Directed polymers and KPZ universality

Timo Seppäläinen

Department of Mathematics University of Wisconsin-Madison

2012

(Incomplete) review of directed polymers in i.i.d. random environments, especially KPZ universality in 1+1 dimensions

(Incomplete) review of directed polymers in i.i.d. random environments, especially KPZ universality in 1+1 dimensions

1. General d + 1 dimensional model

- 1.1. Weak and strong disorder.
- 1.2. Variational formulas, large deviations.

(Incomplete) review of directed polymers in i.i.d. random environments, especially KPZ universality in 1+1 dimensions

1. General d + 1 dimensional model

- 1.1. Weak and strong disorder.
- 1.2. Variational formulas, large deviations.

2. 1+1 dimensions

- 2.1. KPZ universality
- 2.2. The three exactly solvable models.

2.3. Specific results for the log-gamma polymer: stationary process, fluctuation exponents, tropical combinatorics.

simple random walk measure P, expectation E

simple random walk measure P, expectation Espace-time environment $\{\omega(k,x) : k \in \mathbb{N}, x \in \mathbb{Z}^d\}$

simple random walk measure P, expectation Espace-time environment $\{\omega(k, x) : k \in \mathbb{N}, x \in \mathbb{Z}^d\}$ inverse temperature $\beta > 0$

simple random walk measure P, expectation Espace-time environment $\{\omega(k,x) : k \in \mathbb{N}, x \in \mathbb{Z}^d\}$ inverse temperature $\beta > 0$

quenched probability measure on paths

$$Q_n\{x_{\cdot}\} = \frac{1}{Z_n} \exp\left\{\beta \sum_{k=1}^n \omega(k, x_k)\right\} P\{x_{\cdot}\}$$

simple random walk measure P, expectation Espace-time environment $\{\omega(k,x) : k \in \mathbb{N}, x \in \mathbb{Z}^d\}$ inverse temperature $\beta > 0$

quenched probability measure on paths

$$Q_n\{x_{\cdot}\} = \frac{1}{Z_n} \exp\left\{\beta \sum_{k=1}^n \omega(k, x_k)\right\} P\{x_{\cdot}\}$$

partition function

$$D \quad Z_n = E\left[\exp\left\{\beta\sum_{k=1}^n \omega(k, X_k)\right\}\right]$$

simple random walk measure P, expectation Espace-time environment $\{\omega(k,x): k \in \mathbb{N}, x \in \mathbb{Z}^d\}$ inverse temperature $\beta > 0$

quenched probability measure on paths

$$Q_n\{x_{\cdot}\} = \frac{1}{Z_n} \exp\left\{\beta \sum_{k=1}^n \omega(k, x_k)\right\} P\{x_{\cdot}\}$$

partition function $Z_n = E\left[\exp\left\{\beta \sum_{k=1}^n \omega(k, X_k)\right\}\right]$

 \mathbb{P} probability distribution on ω , often $\{\omega(k, x)\}$ i.i.d.

Questions:

Questions:

• Behavior of walk X. under Q_n on large scales: fluctuation exponents, central limit theorems, large deviations

• Quenched measure
$$Q_n\{x_.\} = \frac{1}{Z_n} \exp\left\{\beta \sum_{k=1}^n \omega(k, x_k)\right\} P\{x_.\}$$

• Partition function $Z_n = E\left[\exp\left\{\beta \sum_{k=1}^n \omega(k, X_k)\right\}\right]$

Questions:

- Behavior of walk X. under Q_n on large scales: fluctuation exponents, central limit theorems, large deviations
- Behavior of log Z_n (now also random as a function of ω)

Questions:

- Behavior of walk X. under Q_n on large scales: fluctuation exponents, central limit theorems, large deviations
- Behavior of log Z_n (now also random as a function of ω)
- Dependence on β and d

Model introduced by Huse and Henley 1985.

Model introduced by Huse and Henley 1985.

Early rigorous results: diffusive behavior for $d \ge 3$ and small $\beta > 0$:

1988 Imbrie and Spencer: $n^{-1}E^Q(|x(n)|^2) \to c$ \mathbb{P} -a.s.

1989 Bolthausen: quenched CLT for $n^{-1/2}x(n)$.

1. General d + 1 dimensional model 1.1. Weak and strong disorder

 $\lambda(\beta) = \log \mathbb{E}(e^{\beta \omega(0,0)})$

$$\lambda(\beta) = \log \mathbb{E}(e^{\beta \omega(0,0)}) \qquad \mathbb{E}Z_n = e^{n\lambda(\beta)}$$

$$\lambda(\beta) = \log \mathbb{E}(e^{\beta \omega(0,0)}) \qquad \mathbb{E}Z_n = e^{n\lambda(\beta)}$$

$$W_n = \frac{Z_n}{\mathbb{E}Z_n} = E\left[e^{\beta \sum_{k=1}^n \omega(k, X_k) - n\lambda(\beta)}\right]$$

$$\lambda(\beta) = \log \mathbb{E}(e^{\beta \omega(0,0)}) \qquad \mathbb{E}Z_n = e^{n\lambda(\beta)}$$

$$W_n = \frac{Z_n}{\mathbb{E}Z_n} = E\left[e^{\beta \sum_{k=1}^n \omega(k, X_k) - n\lambda(\beta)}\right]$$

is a martingale with filtration $\mathcal{G}_n = \sigma\{\omega(k, x) : k \leq n, x \in \mathbb{Z}^d\}.$

$$\lambda(\beta) = \log \mathbb{E}(e^{\beta \omega(0,0)}) \qquad \mathbb{E}Z_n = e^{n\lambda(\beta)}$$

$$W_n = \frac{Z_n}{\mathbb{E}Z_n} = E\left[e^{\beta \sum_{k=1}^n \omega(k, X_k) - n\lambda(\beta)}\right]$$

is a martingale with filtration $\mathcal{G}_n = \sigma\{\omega(k, x) : k \leq n, x \in \mathbb{Z}^d\}.$

Martingale convergence theorem: $W_n \rightarrow W_\infty$ w.p.1.

$$\lambda(\beta) = \log \mathbb{E}(e^{\beta \omega(0,0)}) \qquad \mathbb{E}Z_n = e^{n\lambda(\beta)}$$

$$W_n = \frac{Z_n}{\mathbb{E}Z_n} = E\left[e^{\beta \sum_{k=1}^n \omega(k, X_k) - n\lambda(\beta)}\right]$$

is a martingale with filtration $\mathcal{G}_n = \sigma\{\omega(k, x) : k \leq n, x \in \mathbb{Z}^d\}.$

Martingale convergence theorem: $W_n \rightarrow W_\infty$ w.p.1.

Kolmogorov's 0-1 law: $\mathbb{P}(W_{\infty} > 0) = 0$ or 1.

$$W_n = \frac{Z_n}{\mathbb{E}Z_n} \to W_\infty$$

Definition.

 $\begin{cases} \mbox{Weak disorder:} & W_\infty > 0 \\ \mbox{Strong disorder:} & W_\infty = 0. \end{cases}$

$$W_n = \frac{Z_n}{\mathbb{E}Z_n} \to W_\infty$$

 $\{W_n\}$ uniformly integrable $\iff W_\infty > 0$ (weak disorder)

$$W_n = rac{Z_n}{\mathbb{E}Z_n} o W_\infty$$

Definition. $\begin{cases} \text{Weak disorder:} & W_{\infty} > 0\\ \text{Strong disorder:} & W_{\infty} = 0. \end{cases}$

 $\{W_n\}$ uniformly integrable $\iff W_\infty > 0$ (weak disorder)

Theorem. $\exists \beta_c \in [0, \infty]$ such that

 $\beta \in [0, \beta_c) \implies \text{weak disorder}$ $\beta \in (\beta_c, \infty) \implies \text{strong disorder}$

For $d \in \{1,2\}$ $\beta_c = 0$, while for $d \ge 3$ $\beta_c \in (0,\infty]$.

$$p(\beta) = \lim_{n \to \infty} n^{-1} \log W_n = \lim_{n \to \infty} n^{-1} \mathbb{E}(\log W_n).$$

$$p(\beta) = \lim_{n \to \infty} n^{-1} \log W_n = \lim_{n \to \infty} n^{-1} \mathbb{E}(\log W_n).$$

Jensen's inequality: $p(\beta) \leq 0$.

$$p(\beta) = \lim_{n \to \infty} n^{-1} \log W_n = \lim_{n \to \infty} n^{-1} \mathbb{E}(\log W_n).$$

Jensen's inequality: $p(\beta) \leq 0$.

$$\exists \ \beta'_c \text{ such that} \quad \begin{cases} \beta < \beta'_c \implies p(\beta) = 0\\ \beta > \beta'_c \implies p(\beta) < 0. \end{cases}$$

$$p(\beta) = \lim_{n \to \infty} n^{-1} \log W_n = \lim_{n \to \infty} n^{-1} \mathbb{E}(\log W_n).$$

Jensen's inequality: $p(\beta) \leq 0$.

$$\exists \ \beta'_c \text{ such that } \begin{cases} \beta < \beta'_c \implies p(\beta) = 0\\ \beta > \beta'_c \implies p(\beta) < 0. \end{cases}$$

 $\beta > \beta'_c$ very strong disorder.

$$p(\beta) = \lim_{n \to \infty} n^{-1} \log W_n = \lim_{n \to \infty} n^{-1} \mathbb{E}(\log W_n).$$

Jensen's inequality: $p(\beta) \leq 0$.

$$\exists \ \beta_c' \text{ such that} \quad \begin{cases} \beta < \beta_c' \implies p(\beta) = 0 \\ \beta > \beta_c' \implies p(\beta) < 0. \end{cases}$$

 $\beta > \beta'_c$ very strong disorder.

Very strong disorder \subseteq strong disorder.

$$p(\beta) = \lim_{n \to \infty} n^{-1} \log W_n = \lim_{n \to \infty} n^{-1} \mathbb{E}(\log W_n).$$

Jensen's inequality: $p(\beta) \leq 0$.

$$\exists \ \beta_c' \text{ such that} \quad \begin{cases} \beta < \beta_c' \implies p(\beta) = 0\\ \beta > \beta_c' \implies p(\beta) < 0. \end{cases}$$

.

 $\beta > \beta'_c$ very strong disorder.

Very strong disorder \subseteq strong disorder.

Open question: Are these always the same? In $d \in \{1, 2\}$ $\beta_c = \beta'_c = 0$.
Central limit theorem in weak disorder

Central limit theorem in weak disorder

$$X_t^{(n)} = n^{-1/2} X_{\lfloor nt \rfloor}$$

Central limit theorem in weak disorder

$$X_t^{(n)} = n^{-1/2} X_{\lfloor nt \rfloor}$$

 $B_t = \mathsf{BM}$ on \mathbb{R}^d with diffusion matrix $d^{-1}I$

$$X_t^{(n)} = n^{-1/2} X_{\lfloor nt \rfloor}$$

 $B_t = \mathsf{BM}$ on \mathbb{R}^d with diffusion matrix $d^{-1}I$

Theorem. Under $d \ge 3$ and weak disorder,

$$E^{Q^\omega_n}[G(X^{(n)}_{{\scriptscriptstylelacksymbol{\cdot}}})] o {f E}[G(B_{{\scriptscriptstylelacksymbol{\cdot}}})]$$
 in ${\Bbb P}$ -probability.

$$X_t^{(n)} = n^{-1/2} X_{\lfloor nt \rfloor}$$

 $B_t = \mathsf{BM}$ on \mathbb{R}^d with diffusion matrix $d^{-1}I$

Theorem. Under $d \ge 3$ and weak disorder,

$$E^{Q^\omega_n}[G(X^{(n)}_{{\boldsymbol{\cdot}}})] o {f E}[G(B_{{\boldsymbol{\cdot}}})]$$
 in ${\mathbb P}$ -probability.

