ(x) = 0, ∀x ∈ Λ
ΨΛ(x) = x, x ∈ ∂Λ.

We need to find ψ : Ω× Zd → Rd such that:
(1) Lψ(ω, ·) = 0;
(2) {ψ(ω, x+ z)− ψ(ω, x)}z∈Zd is stationary.
(3) ψ(ω, x+ z)− ψ(ω, x) ∈ L2(R) for all z.
(4) ψ(ω, x)− x = o(|x|) as |x| → ∞.
Look for functions of type ψ(ω, x) = x + ∇xφ(ω), where ∇xφ(ω) :=
φ(τxω)− φ(ω).

5. Limiting effective resistance
Idea: replace ΨΛ by ψ inside the Dirichlet energy.
Lemma 1 |QΛ(f + h)−QΛ(f)| ≤ QΛ(h) + 2QΛ(f)

1
2QΛ(h)

1
2 .

Lemma 2. Suppose Lh = 0 in Λ. Then

QΛ(h) =
1

2

∑
x,y∈∂Λ

KΛ(x, y)(h(x)− h(y))2,

where KΛ(·, ·) > 0.

Applying the Lemmas to f(x) = t · ΨΛ(x) and h(x) = t · (ψ(ω, x) −
Ψ(x)), we get (by the ergodic theorem)

lim
N→∞

QΛ(t · ψ(ω, ·))
|ΛN |

= E[

d∑
i=1

ωo,ei(t · ψ(ω, ei)− t · ψ(ω, o))2].

2



6. Proof of the Gaussian fluctuation
Assume that (Cxy) is iid and elliptic.
Suppose we order the edges B(Λ) as: e(1), e(2), . . . , e(n), where n =
|B(Λ)|.
Define Fk := σ(Ce(j)(ω) : j = 1, . . . , k). Then

QΛ(t ·ΨΛ)− E[QΛ(t ·ΨΛ)] =
n∑

k=1

E[QΛ(t · ψΛ)|Fk]− E[QΛ(t · ψΛ)|Fk−1]

:=

n∑
k=1

ZΛ,k,

and VarQΛ(t ·ΨΛ) =
∑n

k=1EZ
2
Λ,k.

For the Gaussian limit, we need to verify the two conditions of Lindeberg-
Feller:

• 1
n

∑n
k=1E[Z2

Λ,k|Fk−1]
in prob.−→ σ2t .

• 1
n

∑n
k=1E[Z2

Λ,k1|ZΛ,k|≥ε
√
n|Fk−1]

in prob.−→ 0 for all ε > 0.

Computation shows:

ZΛ,k = E

[∫
dP (C ′

e(k))

∫
∂QΛ(t · ψΛ)

∂Ce(k)
dC|Fk

]
.

For e(k) = (x, y), ∂QΛ
∂Ce(k)

= |t · [ΨΛ(y)−ΨΛ(x)]|2.

Now we order the edges such that:

(x, i) ≤ (y, j) if either x < y or x = y and i ≤ j,

then

ZΛ,k = E

[∫
dP (C ′

x,x+ek
)

∫ C′
x,x+ek

Cx,x+ek

|t · ψ(τω, ek)|2
∣∣∣∣Fx,k

]
.

We can then show
Zx,k ∈ L2(P )

for any elliptic iid conductances when d ≥ 3 (Gloria-Otto), and d ≥ 2
when the conductances have small contrast (Meyers).
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