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The model: directed polymer in a random environment
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0 space Zd

time N

simple random walk measure P, expectation E

space-time environment {ω(k, x) : k ∈ N, x ∈ Zd}

inverse temperature β > 0

quenched probability measure on paths

Qn{x �} =
1

Zn
exp
{
β

n∑
k=1

ω(k , xk)
}
P{x �}

partition function Zn = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
} ]

P probability distribution on ω, often {ω(k, x)} i.i.d.

MSRI May 2012 3/51



The model: directed polymer in a random environment

-�

6

••
••
••
••
••
••
••
••

••
••
•

��
@
�
@

@
�
�

0 space Zd

time N simple random walk measure P, expectation E

space-time environment {ω(k, x) : k ∈ N, x ∈ Zd}

inverse temperature β > 0

quenched probability measure on paths

Qn{x �} =
1

Zn
exp
{
β

n∑
k=1

ω(k , xk)
}
P{x �}

partition function Zn = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
} ]

P probability distribution on ω, often {ω(k, x)} i.i.d.

MSRI May 2012 3/51



The model: directed polymer in a random environment

-�

6

••
••
••
••
••
••
••
••

••
••
•

��
@
�
@

@
�
�

0 space Zd

time N simple random walk measure P, expectation E

space-time environment {ω(k , x) : k ∈ N, x ∈ Zd}

inverse temperature β > 0

quenched probability measure on paths

Qn{x �} =
1

Zn
exp
{
β

n∑
k=1

ω(k , xk)
}
P{x �}

partition function Zn = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
} ]

P probability distribution on ω, often {ω(k, x)} i.i.d.

MSRI May 2012 3/51



The model: directed polymer in a random environment

-�

6

••
••
••
••
••
••
••
••

••
••
•

��
@
�
@

@
�
�

0 space Zd

time N simple random walk measure P, expectation E

space-time environment {ω(k , x) : k ∈ N, x ∈ Zd}

inverse temperature β > 0

quenched probability measure on paths

Qn{x �} =
1

Zn
exp
{
β

n∑
k=1

ω(k , xk)
}
P{x �}

partition function Zn = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
} ]

P probability distribution on ω, often {ω(k, x)} i.i.d.

MSRI May 2012 3/51



The model: directed polymer in a random environment

-�

6

••
••
••
••
••
••
••
••

••
••
•

��
@
�
@

@
�
�

0 space Zd

time N simple random walk measure P, expectation E

space-time environment {ω(k , x) : k ∈ N, x ∈ Zd}

inverse temperature β > 0

quenched probability measure on paths

Qn{x �} =
1

Zn
exp
{
β

n∑
k=1

ω(k , xk)
}
P{x �}

partition function Zn = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
} ]

P probability distribution on ω, often {ω(k, x)} i.i.d.

MSRI May 2012 3/51



The model: directed polymer in a random environment

-�

6

••
••
••
••
••
••
••
••

••
••
•

��
@
�
@

@
�
�

0 space Zd

time N simple random walk measure P, expectation E

space-time environment {ω(k , x) : k ∈ N, x ∈ Zd}

inverse temperature β > 0

quenched probability measure on paths

Qn{x �} =
1

Zn
exp
{
β

n∑
k=1

ω(k , xk)
}
P{x �}

partition function Zn = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
} ]

P probability distribution on ω, often {ω(k, x)} i.i.d.

MSRI May 2012 3/51



The model: directed polymer in a random environment

-�

6

••
••
••
••
••
••
••
••

••
••
•

��
@
�
@

@
�
�

0 space Zd

time N simple random walk measure P, expectation E

space-time environment {ω(k , x) : k ∈ N, x ∈ Zd}

inverse temperature β > 0

quenched probability measure on paths

Qn{x �} =
1

Zn
exp
{
β

n∑
k=1

ω(k , xk)
}
P{x �}

partition function Zn = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
} ]

P probability distribution on ω, often {ω(k , x)} i.i.d.

MSRI May 2012 3/51



Key quantities again:

Quenched measure Qn{x �} =
1

Zn
exp
{
β

n∑
k=1

ω(k, xk)
}
P{x �}

Partition function Zn = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
} ]

Questions:

Behavior of walk X � under Qn on large scales: fluctuation exponents,
central limit theorems, large deviations

Behavior of logZn (now also random as a function of ω)

Dependence on β and d
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Model introduced by Huse and Henley 1985.