Proof idea. Construct RWRE Q^{ω} using $W_{\infty} > 0$ as a density. [Comets and Yoshida, 2006]

If $W_{\infty} = 0$ then \mathbb{P} -a.s. for large n

$$-\log W_n \leq C \sum_{k=1}^n Q_{k-1}^{\omega}(X_k = \widetilde{X}_k).$$

If $W_{\infty} = 0$ then \mathbb{P} -a.s. for large n

$$-\log W_n \leq C \sum_{k=1}^n Q_{k-1}^{\omega}(X_k = \widetilde{X}_k).$$

In very strong disorder $W_n \rightarrow 0$ exp. fast, hence

If $W_{\infty} = 0$ then \mathbb{P} -a.s. for large n

$$-\log W_n \leq C \sum_{k=1}^n Q_{k-1}^{\omega}(X_k = \widetilde{X}_k).$$

In very strong disorder $W_n \rightarrow 0$ exp. fast, hence localization:

$$\overline{\lim_{n \to \infty}} \max_{x} Q_n^{\omega}(X_n = x) \ge c > 0$$
 \mathbb{P} -a.s.

If $W_{\infty} = 0$ then \mathbb{P} -a.s. for large n

$$-\log W_n \leq C \sum_{k=1}^n Q_{k-1}^{\omega}(X_k = \widetilde{X}_k).$$

In very strong disorder $W_n \rightarrow 0$ exp. fast, hence localization:

$$\overline{\lim_{n\to\infty}}\max_{x}Q_n^{\omega}(X_n=x)\geq c>0\quad \mathbb{P}\text{-a.s.}$$

Sufficient conditions for very strong disorder:

βλ'(β) − λ(β) > log(2d). True for some distributions if β large enough.

Question: describe \mathbb{P} -a.s. limit $\lim_{n\to\infty} n^{-1} \log Z_n$

Question: describe \mathbb{P} -a.s. limit $\lim_{n \to \infty} n^{-1} \log Z_n$

Generalize: E_0 = expectation under arbitrary background RW X_n on \mathbb{Z}^{ν} .

Question: describe \mathbb{P} -a.s. limit $\lim_{n \to \infty} n^{-1} \log Z_n$

Generalize: E_0 = expectation under arbitrary background RW X_n on \mathbb{Z}^{ν} . \mathcal{R} = set of admissible steps.

Question: describe \mathbb{P} -a.s. limit $\lim_{n \to \infty} n^{-1} \log Z_n$

Generalize: E_0 = expectation under arbitrary background RW X_n on \mathbb{Z}^{ν} . \mathcal{R} = set of admissible steps.

 $n^{-1}\log Z_n = n^{-1}\log E_0[e^{\beta \sum_{k=0}^{n-1}\omega_{X_k}}]$

Question: describe \mathbb{P} -a.s. limit $\lim_{n \to \infty} n^{-1} \log Z_n$

Generalize: E_0 = expectation under arbitrary background RW X_n on \mathbb{Z}^{ν} . \mathcal{R} = set of admissible steps.

$$n^{-1} \log Z_n = n^{-1} \log E_0 \left[e^{\beta \sum_{k=0}^{n-1} \omega_{X_k}} \right]$$
$$= n^{-1} \log E_0 \left[e^{\sum_{k=0}^{n-1} g(T_{X_k} \omega, Z_{k+1,k+\ell})} \right]$$

Question: describe \mathbb{P} -a.s. limit $\lim_{n \to \infty} n^{-1} \log Z_n$

Generalize: E_0 = expectation under arbitrary background RW X_n on \mathbb{Z}^{ν} . \mathcal{R} = set of admissible steps.

$$n^{-1} \log Z_n = n^{-1} \log E_0 \left[e^{\beta \sum_{k=0}^{n-1} \omega_{X_k}} \right]$$
$$= n^{-1} \log E_0 \left[e^{\sum_{k=0}^{n-1} g(T_{X_k} \omega, Z_{k+1,k+\ell})} \right]$$

Introduced shift $(T_x \omega)_y = \omega_{x+y}$, steps $Z_k = X_k - X_{k-1} \in \mathcal{R}$, $Z_{1,\ell} = (Z_1, Z_2, \dots, Z_\ell)$.

Question: describe \mathbb{P} -a.s. limit $\lim_{n \to \infty} n^{-1} \log Z_n$

Generalize: E_0 = expectation under arbitrary background RW X_n on \mathbb{Z}^{ν} . \mathcal{R} = set of admissible steps.

$$n^{-1} \log Z_n = n^{-1} \log E_0 \left[e^{\beta \sum_{k=0}^{n-1} \omega_{X_k}} \right]$$
$$= n^{-1} \log E_0 \left[e^{\sum_{k=0}^{n-1} g(T_{X_k} \omega, Z_{k+1,k+\ell})} \right]$$

Introduced shift $(T_x \omega)_y = \omega_{x+y}$, steps $Z_k = X_k - X_{k-1} \in \mathcal{R}$, $Z_{1,\ell} = (Z_1, Z_2, \dots, Z_\ell)$. $g(\omega, z_{1,\ell})$ is a function on $\Omega_\ell = \Omega \times \mathcal{R}^\ell$.

a random probability measure on Ω_{ℓ} .

a random probability measure on Ω_{ℓ} .

 $n^{-1}\log Z_n = n^{-1}\log E_0[e^{nR_n(g)}]$

a random probability measure on Ω_{ℓ} .

$$n^{-1}\log Z_n = n^{-1}\log E_0\left[e^{nR_n(g)}\right]$$

Task: understand large deviations of $P_0\{R_n \in \cdot\}$ under \mathbb{P} -a.e. fixed ω (quenched).

a random probability measure on Ω_{ℓ} .

$$n^{-1}\log Z_n = n^{-1}\log E_0\left[e^{nR_n(g)}\right]$$

Task: understand large deviations of $P_0\{R_n \in \cdot\}$ under \mathbb{P} -a.e. fixed ω (quenched).

Process: Markov chain $(T_{X_n}\omega, Z_{n+1,n+\ell})$ on Ω_ℓ under a fixed ω .

a random probability measure on Ω_{ℓ} .

$$n^{-1}\log Z_n = n^{-1}\log E_0\left[e^{nR_n(g)}\right]$$

Task: understand large deviations of $P_0\{R_n \in \cdot\}$ under \mathbb{P} -a.e. fixed ω (quenched).

Process: Markov chain $(T_{X_n}\omega, Z_{n+1,n+\ell})$ on Ω_{ℓ} under a fixed ω .

Evolution: pick random step *z* from \mathcal{R} , then execute move $S_z : (\omega, z_{1,\ell}) \mapsto (T_{z_1}\omega, z_{2,\ell}z).$

a random probability measure on Ω_{ℓ} .

$$n^{-1}\log Z_n = n^{-1}\log E_0\left[e^{nR_n(g)}\right]$$

Task: understand large deviations of $P_0\{R_n \in \cdot\}$ under \mathbb{P} -a.e. fixed ω (quenched).

Process: Markov chain $(T_{X_n}\omega, Z_{n+1,n+\ell})$ on Ω_ℓ under a fixed ω .

Evolution: pick random step z from \mathcal{R} , then execute move $S_z : (\omega, z_{1,\ell}) \mapsto (T_{z_1}\omega, z_{2,\ell}z).$

Kernel p on Ω_{ℓ} : $p(\eta, S_z \eta) = |\mathcal{R}|^{-1}$ for $\eta = (\omega, z_{1,\ell})$.

For $\mu \in \mathcal{M}_1(\Omega_\ell)$, *q* Markov kernel on Ω_ℓ , usual relative entropy on Ω_ℓ^2 :

$$H(\mu \times q \,|\, \mu \times p) = \int_{\Omega_{\ell}} \sum_{z \in \mathcal{R}} q(\eta, S_z \eta) \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \,\mu(d\eta).$$

For $\mu \in \mathcal{M}_1(\Omega_\ell)$, *q* Markov kernel on Ω_ℓ , usual relative entropy on Ω_ℓ^2 :

$$H(\mu \times q \,|\, \mu \times p) \;=\; \int_{\mathbf{\Omega}_{\ell}} \; \sum_{z \in \mathcal{R}} \; q(\eta, S_z \eta) \; \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \; \mu(d\eta).$$

The effect of \mathbb{P} in the background?

For $\mu \in \mathcal{M}_1(\Omega_\ell)$, q Markov kernel on Ω_ℓ , usual relative entropy on Ω_ℓ^2 :

$$H(\mu \times q \,|\, \mu \times p) \;=\; \int_{\mathbf{\Omega}_\ell} \; \sum_{z \in \mathcal{R}} \; q(\eta, S_z \eta) \; \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \; \mu(d\eta).$$

The effect of \mathbb{P} in the background?

Let $\mu_0 = \Omega$ -marginal of $\mu \in \mathcal{M}_1(\Omega_\ell)$.

For $\mu \in \mathcal{M}_1(\Omega_\ell)$, q Markov kernel on Ω_ℓ , usual relative entropy on Ω_ℓ^2 :

$$H(\mu \times q \,|\, \mu \times p) = \int_{\Omega_{\ell}} \sum_{z \in \mathcal{R}} q(\eta, S_z \eta) \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \,\mu(d\eta).$$

The effect of \mathbb{P} in the background?

Let $\mu_0 = \Omega$ -marginal of $\mu \in \mathcal{M}_1(\mathbf{\Omega}_\ell)$. Define

$$H_{\mathbb{P}}(\mu) = \begin{cases} \inf \left\{ H(\mu \times q \,|\, \mu \times p) : \mu q = \mu \right\} & \text{if } \mu_0 \ll \mathbb{P} \\ \infty & \text{otherwise.} \end{cases}$$

For $\mu \in \mathcal{M}_1(\Omega_\ell)$, *q* Markov kernel on Ω_ℓ , usual relative entropy on Ω_ℓ^2 :

$$H(\mu \times q \,|\, \mu \times p) = \int_{\Omega_{\ell}} \sum_{z \in \mathcal{R}} q(\eta, S_z \eta) \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \,\mu(d\eta).$$

The effect of \mathbb{P} in the background?

Let
$$\mu_0 = \Omega$$
-marginal of $\mu \in \mathcal{M}_1(\Omega_\ell)$. Define
$$H_{\mathbb{P}}(\mu) = \begin{cases} \inf \{ H(\mu \times q \, | \, \mu \times p) : \mu q = \mu \} & \text{if } \mu_0 \ll \mathbb{P} \\ \infty & \text{otherwise.} \end{cases}$$

Infimum taken over Markov kernels q that fix μ .

For $\mu \in \mathcal{M}_1(\Omega_\ell)$, *q* Markov kernel on Ω_ℓ , usual relative entropy on Ω_ℓ^2 :

$$H(\mu \times q \,|\, \mu \times p) \;=\; \int_{\mathbf{\Omega}_\ell} \; \sum_{z \in \mathcal{R}} \; q(\eta, S_z \eta) \; \log \frac{q(\eta, S_z \eta)}{p(\eta, S_z \eta)} \; \mu(d\eta).$$

The effect of \mathbb{P} in the background?

Let
$$\mu_0 = \Omega$$
-marginal of $\mu \in \mathcal{M}_1(\Omega_\ell)$. Define
$$H_{\mathbb{P}}(\mu) = \begin{cases} \inf \left\{ H(\mu \times q \,|\, \mu \times p) : \mu q = \mu \right\} & \text{if } \mu_0 \ll \mathbb{P} \\ \infty & \text{otherwise.} \end{cases}$$

Infimum taken over Markov kernels q that fix μ .

 $H_{\mathbb{P}}$ convex but not lower semicontinuous.

- Environment $\{\omega_x\}$ IID under \mathbb{P} .
- g local function on Ω_ℓ , $\mathbb{E}|g|^p < \infty$ for some $p > \nu$.

- Environment $\{\omega_x\}$ IID under \mathbb{P} .
- g local function on Ω_ℓ , $\mathbb{E}|g|^p < \infty$ for some $p > \nu$.

Theorem. Deterministic limit

$$\Lambda(g) = \lim_{n \to \infty} n^{-1} \log E_0[e^{nR_n(g)}] \quad \text{exists } \mathbb{P}\text{-a.s.}$$

- Environment $\{\omega_x\}$ IID under \mathbb{P} .
- g local function on Ω_ℓ , $\mathbb{E}|g|^p < \infty$ for some $p > \nu$.

Theorem. Deterministic limit

$$\Lambda(g) = \lim_{n \to \infty} n^{-1} \log E_0[e^{nR_n(g)}] \quad \text{exists } \mathbb{P}\text{-a.s.}$$

and
$$\Lambda(g) = H^{\#}_{\mathbb{P}}(g) \equiv \sup_{\mu} \sup_{c>0} \left\{ E^{\mu}[g \wedge c] - H_{\mathbb{P}}(\mu) \right\}.$$

- Environment $\{\omega_x\}$ IID under \mathbb{P} .
- g local function on Ω_ℓ , $\mathbb{E}|g|^p < \infty$ for some $p > \nu$.

Theorem. Deterministic limit

$$\Lambda(g) = \lim_{n \to \infty} n^{-1} \log E_0[e^{nR_n(g)}] \quad \text{exists } \mathbb{P}\text{-a.s.}$$

and
$$\Lambda(g) = H^{\#}_{\mathbb{P}}(g) \equiv \sup_{\mu} \sup_{c>0} \left\{ E^{\mu}[g \wedge c] - H_{\mathbb{P}}(\mu) \right\}.$$

Remarks.

• $\Lambda(g) > -\infty$.

- Environment $\{\omega_x\}$ IID under \mathbb{P} .
- g local function on Ω_ℓ , $\mathbb{E}|g|^p < \infty$ for some $p > \nu$.

Theorem. Deterministic limit

$$\Lambda(g) = \lim_{n \to \infty} n^{-1} \log E_0[e^{nR_n(g)}] \quad \text{exists } \mathbb{P}\text{-a.s.}$$

and
$$\Lambda(g) = H^{\#}_{\mathbb{P}}(g) \equiv \sup_{\mu} \sup_{c>0} \left\{ E^{\mu}[g \wedge c] - H_{\mathbb{P}}(\mu) \right\}.$$

Remarks.

•
$$\Lambda(g) > -\infty$$
.
• IID directed & $\exists p > \nu : \mathbb{E}|g|^p < \infty \Rightarrow \Lambda(g)$ finite.

- Environment $\{\omega_x\}$ IID under \mathbb{P} .
- g local function on Ω_ℓ , $\mathbb{E}|g|^p < \infty$ for some $p > \nu$.

Theorem. Deterministic limit

$$\Lambda(g) = \lim_{n \to \infty} n^{-1} \log E_0[e^{nR_n(g)}] \quad \text{exists } \mathbb{P}\text{-a.s.}$$

and
$$\Lambda(g) = H^{\#}_{\mathbb{P}}(g) \equiv \sup_{\mu} \sup_{c>0} \left\{ E^{\mu}[g \wedge c] - H_{\mathbb{P}}(\mu) \right\}.$$

Remarks.

- $\Lambda(g) > -\infty$.
- IID directed & $\exists p > \nu : \mathbb{E}|g|^p < \infty \Rightarrow \Lambda(g)$ finite.
- With higher moments of g admit mixing \mathbb{P} .
Assumptions.

- Environment $\{\omega_x\}$ IID under \mathbb{P} .
- g local function on Ω_ℓ , $\mathbb{E}|g|^p < \infty$ for some $p > \nu$.

Theorem. Deterministic limit

$$\Lambda(g) = \lim_{n \to \infty} n^{-1} \log E_0[e^{nR_n(g)}] \quad \text{exists } \mathbb{P}\text{-a.s.}$$

and
$$\Lambda(g) = H_{\mathbb{P}}^{\#}(g) \equiv \sup_{\mu} \sup_{c>0} \left\{ E^{\mu}[g \wedge c] - H_{\mathbb{P}}(\mu) \right\}.$$

Remarks.

- $\Lambda(g) > -\infty$.
- IID directed & $\exists p > \nu : \mathbb{E}|g|^p < \infty \Rightarrow \Lambda(g)$ finite.
- With higher moments of g admit mixing \mathbb{P} .
- Analogous result for point-to-point free energy.

$$Q_n(A) = \frac{1}{E_0\left[e^{nR_n(g)}\right]} E_0\left[e^{nR_n(g)}\mathbf{1}_A(\omega, Z_{1,\infty})\right]$$

$$Q_n(A) = \frac{1}{E_0\left[e^{nR_n(g)}\right]} E_0\left[e^{nR_n(g)}\mathbf{1}_A(\omega, Z_{1,\infty})\right]$$

Rate function $I(\mu) = \inf_{c>0} \{ H_{\mathbb{P}}(\mu) - E^{\mu}(g \wedge c) + \Lambda(g) \}.$

$$Q_n(A) = \frac{1}{E_0\left[e^{nR_n(g)}\right]} E_0\left[e^{nR_n(g)}\mathbf{1}_A(\omega, Z_{1,\infty})\right]$$

Rate function
$$I(\mu) = \inf_{c>0} \{ H_{\mathbb{P}}(\mu) - E^{\mu}(g \wedge c) + \Lambda(g) \}.$$

Theorem. Assumptions as above and $\Lambda(g)$ finite. Then \mathbb{P} -a.s. for compact $F \subseteq \mathcal{M}_1(\Omega_\ell)$ and open $G \subseteq \mathcal{M}_1(\Omega_\ell)$:

$$\lim_{n \to \infty} n^{-1} \log Q_n \{R_n \in F\} \leq -\inf_{\mu \in F} I^{**}(\mu)$$
$$\lim_{n \to \infty} n^{-1} \log Q_n \{R_n \in G\} \geq -\inf_{\mu \in G} I^{**}(\mu)$$

$$Q_n(A) = \frac{1}{E_0\left[e^{nR_n(g)}\right]} E_0\left[e^{nR_n(g)}\mathbf{1}_A(\omega, Z_{1,\infty})\right]$$

Rate function
$$I(\mu) = \inf_{c>0} \{ H_{\mathbb{P}}(\mu) - E^{\mu}(g \wedge c) + \Lambda(g) \}.$$

Theorem. Assumptions as above and $\Lambda(g)$ finite. Then \mathbb{P} -a.s. for compact $F \subseteq \mathcal{M}_1(\Omega_\ell)$ and open $G \subseteq \mathcal{M}_1(\Omega_\ell)$:

$$\lim_{n \to \infty} n^{-1} \log Q_n \{ R_n \in F \} \leq -\inf_{\mu \in F} I^{**}(\mu)$$
$$\lim_{n \to \infty} n^{-1} \log Q_n \{ R_n \in G \} \geq -\inf_{\mu \in G} I^{**}(\mu)$$

IID environment, directed walk \Rightarrow full LDP holds.

2. 1+1 dim systems 2.1. KPZ and EW universality

Two different universality classes for 1+1 dim systems.

2. 1+1 dim systems 2.1. KPZ and EW universality

Two different universality classes for 1+1 dim systems.

Kardar-Parisi-Zhang (KPZ)

- time \sim *n*, spatial correlations \sim $n^{2/3}$, fluctuations \sim $n^{1/3}$
- limits related to Tracy-Widom distributions

Two different universality classes for 1+1 dim systems.

Kardar-Parisi-Zhang (KPZ)

- time \sim *n*, spatial correlations \sim $n^{2/3}$, fluctuations \sim $n^{1/3}$
- limits related to Tracy-Widom distributions

Edwards-Wilkinson (EW)

- time \sim *n*, spatial correlations \sim $n^{1/2}$, fluctuations \sim $n^{1/4}$
- Gaussian limits

KPZ class: 1+1 dim directed polymer

 $\{\omega(k,x)\}$ i.i.d. under \mathbb{P}

$$Z_n = E\left[\exp\left\{\beta\sum_{k=1}^n \omega(k, X_k)\right\}\right]$$

$$Z_{n,u} = E\left[\exp\left\{\beta\sum_{k=1}^{n}\omega(k,X_k)\right\}, X_n = u\right]$$

$$Q_n(x_{.}) = \frac{1}{Z_n} \exp\{\beta \sum_{k=1}^n \omega(k, x_k)\} P(x_{.})$$

•
$$\frac{\log Z_{n,nx} - nf(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom)

•
$$\frac{\log Z_{n,nx} - nf(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom)

• Under averaged measure $\mathbb{E}Q_n$ path fluctuations of order $n^{2/3}$.

•
$$\frac{\log Z_{n,nx} - nf(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom)

- Under averaged measure $\mathbb{E}Q_n$ path fluctuations of order $n^{2/3}$.
- Endpoint of path $\sim \mathcal{T} = \arg \max_{t \in \mathbb{R}} \{\mathcal{A}_2(t) t^2\}$, where $\mathcal{A}_2 = \operatorname{Airy}_2$ process.

•
$$\frac{\log Z_{n,nx} - nf(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom)

- Under averaged measure $\mathbb{E}Q_n$ path fluctuations of order $n^{2/3}$.
- Endpoint of path $\ \sim \ \mathcal{T} = rg\max_{t \in \mathbb{R}} \, \{\mathcal{A}_2(t) t^2\}$, where

 $\mathcal{A}_2 = \text{Airy}_2 \text{ process. Polymer endpoint distribution. } \text{[Moreno, Quastel, Remenik]}$

•
$$\frac{\log Z_{n,nx} - nf(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom)

- Under averaged measure $\mathbb{E}Q_n$ path fluctuations of order $n^{2/3}$.
- Endpoint of path $\sim \mathcal{T} = \arg \max_{t \in \mathbb{R}} \{\mathcal{A}_2(t) t^2\}$, where $\mathcal{A}_2 = \operatorname{Airy}_2$ process. Polymer endpoint distribution. [Moreno, Quastel, Remenik]

Known.

• Partial results for a handful of exactly solvable models.

•
$$\frac{\log Z_{n,nx} - nf(x)}{cn^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$
 (Tracy-Widom)

- Under averaged measure $\mathbb{E}Q_n$ path fluctuations of order $n^{2/3}$.
- Endpoint of path $\sim \mathcal{T} = \arg \max_{t \in \mathbb{R}} \{\mathcal{A}_2(t) t^2\}$, where $\mathcal{A}_2 = \operatorname{Airy}_2$ process. Polymer endpoint distribution. [Moreno, Quastel, Remenik]

Known.