Early rigorous results: diffusive behavior for d ≥ 3 and small β > 0:

1988 Imbrie and Spencer: n−1EQ(|x(n)|2)→ c P-a.s.

1989 Bolthausen: quenched CLT for n−1/2x(n).
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1. General d + 1 dimensional model
1.1. Weak and strong disorder

[1989-2010: Imbrie, Spencer, Bolthausen, Carmona, Hu, Albeverio, Zhou,
Comets, Shiga, Yoshida, Vargas, Lacoin]

λ(β) = logE(eβω(0,0)) EZn = enλ(β)

Wn =
Zn

EZn
= E

[
eβ

∑n
k=1 ω(k,Xk )−nλ(β)

]
is a martingale with filtration Gn = σ{ω(k , x) : k ≤ n, x ∈ Zd}.

Martingale convergence theorem: Wn →W∞ w.p.1.

Kolmogorov’s 0-1 law: P(W∞ > 0) = 0 or 1.
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Wn =
Zn

EZn
→W∞

Definition.

{
Weak disorder: W∞ > 0

Strong disorder: W∞ = 0.

{Wn} uniformly integrable ⇐⇒ W∞ > 0 (weak disorder)

Theorem. ∃βc ∈ [0,∞] such that

β ∈ [0, βc) =⇒ weak disorder

β ∈ (βc ,∞) =⇒ strong disorder

For d ∈ {1, 2} βc = 0, while for d ≥ 3 βc ∈ (0,∞].
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Alternative transition via free energy.

p(β) = lim
n→∞

n−1 logWn = lim
n→∞

n−1E(logWn).

Jensen’s inequality: p(β) ≤ 0.

∃ β′c such that

{
β < β′c =⇒ p(β) = 0

β > β′c =⇒ p(β) < 0.

β > β′c very strong disorder.

Very strong disorder ⊆ strong disorder.

Open question: Are these always the same?

In d ∈ {1, 2} βc = β′c = 0.
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Central limit theorem in weak disorder

X
(n)
t = n−1/2Xbntc

Bt = BM on Rd with diffusion matrix d−1I

Theorem. Under d ≥ 3 and weak disorder,

EQωn [G (X
(n)
� )]→ E[G (B �)] in P-probability.

Proof idea. Construct RWRE Qω using W∞ > 0 as a density.

[Comets and Yoshida, 2006]
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Very strong disorder

If W∞ = 0 then P-a.s. for large n

− logWn ≤ C
n∑

k=1

Qω
k−1(Xk = X̃k).

In very strong disorder Wn → 0 exp. fast, hence localization:

lim
n→∞

max
x

Qω
n (Xn = x) ≥ c > 0 P-a.s.

Sufficient conditions for very strong disorder:

d = 1 or 2

βλ′(β)− λ(β) > log(2d). True for some distributions if β large
enough.
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1. General d + 1 dimensional model
1.2 Variational formulas, large deviations
[Rassoul-Agha, S, Yilmaz]

Question: describe P-a.s. limit lim
n→∞

n−1 logZn

Generalize: E0 = expectation under arbitrary background RW Xn on Zν .

R = set of admissible steps.

n−1 logZn = n−1 log E0

[
eβ

∑n−1
k=0 ωXk

]
= n−1 log E0

[
e
∑n−1

k=0 g(TXk
ω,Zk+1,k+`)

]
Introduced shift (Txω)y = ωx+y , steps Zk = Xk − Xk−1 ∈ R,

Z1,` = (Z1,Z2, . . . ,Z`).

g(ω, z1,`) is a function on Ω` = Ω×R`.
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Define empirical measure Rn = n−1
n−1∑
k=0

δTXk
ω,Zk+1,k+`

a random probability measure on Ω`.

n−1 logZn = n−1 log E0

[
enRn(g)

]
Task: understand large deviations of P0{Rn ∈ · } under P-a.e. fixed ω
(quenched).

Process: Markov chain (TXnω,Zn+1,n+`) on Ω` under a fixed ω.

Evolution: pick random step z from R, then execute move

Sz : (ω, z1,`) 7→ (Tz1ω, z2,`z).

Kernel p on Ω` : p(η,Szη) = |R|−1 for η = (ω, z1,`).
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Entropy

For µ ∈M1(Ω`), q Markov kernel on Ω`, usual relative entropy on Ω2
` :

H(µ× q |µ× p) =

∫
Ω`

∑
z∈R

q(η,Szη) log
q(η,Szη)

p(η,Szη)
µ(dη).