- Partial results for a handful of exactly solvable models.
- "Weak universality" of Alberts-Khanin-Quastel.

Kardar-Parisi-Zhang (KPZ) universality

Kardar-Parisi-Zhang (KPZ) universality

In KPZ class also

In KPZ class also

- zero-temperature polymer, or last-passage percolation model
- Other 1+1 dim growth models (PNG, ballistic deposition)
- particle systems with drift and nonlinear flux function (ASEP, ZRP)

state of the system is a function $\sigma : \mathbb{Z} \to \mathbb{R}$

state of the system is a function $\sigma: \mathbb{Z} \to \mathbb{R}$

Discrete-time evolution:

$$\sigma_t(k) = \sum_j \omega_{t,k}(j) \sigma_{t-1}(k+j)$$

state of the system is a function $\sigma: \mathbb{Z} \to \mathbb{R}$

Discrete-time evolution:

$$\sigma_t(k) = \sum_j \omega_{t,k}(j) \sigma_{t-1}(k+j)$$

 $\omega_{t,k} = (\omega_{t,k}(j) : |j| \le R)$ random probability vectors, IID over (t,k)

$$v = \sum_{x} x \mathbb{E}\omega(x)$$
 $\sigma^2 = \sum_{x} (x - v)^2 \mathbb{E}\omega(x).$

$$v = \sum_{x} x \mathbb{E}\omega(x)$$
 $\sigma^2 = \sum_{x} (x - v)^2 \mathbb{E}\omega(x).$

Initially $\sigma(0) = 0$, IID increments $\{\sigma_i(0) - \sigma_{i-1}(0)\}$.

$$v = \sum_{x} x \mathbb{E}\omega(x)$$
 $\sigma^2 = \sum_{x} (x - v)^2 \mathbb{E}\omega(x).$

Initially $\sigma(0) = 0$, IID increments $\{\sigma_i(0) - \sigma_{i-1}(0)\}$.

Scaled height process

$$z_n(t,r) = n^{-1/4} \big\{ \sigma_{\lfloor nt \rfloor} (-\lfloor ntv \rfloor + \lfloor r\sqrt{n} \rfloor) - \mu_0 r\sqrt{n} \big\}, \quad (t,r) \in \mathbb{R}_+ \times \mathbb{R}.$$

$$\mathbf{v} = \sum_{\mathbf{x}} \mathbf{x} \mathbb{E} \omega(\mathbf{x}) \qquad \sigma^2 = \sum_{\mathbf{x}} (\mathbf{x} - \mathbf{v})^2 \mathbb{E} \omega(\mathbf{x}).$$

Initially $\sigma(0) = 0$, IID increments $\{\sigma_i(0) - \sigma_{i-1}(0)\}$.

Scaled height process

$$z_n(t,r) = n^{-1/4} \big\{ \sigma_{\lfloor nt \rfloor} (-\lfloor ntv \rfloor + \lfloor r\sqrt{n} \rfloor) - \mu_0 r\sqrt{n} \big\}, \quad (t,r) \in \mathbb{R}_+ \times \mathbb{R}.$$

Theorem. [Balázs, Rassoul-Agha, S. 2006] $z_n(t,r) \Rightarrow Z(t,r)$ where Z is the Gaussian process

$$Z(t,r) = c_1 \iint_{[0,t]\times\mathbb{R}} \varphi_{\sigma^2(t-s)}(r-x) dW(s,x) + c_2 \int_{\mathbb{R}} \varphi_{\sigma^2 t}(r-x) B(x) dx$$

RAP is an example from the EW universality class.

RAP is an example from the EW universality class.

In this class also

- current of independent random walks (incl. RWRE)
- symmetric simple exclusion process
- Hammersley's serial harness process

KPZ equation

1986 Kardar, Parisi and Zhang: general model for height function h(t,x) of a 1+1 dimensional growing interface:

$$h_t = \frac{1}{2} h_{xx} + \frac{1}{2} (h_x)^2 + \dot{W}$$

KPZ equation

1986 Kardar, Parisi and Zhang: general model for height function h(t,x) of a 1+1 dimensional growing interface:

$$h_t = \frac{1}{2} h_{xx} + \frac{1}{2} (h_x)^2 + W$$

Rigorous meaning was unclear.

KPZ equation

1986 Kardar, Parisi and Zhang: general model for height function h(t,x) of a 1+1 dimensional growing interface:

$$h_t = \frac{1}{2} h_{xx} + \frac{1}{2} (h_x)^2 + \dot{W}$$

Rigorous meaning was unclear.

Formally, $Z = \exp(h)$ satisfies a stochastic heat equation (SHE):

$$Z_t = \frac{1}{2} Z_{xx} + Z \dot{W}$$

1986 Kardar, Parisi and Zhang: general model for height function h(t,x) of a 1+1 dimensional growing interface:

$$h_t = \frac{1}{2} h_{xx} + \frac{1}{2} (h_x)^2 + \dot{W}$$

Rigorous meaning was unclear.

Formally, $Z = \exp(h)$ satisfies a stochastic heat equation (SHE):

$$Z_t = \frac{1}{2} Z_{xx} + Z \dot{W}$$

Define $h = \log Z$ as the **Hopf-Cole solution** of KPZ.

KPZ behavior of KPZ equation

KPZ behavior of KPZ equation

• Balázs, Quastel, and S. (2011): With initial height function h(0, x) a two-sided Brownian motion in $x \in \mathbb{R}$,

$$C_1 t^{2/3} \leq \operatorname{Var}(h(t,0)) \leq C_2 t^{2/3}$$
KPZ behavior of KPZ equation

• Balázs, Quastel, and S. (2011): With initial height function h(0, x) a two-sided Brownian motion in $x \in \mathbb{R}$,

$$C_1 t^{2/3} \leq \operatorname{Var}(h(t,0)) \leq C_2 t^{2/3}$$

• Amir-Corwin-Quastel and Sasamoto-Spohn (2011): Start SHE with $Z(0, x) = \delta_0(x)$.

KPZ behavior of KPZ equation

• Balázs, Quastel, and S. (2011): With initial height function h(0, x) a two-sided Brownian motion in $x \in \mathbb{R}$,

$$C_1 t^{2/3} \leq \operatorname{Var}(h(t,0)) \leq C_2 t^{2/3}$$

• Amir-Corwin-Quastel and Sasamoto-Spohn (2011): Start SHE with $Z(0, x) = \delta_0(x)$.

Found explicit probability distribution for h(t, x).

KPZ behavior of KPZ equation

• Balázs, Quastel, and S. (2011): With initial height function h(0, x) a two-sided Brownian motion in $x \in \mathbb{R}$,

$$C_1 t^{2/3} \leq \operatorname{Var}(h(t,0)) \leq C_2 t^{2/3}$$

• Amir-Corwin-Quastel and Sasamoto-Spohn (2011): Start SHE with $Z(0, x) = \delta_0(x)$.

Found explicit probability distribution for h(t, x).

Cross-over distribution because it has

 $\begin{cases} \text{Tracy-Widom } F_{\text{GUE}} \text{ limit in the scale } t^{1/3} & \text{as } t \nearrow \infty \\ \text{Gaussian limit in the scale } t^{1/4} & \text{as } t \searrow 0. \end{cases}$

• Member of the KPZ universality class because long-term behavior has right exponent and F_{GUE} limit.

- Member of the KPZ universality class because long-term behavior has right exponent and *F*_{GUE} limit.
- Universal cross-over between KPZ class and EW class.

- Member of the KPZ universality class because long-term behavior has right exponent and *F*_{GUE} limit.
- Universal cross-over between KPZ class and EW class.
- Limit of discrete models when asymmetry or noise suitably tuned to zero as the limit is taken.

- Member of the KPZ universality class because long-term behavior has right exponent and *F*_{GUE} limit.
- Universal cross-over between KPZ class and EW class.
- Limit of discrete models when asymmetry or noise suitably tuned to zero as the limit is taken.
- First result **Bertini and Giacomin 1997:** height function of weakly asymmetric simple exclusion process converges to Hopf-Cole solution of KPZ.

2. 1+1 dim systems 2.2 Exactly solvable directed polymers

Three exactly solvable 1+1 dim models (positive temperature)

• Continuum directed random polymer

• **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation

• **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation, or log *Z* where *Z* solves SHE.

- **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation, or log *Z* where *Z* solves SHE.
- Semidiscrete polymer, or cont-time RW paths in Brownian environment (O'Connell-Yor 2001).

- **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation, or log *Z* where *Z* solves SHE.
- Semidiscrete polymer, or cont-time RW paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2009).

- **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation, or log *Z* where *Z* solves SHE.
- Semidiscrete polymer, or cont-time RW paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2009).

Borodin-Corwin: a common algebraic framework, Macdonald processes.

- **Continuum directed random polymer**, or Hopf-Cole solution of the KPZ equation, or log *Z* where *Z* solves SHE.
- Semidiscrete polymer, or cont-time RW paths in Brownian environment (O'Connell-Yor 2001).
- Log-gamma polymer (S 2009).

Borodin-Corwin: a common algebraic framework, Macdonald processes.

Next brief look at the two discrete models.

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Partition function:

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + \right)\right]$$

+
$$B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \Big] ds_{1,n-1}$$

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Partition function:

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + \right)\right]$$

+
$$B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \Big] ds_{1,n-1}$$

Results:

• Model by O'Connell-Yor (2001).

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Partition function:

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + \right)\right]$$

+
$$B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \Big] ds_{1,n-1}$$

- Model by O'Connell-Yor (2001).
- KPZ exponents by Valkó-S (2010).

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Partition function:

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + \right)\right]$$

+
$$B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \Big] ds_{1,n-1}$$

- Model by O'Connell-Yor (2001).
- KPZ exponents by Valkó-S (2010).
- Link to quantum Toda lattice via tropical combinatorics by O'Connell (2010).

Environment: independent Brownian motions B_1, B_2, B_3, \ldots

Partition function:

$$Z_{n,t}(\beta) = \int_{0 < s_1 < \cdots < s_{n-1} < t} \exp \left[\beta \left(B_1(s_1) + B_2(s_2) - B_2(s_1) + \right)\right]$$

+
$$B_3(s_3) - B_3(s_2) + \cdots + B_n(t) - B_n(s_{n-1}) \Big] ds_{1,n-1}$$

- Model by O'Connell-Yor (2001).
- KPZ exponents by Valkó-S (2010).
- Link to quantum Toda lattice via tropical combinatorics by O'Connell (2010).
- Tracy-Widom limit by Borodin-Corwin (2011). Next talk!

$$\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\bullet} : (1,1) \rightarrow (m,n) \}$$

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\centerdot} : (1,1) \rightarrow (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ IID environment $\omega = \{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ IID environment $\omega = \{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^n Y_{x_k}$

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ IID environment $\omega = \{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^n Y_{x_k}$

Fix $0 < \mu < \infty$, take $Y_{i,j}^{-1} \sim \text{Gamma}(\mu)$.

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ IID environment $\omega = \{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^{n} Y_{x_k}$

Fix $0 < \mu < \infty$, take $Y_{i,j}^{-1} \sim \text{Gamma}(\mu)$.

Gamma density: $f(x) = \frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ IID environment $\omega = \{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^n Y_{x_k}$

Fix $0 < \mu < \infty$, take $Y_{i,i}^{-1} \sim \text{Gamma}(\mu)$.

Gamma density: $f(x) = \frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

Results:

• Model and KPZ exponents (S 2010).

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ IID environment $\omega = \{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^n Y_{x_k}$

Fix $0 < \mu < \infty$, take $Y_{i,i}^{-1} \sim \text{Gamma}(\mu)$.

Gamma density: $f(x) = \frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

- Model and KPZ exponents (S 2010).
- Large deviations (Georgiou, S 2011).

 $\Pi_{m,n} = \{ \text{ up-right lattice paths } x_{\cdot} : (1,1) \to (m,n) \}$ Weights $Y_{i,j} = e^{\omega(i,j)}$ IID environment $\omega = \{Y_{i,j} : (i,j) \in \mathbb{N}^2\}$ Partition function: $Z_{m,n} = \sum_{x_{\cdot} \in \Pi_{m,n}} \prod_{k=1}^n Y_{x_k}$

Fix $0 < \mu < \infty$, take $Y_{i,i}^{-1} \sim \text{Gamma}(\mu)$.

Gamma density: $f(x) = \frac{1}{\Gamma(\mu)} x^{\mu-1} e^{-x}$

- Model and KPZ exponents (S 2010).
- Large deviations (Georgiou, S 2011).
- Tropical combinatorics (Corwin, O'Connell, S, Zygouras 2011).

What is special about this choice of weight distribution?

What is special about this choice of weight distribution?

1. The process has a stationary version

What is special about this choice of weight distribution?

1. The process has a stationary version

This enables us to derive

What is special about this choice of weight distribution?

1. The process has a stationary version

This enables us to derive

• explicit free energy density

What is special about this choice of weight distribution?

1. The process has a stationary version

This enables us to derive

- explicit free energy density
- some explicit large deviation rate functions for log Z

What is special about this choice of weight distribution?

1. The process has a stationary version

This enables us to derive

- explicit free energy density
- some explicit large deviation rate functions for log Z
- some KPZ exponents for log Z and the path.
What is special about this choice of weight distribution?

1. The process has a stationary version

This enables us to derive

- explicit free energy density
- some explicit large deviation rate functions for log Z
- some KPZ exponents for log Z and the path.

2. It can be "solved" with ideas from tropical combinatorics

This yields

• an explicit formula for the Laplace transform of Z

• Parameters $0 < \theta < \mu$.

- Parameters $0 < \theta < \mu$.
- Bulk weights $Y_{i,j}$ for $i, j \in \mathbb{N} = \{1, 2, 3, ...\}$ as before.

- Parameters $0 < \theta < \mu$.
- Bulk weights $Y_{i,j}$ for $i, j \in \mathbb{N} = \{1, 2, 3, ...\}$ as before.
- Boundary weights $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

- Parameters $0 < \theta < \mu$.
- Bulk weights $Y_{i,j}$ for $i, j \in \mathbb{N} = \{1, 2, 3, ...\}$ as before.
- Boundary weights $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

- Parameters $0 < \theta < \mu$.
- Bulk weights $Y_{i,j}$ for $i, j \in \mathbb{N} = \{1, 2, 3, \dots\}$ as before.
- Boundary weights $U_{i,0} = Y_{i,0}$ and $V_{0,j} = Y_{0,j}$.

In (μ, θ) -model, compute $Z_{m,n} \; \forall \; (m,n) \in \mathbb{Z}^2_+$

In (μ, θ) -model, compute $Z_{m,n} \;\; orall \, (m,n) \in \mathbb{Z}_+^2$ and define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

In $(\mu, heta)$ -model, compute $Z_{m,n} \;\; orall \, (m,n) \in \mathbb{Z}_+^2$ and define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

$$\begin{cases} U_f = U_x & \text{if } f = \{x - e_1, x\} \\ V_f = V_x & \text{if } f = \{x - e_2, x\} \end{cases} \text{ (vert)}$$

In $(\mu, heta)$ -model, compute $Z_{m,n} \;\; orall \, (m,n) \in \mathbb{Z}_+^2$ and define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

For an undirected edge f: $\begin{cases} \\ \\ \\ \end{cases}$

$$\begin{cases} U_f = U_x & \text{if } f = \{x - e_1, x\} \ V_f = V_x & \text{if } f = \{x - e_2, x\} \ V_f = V_x & \text{if } f = \{x - e_2, x\} \end{cases}$$
 (vert)

In $(\mu, heta)$ -model, compute $Z_{m,n} \;\; orall \, (m,n) \in \mathbb{Z}_+^2$ and define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

$$U_f = U_x$$
 if $f = \{x - e_1, x\}$ (horiz)
 $V_f = V_x$ if $f = \{x - e_2, x\}$ (vert)

In $(\mu, heta)$ -model, compute $Z_{m,n} \;\; orall \, (m,n) \in \mathbb{Z}_+^2$ and define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

$$U_f = U_x \quad \text{if } f = \{x - e_1, x\} \quad \text{(horiz)} \\ V_f = V_x \quad \text{if } f = \{x - e_2, x\} \quad \text{(vert)}$$

In $(\mu, heta)$ -model, compute $Z_{m,n} \;\; orall \, (m,n) \in \mathbb{Z}_+^2$ and define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

For an undirected edge f:

$$U_f = U_x$$
 if $f = \{x - e_1, x\}$ (horiz)
 $V_f = V_x$ if $f = \{x - e_2, x\}$ (vert)

down-right path (z_k) with edges $f_k = \{z_{k-1}, z_k\}, \ k \in \mathbb{Z}$

In $(\mu, heta)$ -model, compute $Z_{m,n} \;\; orall \, (m,n) \in \mathbb{Z}_+^2$ and define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

$$U_f = U_x$$
 if $f = \{x - e_1, x\}$ (horiz)
 $V_f = V_x$ if $f = \{x - e_2, x\}$ (vert)

In $(\mu, heta)$ -model, compute $Z_{m,n} \;\; orall \, (m,n) \in \mathbb{Z}_+^2$ and define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

$$U_f = U_x$$
 if $f = \{x - e_1, x\}$ (horiz)
 $V_f = V_x$ if $f = \{x - e_2, x\}$ (vert)

- down-right path
$$(z_k)$$
 with
edges $f_k = \{z_{k-1}, z_k\}, \ k \in \mathbb{Z}$

In $(\mu, heta)$ -model, compute $Z_{m,n} ~~orall (m,n) \in \mathbb{Z}^2_+$ and define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

$$U_f = U_x$$
 if $f = \{x - e_1, x\}$ (horiz)
 $V_f = V_x$ if $f = \{x - e_2, x\}$ (vert)

- down-right path (z_k) with edges $f_k = \{z_{k-1}, z_k\}, k \in \mathbb{Z}$
- interior points u of path (z_k)

In $(\mu, heta)$ -model, compute $Z_{m,n} ~~orall (m,n) \in \mathbb{Z}^2_+$ and define

$$U_{m,n} = \frac{Z_{m,n}}{Z_{m-1,n}} \qquad V_{m,n} = \frac{Z_{m,n}}{Z_{m,n-1}} \qquad X_{m,n} = \left(\frac{Z_{m,n}}{Z_{m+1,n}} + \frac{Z_{m,n}}{Z_{m,n+1}}\right)^{-1}$$

$$U_f = U_x$$
 if $f = \{x - e_1, x\}$ (horiz)
 $V_f = V_x$ if $f = \{x - e_2, x\}$ (vert)

- down-right path (z_k) with edges $f_k = \{z_{k-1}, z_k\}, k \in \mathbb{Z}$
- interior points u of path (z_k)

Theorem.

For any fixed down-right path, $\{U_{f_k}, V_{f_\ell}, X_u\}$ are independent with marginals

 $egin{aligned} & U_{f_k} \ \sim \ \mathsf{Gamma}^{-1}(heta) \ & V_{f_\ell} \ \sim \ \mathsf{Gamma}^{-1}(\mu- heta) \ & X_u \ \sim \ \mathsf{Gamma}^{-1}(\mu) \end{aligned}$

Theorem.

For any fixed down-right path, $\{U_{f_k}, V_{f_\ell}, X_u\}$ are independent with marginals

 $egin{aligned} & U_{f_k} \ \sim \ ext{Gamma}^{-1}(heta) \ & V_{f_\ell} \ \sim \ ext{Gamma}^{-1}(\mu- heta) \ & X_u \ \sim \ ext{Gamma}^{-1}(\mu) \end{aligned}$

There is an analogous property for last-passage percolation with exponential weights that is a generalization of Burke's Theorem (Output Theorem) for M/M/1 queues.

Theorem.

For any fixed down-right path, $\{U_{f_k}, V_{f_\ell}, X_u\}$ are independent with marginals

 $egin{aligned} & U_{f_k} \ \sim \ \mathsf{Gamma}^{-1}(heta) \ & V_{f_\ell} \ \sim \ \mathsf{Gamma}^{-1}(\mu- heta) \ & X_u \ \sim \ \mathsf{Gamma}^{-1}(\mu) \end{aligned}$

There is an analogous property for last-passage percolation with exponential weights that is a generalization of Burke's Theorem (Output Theorem) for M/M/1 queues.

Hence we could call this the "Burke property" of the log-gamma polymer.

$$\begin{array}{c|c} & \text{Initial weights } (i,j\in\mathbb{N}): \\ \hline V_{0,j} & Y_{i,j} & U_{i,0}^{-1} \sim \text{Gamma}(\theta), & V_{0,j}^{-1} \sim \text{Gamma}(\mu-\theta) \\ \hline 1 & U_{i,0} & Y_{i,j}^{-1} \sim \text{Gamma}(\mu) \end{array}$$

Coupling of two log-gamma models:

- Original one with IID bulk weights, paths $(1,1) \rightarrow (m,n)$
- Stationary one, paths $(0,0) \rightarrow (m,n)$

$$\begin{array}{c|c} & \text{Initial weights } (i,j\in\mathbb{N}): \\ \hline V_{0,j} & Y_{i,j} & U_{i,0}^{-1} \sim \text{Gamma}(\theta), & V_{0,j}^{-1} \sim \text{Gamma}(\mu-\theta) \\ \hline 1 & U_{i,0} & Y_{i,j}^{-1} \sim \text{Gamma}(\mu) \end{array}$$

Coupling of two log-gamma models:

- Original one with IID bulk weights, paths $(1,1) \rightarrow (m,n)$
- Stationary one, paths $(0,0) \rightarrow (m,n)$

Strategy: (i) derive results for the stationary process, (ii) use coupling to pass results to the original IID model.

$$\begin{array}{c|c} & \text{Initial weights } (i,j\in\mathbb{N}): \\ \hline V_{0,j} & Y_{i,j} & U_{i,0}^{-1} \sim \text{Gamma}(\theta), & V_{0,j}^{-1} \sim \text{Gamma}(\mu-\theta) \\ \hline 1 & U_{i,0} & Y_{i,j}^{-1} \sim \text{Gamma}(\mu) \end{array}$$

Coupling of two log-gamma models:

- Original one with IID bulk weights, paths $(1,1) \rightarrow (m,n)$
- Stationary one, paths $(0,0) \rightarrow (m,n)$

Strategy: (i) derive results for the stationary process, (ii) use coupling to pass results to the original IID model.

Let us look at fluctuation exponents for $\log Z$.