The effect of P in the background?

Let µ0 = Ω-marginal of µ ∈M1(Ω`). Define

HP(µ) =

{
inf
{
H(µ× q |µ× p) : µq = µ

}
if µ0 � P

∞ otherwise.

Infimum taken over Markov kernels q that fix µ.

HP convex but not lower semicontinuous.
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Assumptions.

Environment {ωx} IID under P.

g local function on Ω` , E|g |p <∞ for some p > ν.

Theorem. Deterministic limit

Λ(g) = lim
n→∞

n−1 log E0

[
enRn(g)

]
exists P-a.s.

and Λ(g) = H#
P (g) ≡ sup

µ
sup
c>0

{
Eµ[g ∧ c] − HP(µ)

}
.

Remarks.

Λ(g) > −∞.

IID directed & ∃p > ν : E|g |p <∞ ⇒ Λ(g) finite.

With higher moments of g admit mixing P.

Analogous result for point-to-point free energy.
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Quenched weak LDP (large deviation principle) under Qn.

Qn(A) =
1

E0

[
enRn(g)

] E0

[
enRn(g)1A(ω,Z1,∞)

]

Rate function I (µ) = inf
c>0
{HP(µ)− Eµ(g ∧ c) + Λ(g) }.

Theorem. Assumptions as above and Λ(g) finite. Then P-a.s.

for compact F ⊆M1(Ω`) and open G ⊆M1(Ω`):

lim
n→∞

n−1 logQn{Rn ∈ F} ≤ − inf
µ∈F

I ∗∗(µ)

lim
n→∞

n−1 logQn{Rn ∈ G} ≥ − inf
µ∈G

I ∗∗(µ)

IID environment, directed walk ⇒ full LDP holds.
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2. 1+1 dim systems
2.1. KPZ and EW universality

Two different universality classes for 1+1 dim systems.

Kardar-Parisi-Zhang (KPZ)

time ∼ n, spatial correlations ∼ n2/3, fluctuations ∼ n1/3

limits related to Tracy-Widom distributions

Edwards-Wilkinson (EW)

time ∼ n, spatial correlations ∼ n1/2, fluctuations ∼ n1/4

Gaussian limits
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KPZ class: 1+1 dim directed polymer
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0 space Z

time N {ω(k , x)} i.i.d. under P

Zn = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
} ]

Zn,u = E
[
exp
{
β

n∑
k=1

ω(k ,Xk)
}
, Xn = u

]

Qn(x �) =
1

Zn
exp
{
β

n∑
k=1

ω(k , xk)
}
P(x �)
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Expected KPZ behavior

Conjectures. Under a moment assumption on weights:

logZn,nx − nf (x)

cn1/3

d−→ FGUE (Tracy-Widom)

Under averaged measure EQn path fluctuations of order n2/3.

Endpoint of path ∼ T = arg max
t∈R
{A2(t)− t2}, where

A2 = Airy2 process. Polymer endpoint distribution. [Moreno, Quastel, Remenik]

Known.

Partial results for a handful of exactly solvable models.

“Weak universality” of Alberts-Khanin-Quastel.
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Kardar-Parisi-Zhang (KPZ) universality

In KPZ class also

zero-temperature polymer, or last-passage percolation model

Other 1+1 dim growth models (PNG, ballistic deposition)

particle systems with drift and nonlinear flux function (ASEP, ZRP)
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EW class: Random average process (RAP)

Zk

state of the system is

a function σ : Z→ R

Discrete-time evolution:

σt(k) =
∑
j

ωt,k( j)σt−1(k + j)

ωt,k = (ωt,k( j) : | j | ≤ R) random probability vectors, IID over (t, k)
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RAP scaling limit

v =
∑
x

x Eω(x) σ2 =
∑
x

(x − v)2 Eω(x).

Initially σ(0) = 0, IID increments {σi (0)− σi−1(0)}.

Scaled height process

zn(t, r) = n−1/4
{
σbntc(−bntvc+ br

√
n c)− µ0r

√
n
}
, (t, r) ∈ R+ × R.