Exit point of path from x-axis $\xi_x = \max\{k \ge 0 : x_i = (i, 0) \text{ for } 0 \le i \le k\}$

Exit point of path from x-axis $\xi_x = \max\{k \ge 0 : x_i = (i, 0) \text{ for } 0 \le i \le k\}$

For $\theta, x > 0$ define positive function

$$L(\theta, x) = \int_0^x (\Psi_0(\theta) - \log y) x^{-\theta} y^{\theta-1} e^{x-y} \, dy$$

Exit point of path from x-axis $\xi_x = \max\{k \ge 0 : x_i = (i, 0) \text{ for } 0 \le i \le k\}$

For $\theta, x > 0$ define positive function

$$L(\theta, x) = \int_0^x (\Psi_0(\theta) - \log y) x^{-\theta} y^{\theta-1} e^{x-y} dy$$

Theorem. For the stationary case,

$$\mathbb{V}\mathrm{ar}\big[\log Z_{m,n}\big] = n\Psi_1(\mu-\theta) - m\Psi_1(\theta) + 2 E_{m,n}\bigg[\sum_{i=1}^{\xi_x} L(\theta, Y_{i,0}^{-1})\bigg]$$

Remark: polygamma functions

$$\Psi_n(s) = rac{d^{n+1}}{ds^{n+1}} \log \Gamma(s), \qquad n \ge 0$$

These appear naturally because for $Y^{-1} \sim \text{Gamma}(\mu)$

$$\mathbb{E}(\log Y) = -\Psi_0(\mu)$$
 (digamma function)
 $\mathbb{V}ar(\log Y) = \Psi_1(\mu)$ (trigamma function)

With $0 < \theta < \mu$ fixed and $N \nearrow \infty$ assume

$$|m - N\Psi_1(\mu - heta)| \leq CN^{2/3}$$
 and $|n - N\Psi_1(heta)| \leq CN^{2/3}$ (1)

With $0 < \theta < \mu$ fixed and $N \nearrow \infty$ assume

$$|m - N\Psi_1(\mu - \theta)| \le CN^{2/3}$$
 and $|n - N\Psi_1(\theta)| \le CN^{2/3}$ (1)

Theorem: Variance bounds in characteristic direction

For (m, n) as in (1), $C_1 N^{2/3} \leq \mathbb{V}ar(\log Z_{m,n}) \leq C_2 N^{2/3}$.

With $0 < \theta < \mu$ fixed and $N \nearrow \infty$ assume

 $|m - N\Psi_1(\mu - \theta)| \le CN^{2/3}$ and $|n - N\Psi_1(\theta)| \le CN^{2/3}$ (1)

Theorem: Variance bounds in characteristic direction

For
$$(m, n)$$
 as in (1), $C_1 N^{2/3} \leq Var(\log Z_{m,n}) \leq C_2 N^{2/3}$.

Theorem: Off-characteristic CLT

Suppose $n = \Psi_1(\theta)N$ and $m = \Psi_1(\mu - \theta)N + \gamma N^{\alpha}$ with $\gamma > 0$, $\alpha > 2/3$. Then

$$\mathbb{N}^{-lpha/2}\Big\{\log Z_{m,n} - \mathbb{E}(\log Z_{m,n})\Big\} \ \Rightarrow \ \mathcal{N}ig(0,\gamma\Psi_1(heta)ig)$$

Fluctuation bounds: original i.i.d. case

Fluctuation bounds: original i.i.d. case

$$p_{s,t}(\mu) \equiv \lim_{N \to \infty} \frac{\log Z_{Ns,Nt}}{N} = \inf_{\theta \in (0,\mu)} \{ -s \Psi_0(\theta) - t \Psi_0(\mu - \theta) \}$$
Fluctuation bounds: original i.i.d. case

$$p_{s,t}(\mu) \equiv \lim_{N \to \infty} \frac{\log Z_{Ns,Nt}}{N} = \inf_{\theta \in (0,\mu)} \{-s\Psi_0(\theta) - t\Psi_0(\mu - \theta)\}$$

Theorem. Upper bound for fluctuation exponent:

$$\mathbb{P}\left\{ |\log Z_{Ns,Nt} - Np_{s,t}(\mu)| \ge bN^{1/3} \right\} \le Cb^{-3/2}$$

Fluctuation bounds: original i.i.d. case

$$p_{s,t}(\mu) \equiv \lim_{N \to \infty} \frac{\log \mathbb{Z}_{Ns,Nt}}{N} = \inf_{\theta \in (0,\mu)} \{ -s \Psi_0(\theta) - t \Psi_0(\mu - \theta) \}$$

Theorem. Upper bound for fluctuation exponent:

$$\mathbb{P}\Big\{ |\log Z_{Ns,Nt} - Np_{s,t}(\mu)| \ge bN^{1/3} \Big\} \le Cb^{-3/2}$$

Proof idea. Couple to a stationary process with $\theta \in (0, \mu)$ chosen by

$$s\Psi_1(\theta) - t\Psi_1(\mu - \theta) = 0$$

Fluctuation bounds: original i.i.d. case

$$p_{s,t}(\mu) \equiv \lim_{N \to \infty} \frac{\log Z_{Ns,Nt}}{N} = \inf_{\theta \in (0,\mu)} \{ -s \Psi_0(\theta) - t \Psi_0(\mu - \theta) \}$$

Theorem. Upper bound for fluctuation exponent:

$$\mathbb{P}\Big\{ |\log Z_{Ns,Nt} - Np_{s,t}(\mu)| \ge bN^{1/3} \Big\} \le Cb^{-3/2}$$

Proof idea. Couple to a stationary process with $\theta \in (0, \mu)$ chosen by

$$s\Psi_1(\theta) - t\Psi_1(\mu - \theta) = 0$$

Remark. Corresponding bounds exist for path with KPZ exponent 2/3.

Fix N, let $1 \le k \le N$ and $n \ge 1$ vary.

Fix N, let $1 \le k \le N$ and $n \ge 1$ vary.

$$\Pi^1_{n,k} = \{ \text{ admissible paths } (1,1)
ightarrow (n,k) \}$$

Fix N, let $1 \le k \le N$ and $n \ge 1$ vary. $\Pi_{n,k}^{1} = \{ \text{ admissible paths } (1,1) \to (n,k) \}$ $z_{k,1}(n) = \sum_{\pi \in \Pi_{n,k}^{1}} wt(\pi) \text{ where}$ weight $wt(\pi) = \prod_{(i,j) \in \pi} Y_{i,j}$

Fix N, let $1 \le k \le N$ and $n \ge 1$ vary. $\Pi_{n,k}^{1} = \{ \text{ admissible paths } (1,1) \to (n,k) \}$ $z_{k,1}(n) = \sum_{\pi \in \Pi_{n,k}^{1}} wt(\pi) \text{ where}$ weight $wt(\pi) = \prod_{(i,j) \in \pi} Y_{i,j}$

$$\Pi_{n,k}^{\ell} = \{ \ \ell \text{-tuples } \pi = (\pi_1, \dots, \pi_\ell) \text{ of disjoint}$$

$$\mathsf{paths } \pi_j : (1,j) \to (n,k-j+1) \ \}$$

Fix N, let
$$1 \le k \le N$$
 and $n \ge 1$ vary.

$$\Pi_{n,k}^{1} = \{ \text{ admissible paths } (1,1) \to (n,k) \}$$

$$z_{k,1}(n) = \sum_{\pi \in \Pi_{n,k}^{1}} wt(\pi) \text{ where}$$
weight $wt(\pi) = \prod_{(i,j) \in \pi} Y_{i,j}$

$$\mathsf{T}_{n,k}^\ell = \{ \ \ell ext{-tuples} \ \pi = (\pi_1, \dots, \pi_\ell) \ ext{of disjoint}$$

paths $\pi_j: (1,j) o (n,k-j+1) \ \}$

Fix N, let
$$1 \le k \le N$$
 and $n \ge 1$ vary.

$$\Pi_{n,k}^{1} = \{ \text{ admissible paths } (1,1) \to (n,k) \}$$

$$z_{k,1}(n) = \sum_{\pi \in \Pi_{n,k}^{1}} wt(\pi) \text{ where}$$
weight $wt(\pi) = \prod_{(i,j) \in \pi} Y_{i,j}$

$$\exists_{n,k}^{\ell} = \{ \ \ell \text{-tuples } \pi = (\pi_1, \dots, \pi_\ell) \text{ of disjoint}$$

paths $\pi_j : (1,j) \to (n,k-j+1) \}$

weight
$$wt(\pi) = \prod_{(i,j)\in\pi} Y_{i,j}$$

Fix *N*, let
$$1 \le k \le N$$
 and $n \ge 1$ vary.

$$\Pi_{n,k}^{1} = \{ \text{ admissible paths } (1,1) \to (n,k) \}$$

$$z_{k,1}(n) = \sum_{\pi \in \Pi_{n,k}^{1}} wt(\pi) \text{ where}$$
weight $wt(\pi) = \prod_{(i,j)\in\pi} Y_{i,j}$

$$\Pi_{n,k}^{\ell} = \{ \ell\text{-tuples } \pi = (\pi_{1}, \dots, \pi_{\ell}) \text{ of disjoint}$$
paths $\pi_{i} : (1, i) \to (n, k - i + 1) \}$

weight $wt(\pi) = \prod_{(i,j)\in\pi} Y_{i,j}$

$$\tau_{k,\ell}(n) = \sum_{\pi \in \Pi_{n,k}^{\ell}} wt(\pi)$$

$$au_{k,\ell}(n) = \sum_{\pi \in \Pi_{n,k}^\ell} wt(\pi) \qquad \quad ext{for } 1 \leq k \leq N, \ 1 \leq \ell \leq n \wedge k.$$

$$au_{k,\ell}(n) = \sum_{\pi \in \Pi_{n,k}^\ell} wt(\pi) \qquad \quad ext{for } 1 \leq k \leq N, \ 1 \leq \ell \leq n \wedge k.$$

Define array $z(n) = \{z_{k,\ell}(n): \ 1 \leq k \leq N, \ 1 \leq \ell \leq k \land n\}$ by

$$z_{k,1}(n) \cdots z_{k,\ell}(n) = \tau_{k\ell}(n) = \sum_{\pi \in \Pi_{n,k}^{\ell}} wt(\pi).$$

$$au_{k,\ell}(n) = \sum_{\pi \in \Pi_{n,k}^{\ell}} wt(\pi) \qquad \quad ext{for } 1 \leq k \leq N, \ 1 \leq \ell \leq n \wedge k.$$

Define array $z(n) = \{z_{k,\ell}(n): 1 \le k \le N, 1 \le \ell \le k \land n\}$ by

$$z_{k,1}(n) \cdots z_{k,\ell}(n) = \tau_{k\ell}(n) = \sum_{\pi \in \Pi_{n,k}^{\ell}} wt(\pi).$$

 $N = 4 \text{ array} z_{11}(n)$ $z_{22}(n) z_{21}(n) polymer$ $z_{33}(n) z_{32}(n) z_{31}(n)$ $z_{44}(n) z_{43}(n) z_{42}(n) z_{41}(n)$

$$au_{k,\ell}(n) = \sum_{\pi \in \Pi_{n,k}^{\ell}} wt(\pi) \qquad \quad ext{for } 1 \leq k \leq N, \ 1 \leq \ell \leq n \wedge k.$$

Define array $z(n) = \{z_{k,\ell}(n): 1 \le k \le N, 1 \le \ell \le k \land n\}$ by

$$z_{k,1}(n) \cdots z_{k,\ell}(n) = \tau_{k\ell}(n) = \sum_{\pi \in \Pi_{n,k}^{\ell}} wt(\pi).$$

N = 4 array $z_{11}(n)$

$$\begin{array}{ccc} z_{22}(n) & z_{21}(n) & polymer\\ z_{33}(n) & z_{32}(n) & z_{31}(n) \end{array}$$

$$z_{44}(n) & z_{43}(n) & z_{42}(n) & z_{41}(n) \end{array}$$

weight matrix
$$(Y_{i,j}) \mapsto \text{array } z(n)$$

is Kirillov's tropical RSK correspondence (2001).

weight matrix
$$(Y_{i,j}) \mapsto \text{array } z(n)$$

is Kirillov's tropical RSK correspondence (2001).

Obtained from classic, combinatorial RSK (Robinson-Schensted-Knuth) correspondence via $(max, +) \mapsto (+, \cdot)$.

weight matrix
$$(Y_{i,j}) \mapsto \operatorname{array} z(n)$$

is Kirillov's tropical RSK correspondence (2001).

Obtained from classic, combinatorial RSK (Robinson-Schensted-Knuth) correspondence via $(\max, +) \mapsto (+, \cdot)$.

As in RSK, time evolution of array z(n) algorithmically through row insertion:

weight matrix
$$(Y_{i,j}) \mapsto \operatorname{array} z(n)$$

is Kirillov's tropical RSK correspondence (2001).

Obtained from classic, combinatorial RSK (Robinson-Schensted-Knuth) correspondence via $(\max, +) \mapsto (+, \cdot)$.

As in RSK, time evolution of array z(n) algorithmically through row insertion:

 At time step n, column n from weight matrix inserted into array, entries {z_{k,ℓ}(n − 1)}_{k,ℓ} are updated to {z_{k,ℓ}(n)}_{k,ℓ}.

weight matrix
$$(Y_{i,j}) \mapsto \text{array } z(n)$$

is Kirillov's tropical RSK correspondence (2001).

Obtained from classic, combinatorial RSK (Robinson-Schensted-Knuth) correspondence via $(\max, +) \mapsto (+, \cdot)$.

As in RSK, time evolution of array z(n) algorithmically through row insertion:

- At time step n, column n from weight matrix inserted into array, entries {z_{k,ℓ}(n − 1)}_{k,ℓ} are updated to {z_{k,ℓ}(n)}_{k,ℓ}.
- Details not illuminating.

Assumption. Weights $\{Y_{n,j}\}$ are independent, $Y_{n,j} \sim \Gamma^{-1}(\hat{\theta}_n + \theta_j)$, where $\{\hat{\theta}_n, \theta_j\}$ are real parameters such that $\gamma_{n,j} \equiv \hat{\theta}_n + \theta_j > 0$.

Assumption. Weights $\{Y_{n,j}\}$ are independent, $Y_{n,j} \sim \Gamma^{-1}(\hat{\theta}_n + \theta_j)$, where $\{\hat{\theta}_n, \theta_j\}$ are real parameters such that $\gamma_{n,j} \equiv \hat{\theta}_n + \theta_j > 0$.

Can we say anything about partition function $z_{N,1}(n)$?

Assumption. Weights $\{Y_{n,j}\}$ are independent, $Y_{n,j} \sim \Gamma^{-1}(\hat{\theta}_n + \theta_j)$, where $\{\hat{\theta}_n, \theta_j\}$ are real parameters such that $\gamma_{n,j} \equiv \hat{\theta}_n + \theta_j > 0$.

Can we say anything about partition function $z_{N,1}(n)$?

Markov kernel Π_n for transition $z(n-1) \rightarrow z(n)$ of full array is complicated.

Assumption. Weights $\{Y_{n,j}\}$ are independent, $Y_{n,j} \sim \Gamma^{-1}(\hat{\theta}_n + \theta_j)$, where $\{\hat{\theta}_n, \theta_j\}$ are real parameters such that $\gamma_{n,j} \equiv \hat{\theta}_n + \theta_j > 0$.

Can we say anything about partition function $z_{N,1}(n)$?

Markov kernel Π_n for transition $z(n-1) \rightarrow z(n)$ of full array is complicated.

Bottom row

$$y(n) = (z_{N,1}(n), z_{N,2}(n), \dots, z_{N,N}(n))$$

of array turns out to be a more tractable Markov chain.

Assumption. Weights $\{Y_{n,j}\}$ are independent, $Y_{n,j} \sim \Gamma^{-1}(\hat{\theta}_n + \theta_j)$, where $\{\hat{\theta}_n, \theta_j\}$ are real parameters such that $\gamma_{n,j} \equiv \hat{\theta}_n + \theta_j > 0$.

Can we say anything about partition function $z_{N,1}(n)$?

Markov kernel Π_n for transition $z(n-1) \rightarrow z(n)$ of full array is complicated.

Bottom row

$$y(n) = (z_{N,1}(n), z_{N,2}(n), \dots, z_{N,N}(n))$$

of array turns out to be a more tractable Markov chain.

Theory of Markov functions is useful here.

 \exists Markov kernel Π for z(n) on space T.

Т

Т

П

 \exists Markov kernel Π for z(n) on space T.

 $\exists \mathsf{map} \phi: T \to Y.$

 \exists Markov kernel Π for z(n) on space T.

 $\exists \mathsf{map} \phi : T \to Y.$

When is $y(n) = \phi(z(n))$ Markov with kernel \overline{P} ?

 \exists Markov kernel Π for z(n) on space T.

 $\exists map \phi : T \to Y.$

When is $y(n) = \phi(z(n))$ Markov with kernel \overline{P} ?

Sufficient condition. Suppose \exists (positive but not necessary stochastic) kernels $P: Y \rightarrow Y$ and $K: Y \rightarrow T$ such that

 $K(y, \phi^{-1}(y)) = 1$ and $K \circ \Pi = P \circ K$

 \exists Markov kernel Π for z(n) on space T.

 $\exists map \phi : T \to Y.$

When is $y(n) = \phi(z(n))$ Markov with kernel \overline{P} ?

Sufficient condition. Suppose \exists (positive but not necessary stochastic) kernels $P: Y \rightarrow Y$ and $K: Y \rightarrow T$ such that

 $K(y, \phi^{-1}(y)) = 1$ and $K \circ \Pi = P \circ K$

Set w(y) = K(y, T).

 \exists Markov kernel Π for z(n) on space T.

 $\exists map \phi : T \to Y.$

When is $y(n) = \phi(z(n))$ Markov with kernel \overline{P} ?

Sufficient condition. Suppose \exists (positive but not necessary stochastic) kernels $P: Y \rightarrow Y$ and $K: Y \rightarrow T$ such that

 $K(y, \phi^{-1}(y)) = 1$ and $K \circ \Pi = P \circ K$

Set w(y) = K(y, T). Intertwining: Pw = w.

 \exists Markov kernel Π for z(n) on space T.

 $\exists map \phi : T \to Y.$

When is $y(n) = \phi(z(n))$ Markov with kernel \overline{P} ?

Sufficient condition. Suppose \exists (positive but not necessary stochastic) kernels $P: Y \rightarrow Y$ and $K: Y \rightarrow T$ such that

$$K(y, \phi^{-1}(y)) = 1$$
 and $K \circ \Pi = P \circ K$

Set w(y) = K(y, T). Intertwining: Pw = w. Define stochastic kernels

$$ar{K}(y,dz) = rac{1}{w(y)}K(y,dz)$$

 \exists Markov kernel Π for z(n) on space T.

 $\exists map \phi : T \to Y.$

When is $y(n) = \phi(z(n))$ Markov with kernel \overline{P} ?

Sufficient condition. Suppose \exists (positive but not necessary stochastic) kernels $P: Y \rightarrow Y$ and $K: Y \rightarrow T$ such that

$$K(y, \phi^{-1}(y)) = 1$$
 and $K \circ \Pi = P \circ K$

Set w(y) = K(y, T). Intertwining: Pw = w. Define stochastic kernels

$$ar{K}(y,dz) = rac{1}{w(y)}K(y,dz) \quad ext{and} \quad ar{P}(y,d ilde{y}) = rac{w(ilde{y})}{w(y)}P(y,d ilde{y})$$

Markov functions idea, continued

Markov functions idea, continued

Theorem. [Rogers and Pitman, 1981]

If z(n) starts with distribution $\overline{K}(y, dz)$, then y(n) is Markov in its own filtration with transition \overline{P} and initial state y(0) = y.

Spaces: \mathbb{T}_N = space of arrays *z* of size *N*

 $\mathbb{Y}_N = (0, \infty)^N$ = space of positive *N*-vectors *y*.

Spaces:
$$\mathbb{T}_N =$$
 space of arrays z of size N
 $\mathbb{Y}_N = (0, \infty)^N =$ space of positive N -vectors y .

Define a (substochastic) kernel P_n on \mathbb{Y}_N by

$$P_n(y, d\tilde{y}) = \prod_{i=1}^{N-1} \exp\left\{-\frac{\tilde{y}_{i+1}}{y_i}\right\} \prod_{j=1}^N \left(\Gamma(\gamma_{n,j})^{-1} \left(\frac{y_j}{\tilde{y}_j}\right)^{\gamma_{n,j}} \exp\left\{-\frac{y_j}{\tilde{y}_j}\right\} \frac{d\tilde{y}_j}{\tilde{y}_j}\right)$$

Spaces:
$$\mathbb{T}_N =$$
 space of arrays z of size N
 $\mathbb{Y}_N = (0, \infty)^N =$ space of positive N -vectors y .

Define a (substochastic) kernel P_n on \mathbb{Y}_N by

$$P_n(y, d\tilde{y}) = \prod_{i=1}^{N-1} \exp\left\{-\frac{\tilde{y}_{i+1}}{y_i}\right\} \prod_{j=1}^N \left(\Gamma(\gamma_{n,j})^{-1} \left(\frac{y_j}{\tilde{y}_j}\right)^{\gamma_{n,j}} \exp\left\{-\frac{y_j}{\tilde{y}_j}\right\} \frac{d\tilde{y}_j}{\tilde{y}_j}\right)$$

and intertwining kernel $K:\mathbb{Y}_N\to\mathbb{T}_N$ by

$$\begin{split} \mathcal{K}(y,dz) &= \prod_{1 \leq \ell \leq k < N} \left(\frac{z_{k,\ell}}{z_{k+1,\ell}} \right)^{\theta_{k+1} - \theta_{\ell}} \\ &\times \exp\left(- \frac{z_{k,\ell}}{z_{k+1,\ell}} - \frac{z_{k+1,\ell+1}}{z_{k,\ell}} \right) \frac{dz_{k,\ell}}{z_{k,\ell}} \prod_{\ell=1}^{N} \delta_{y_{\ell}}(dz_{N,\ell}) \end{split}$$

Then $K \circ \Pi_n = P_n \circ K$.

Then
$$K \circ \Pi_n = P_n \circ K$$
.

Bottom row y(n) of array is a MC with kernel

$$\bar{P}_n(y,d\tilde{y}) = rac{w(\tilde{y})}{w(y)} P_n(y,d\tilde{y})$$

where $w(y) = K(y, \mathbb{T}_N)$.

Then
$$K \circ \Pi_n = P_n \circ K$$
.

Bottom row y(n) of array is a MC with kernel

$$\bar{P}_n(y,d\tilde{y}) = rac{w(\tilde{y})}{w(y)}P_n(y,d\tilde{y})$$

where $w(y) = K(y, \mathbb{T}_N)$.

Kernels and intertwining make sense also for complex parameters.

Then
$$K \circ \Pi_n = P_n \circ K$$
.

Bottom row y(n) of array is a MC with kernel

$$\bar{P}_n(y,d\tilde{y}) = rac{w(\tilde{y})}{w(y)}P_n(y,d\tilde{y})$$

where $w(y) = K(y, \mathbb{T}_N)$.

Kernels and intertwining make sense also for complex parameters.

Beneficial because known special functions diagonalize the transition kernel.

 $GL(N, \mathbb{R})$ -Whittaker function is given for $y \in \mathbb{Y}_N$, with $\lambda \in \mathbb{C}^N$, by

$$\Psi_{\lambda}(y) = \prod_{i=1}^{N} y_i^{-\lambda_i} \int_{\mathbb{T}_N} K_{\lambda}(y, dz)$$

where K_{λ} is the previous intertwining kernel with θ replaced by λ . (Givental's integral representation in multiplicative variables.) $GL(N, \mathbb{R})$ -Whittaker function is given for $y \in \mathbb{Y}_N$, with $\lambda \in \mathbb{C}^N$, by

$$\Psi_{\lambda}(y) = \prod_{i=1}^{N} y_i^{-\lambda_i} \int_{\mathbb{T}_N} K_{\lambda}(y, dz)$$

where K_{λ} is the previous intertwining kernel with θ replaced by λ . (Givental's integral representation in multiplicative variables.)

Intertwining develops into

$$\int_{(0,\infty)^N} \frac{\Psi_{\theta+\lambda}(\tilde{y})}{\Psi_{\theta}(\tilde{y})} \ \bar{P}_n(y,d\tilde{y}) \ = \ \bigg(\prod_{i=1}^N \frac{\Gamma(\gamma_{n,i}+\lambda_i)}{\Gamma(\gamma_{n,i})}\bigg) \frac{\Psi_{\theta+\lambda}(y)}{\Psi_{\theta}(y)}$$

Utilizing Whittaker functions (analogous to Fourier analysis) find

$$\mathbb{E}(e^{-s z_{N,1}(n)}) = \int_{\iota \mathbb{R}^N} s^{\sum_{i=1}^N (\theta_i - \lambda_i)} \prod_{1 \le i, j \le N} \Gamma(\lambda_i - \theta_j) \\ \times \prod_{m=1}^n \prod_{i=1}^N \frac{\Gamma(\lambda_i + \hat{\theta}_m)}{\Gamma(\theta_i + \hat{\theta}_m)} s_N(\lambda) d\lambda$$

Utilizing Whittaker functions (analogous to Fourier analysis) find

$$\mathbb{E}(e^{-s z_{N,1}(n)}) = \int_{\iota \mathbb{R}^N} s^{\sum_{i=1}^N (\theta_i - \lambda_i)} \prod_{1 \le i, j \le N} \Gamma(\lambda_i - \theta_j) \\ \times \prod_{m=1}^n \prod_{i=1}^N \frac{\Gamma(\lambda_i + \hat{\theta}_m)}{\Gamma(\theta_i + \hat{\theta}_m)} s_N(\lambda) d\lambda$$

with Sklyanin measure
$$s_N(\lambda) = \frac{1}{(2\pi\iota)^N N!} \prod_{j \neq k} \Gamma(\lambda_j - \lambda_k)^{-1}.$$

Utilizing Whittaker functions (analogous to Fourier analysis) find

$$\mathbb{E}(e^{-s z_{N,1}(n)}) = \int_{\iota \mathbb{R}^N} s^{\sum_{i=1}^N (\theta_i - \lambda_i)} \prod_{1 \le i, j \le N} \Gamma(\lambda_i - \theta_j) \\ \times \prod_{m=1}^n \prod_{i=1}^N \frac{\Gamma(\lambda_i + \hat{\theta}_m)}{\Gamma(\theta_i + \hat{\theta}_m)} s_N(\lambda) d\lambda$$

with Sklyanin measure
$$s_N(\lambda) = rac{1}{(2\pi\iota)^N N!} \prod_{j
eq k} \Gamma(\lambda_j - \lambda_k)^{-1}.$$

Future goal: asymptotics for distribution of $\log z_{N,1}(n)$?

Work in progress: intermediate disorder exponents

Work in progress: intermediate disorder exponents

Fluctuation exponents:

- $n^{\chi} \sim \text{order of fluctuations of } \log Z_n$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

Intermediate disorder regime: take $\beta = \beta_0 n^{-\alpha}$.

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

Intermediate disorder regime: take $\beta = \beta_0 n^{-\alpha}$.

Interesting window $\alpha \in [0, 1/4]$.

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

Intermediate disorder regime: take $\beta = \beta_0 n^{-\alpha}$.

Interesting window $\alpha \in [0, 1/4]$.

 $\alpha = 0$ KPZ universality $\alpha = 1/4$ diffusive regime.

- $n^{\chi} \sim \text{order of fluctuations of } \log Z_n$
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

Intermediate disorder regime: take $\beta = \beta_0 n^{-\alpha}$.

Interesting window $\alpha \in [0, 1/4]$.

 $\alpha = 0$ KPZ universality $\alpha = 1/4$ diffusive regime.

Alberts-Khanin-Quastel conj: $\chi(\alpha) = \frac{1}{3}(1-4\alpha)$ $\zeta(\alpha) = \frac{2}{3}(1-\alpha)$.

- $n^{\chi} \sim$ order of fluctuations of log Z_n
- $n^{\zeta} \sim$ order of fluctuations of the polymer path

 KPZ:
 $\chi = 1/3$ $\zeta = 2/3$ $(\beta > 0)$

 Diffusive:
 $\chi = 0$ $\zeta = 1/2$ $(\beta = 0)$

Intermediate disorder regime: take $\beta = \beta_0 n^{-\alpha}$.

Interesting window $\alpha \in [0, 1/4]$.

 $\alpha = 0$ KPZ universality $\alpha = 1/4$ diffusive regime.

Alberts-Khanin-Quastel conj: $\chi(\alpha) = \frac{1}{3}(1-4\alpha)$ $\zeta(\alpha) = \frac{2}{3}(1-\alpha)$.

Theorem. These exponents valid for stationary semidiscrete polymer. Upper bounds valid for model without boundaries. [Moreno, S, Valkó]

Explicit large deviations for $\log Z$

L.m.g.f. of log Y, $Y \sim \Gamma^{-1}(\mu)$:

$$M_{\mu}(\xi) = \log \mathbb{E}(e^{\xi \log Y}) = \begin{cases} \log \Gamma(\mu - \xi) - \log \Gamma(\mu) & \xi \in (-\infty, \mu) \\ \infty & \xi \in [\mu, \infty). \end{cases}$$

Explicit large deviations for $\log Z$

L.m.g.f. of log Y, $Y \sim \Gamma^{-1}(\mu)$:

$$M_{\mu}(\xi) = \log \mathbb{E}(e^{\xi \log Y}) = \begin{cases} \log \Gamma(\mu - \xi) - \log \Gamma(\mu) & \xi \in (-\infty, \mu) \\ \infty & \xi \in [\mu, \infty). \end{cases}$$

For i.i.d. $\Gamma^{-1}(\mu)$ model, let

$$\Lambda_{s,t}(\xi) = \lim_{n \to \infty} n^{-1} \log \mathbb{E}(e^{\xi \log Z_{ns,nt}}), \qquad \xi \in \mathbb{R}$$

Explicit large deviations for $\log Z$

L.m.g.f. of log Y, $Y \sim \Gamma^{-1}(\mu)$:

$$M_{\mu}(\xi) = \log \mathbb{E}(e^{\xi \log Y}) = \begin{cases} \log \Gamma(\mu - \xi) - \log \Gamma(\mu) & \xi \in (-\infty, \mu) \\ \infty & \xi \in [\mu, \infty). \end{cases}$$

For i.i.d. $\Gamma^{-1}(\mu)$ model, let

$$\Lambda_{s,t}(\xi) = \lim_{n \to \infty} n^{-1} \log \mathbb{E}(e^{\xi \log Z_{ns,nt}}), \qquad \xi \in \mathbb{R}$$

Theorem. [Georgiou, S 2011]

$$egin{aligned} \Lambda_{s,t}(\xi) &= egin{cases} p(s,t)\xi & \xi < 0 \ &\inf_{ heta \in (\xi,\mu)} ig\{ t M_ heta(\xi) - s M_{\mu- heta}(-\xi) ig\} & 0 \leq \xi < \mu \ &\infty & \xi \geq \mu. \end{aligned}$$

• $\Lambda_{s,t}$ linear on \mathbb{R}_{-} because for r < p(s,t)

$$\lim_{n\to\infty} n^{-1}\log \mathbb{P}\{\log Z_{ns,nt} \leq nr\} = -\infty.$$

• $\Lambda_{s,t}$ linear on \mathbb{R}_{-} because for r < p(s,t) $\lim_{n \to \infty} n^{-1} \log \mathbb{P}\{\log Z_{ns,nt} \le nr\} = -\infty.$

• Right tail LDP: for $r \ge p(s, t)$

$$J_{s,t}(r) \equiv -\lim_{n \to \infty} n^{-1} \log \mathbb{P}\{\log Z_{ns,nt} \ge nr\} = \Lambda_{s,t}^*(r)$$

• $\Lambda_{s,t}$ linear on \mathbb{R}_{-} because for r < p(s,t) $\lim_{n \to \infty} n^{-1} \log \mathbb{P}\{\log Z_{ns,nt} \le nr\} = -\infty.$

• Right tail LDP: for $r \ge p(s, t)$

$$J_{s,t}(r) \equiv -\lim_{n \to \infty} n^{-1} \log \mathbb{P}\{\log Z_{ns,nt} \ge nr\} = \Lambda_{s,t}^*(r)$$

• Proof of formula for $\Lambda_{s,t}$ goes by first finding $J_{s,t}$ and then convex conjugation.

Starting point for proof of large deviations

Starting point for proof of large deviations

Divide by $\prod_{j=1}^{nt} V_{0,j}$:

$$\prod_{i=1}^{ns} U_{i,nt} = \sum_{\ell=1}^{nt} \left(\prod_{j=\ell+1}^{nt} V_{0,j}^{-1} \right) Z_{(1,\ell),(ns,nt)} + \sum_{k=1}^{ns} \left(\prod_{j=1}^{nt} V_{0,j}^{-1} \right) \left(\prod_{i=1}^{k} U_{i,0} \right) Z_{(k,1),(ns,nt)}$$

Starting point for proof of large deviations

Divide by $\prod_{j=1}^{nt} V_{0,j}$:

$$\prod_{i=1}^{ns} U_{i,nt} = \sum_{\ell=1}^{nt} \left(\prod_{j=\ell+1}^{nt} V_{0,j}^{-1} \right) Z_{(1,\ell),(ns,nt)} + \sum_{k=1}^{ns} \left(\prod_{j=1}^{nt} V_{0,j}^{-1} \right) \left(\prod_{i=1}^{k} U_{i,0} \right) Z_{(k,1),(ns,nt)}$$

Now we know LDP for log(l.h.s) and can extract log Z from the r.h.s.