Theorem. [Balázs, Rassoul-Agha, S. 2006] zn(t, r)⇒ Z (t, r) where Z is the
Gaussian process

Z (t, r) = c1

∫∫
[0,t]×R

ϕσ2(t−s)(r − x) dW (s, x) + c2

∫
R

ϕσ2t(r − x)B(x) dx
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Edwards-Wilkinson (EW) universality

RAP is an example from the EW universality class.

In this class also

current of independent random walks (incl. RWRE)

symmetric simple exclusion process

Hammersley’s serial harness process
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KPZ equation

1986 Kardar, Parisi and Zhang: general model for height function h(t, x)
of a 1+1 dimensional growing interface:

ht = 1
2 hxx + 1

2 (hx)2 +
�
W

Rigorous meaning was unclear.

Formally, Z = exp(h) satisfies a stochastic heat equation (SHE):

Zt = 1
2 Zxx + Z

�
W

Define h = logZ as the Hopf-Cole solution of KPZ.
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KPZ behavior of KPZ equation

Balázs, Quastel, and S. (2011): With initial height function

h(0, x) a two-sided Brownian motion in x ∈ R,

C1t
2/3 ≤ Var(h(t, 0)) ≤ C2t

2/3

Amir-Corwin-Quastel and Sasamoto-Spohn (2011):

Start SHE with Z (0, x) = δ0(x).

Found explicit probability distribution for h(t, x).

Cross-over distribution because it has{
Tracy-Widom FGUE limit in the scale t1/3 as t ↗∞

Gaussian limit in the scale t1/4 as t ↘ 0.
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Role of KPZ equation

Member of the KPZ universality class because long-term behavior has
right exponent and FGUE limit.

Universal cross-over between KPZ class and EW class.

Limit of discrete models when asymmetry or noise suitably tuned to
zero as the limit is taken.

First result Bertini and Giacomin 1997: height function of weakly
asymmetric simple exclusion process converges to Hopf-Cole solution
of KPZ.
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2. 1+1 dim systems
2.2 Exactly solvable directed polymers

Three exactly solvable 1+1 dim models (positive temperature)

Continuum directed random polymer, or Hopf-Cole solution of the
KPZ equation, or logZ where Z solves SHE.

Semidiscrete polymer, or cont-time RW paths in Brownian
environment (O’Connell-Yor 2001).

Log-gamma polymer (S 2009).

Borodin-Corwin: a common algebraic framework, Macdonald processes.

Next brief look at the two discrete models.
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Semidiscrete polymer

Environment: independent Brownian motions B1,B2,B3, . . .

Partition function:

Zn,t(β) =

∫
0<s1<···<sn−1<t

exp
[
β
(
B1(s1) + B2(s2)− B2(s1) +

+ B3(s3)− B3(s2) + · · ·+ Bn(t)− Bn(sn−1)
)]

ds1,n−1

Results:

Model by O’Connell-Yor (2001).

KPZ exponents by Valkó-S (2010).

Link to quantum Toda lattice via tropical combinatorics by O’Connell
(2010).

Tracy-Widom limit by Borodin-Corwin (2011). Next talk!
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Log-gamma polymer

-

6

• •
• • •• •
• •
•

1 m
1

n

Πm,n = { up-right lattice paths x � : (1, 1)→ (m, n) }

Weights Yi, j = eω(i,j)

IID environment ω = {Yi, j : (i , j) ∈ N2}

Partition function: Zm,n =
∑

x �∈Πm,n

n∏
k=1

Yxk

Fix 0 < µ <∞, take Y−1
i, j ∼ Gamma(µ). Gamma density: f (x) = 1

Γ(µ)
xµ−1e−x

Results:

Model and KPZ exponents (S 2010).

Large deviations (Georgiou, S 2011).

Tropical combinatorics (Corwin, O’Connell, S, Zygouras 2011).
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2. 1+1 dim systems
2.3 Log-gamma polymer

What is special about this choice of weight distribution?

1. The process has a stationary version

This enables us to derive

explicit free energy density

some explicit large deviation rate functions for logZ

some KPZ exponents for logZ and the path.

2. It can be “solved” with ideas from tropical combinatorics

This yields

an explicit formula for the Laplace transform of Z
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Stationary version of log-gamma polymer

Parameters 0 < θ < µ.

Bulk weights Yi , j for i , j ∈ N = {1, 2, 3, . . . } as before.

Boundary weights Ui ,0 = Yi ,0 and V0, j = Y0, j .

-

6

0 1 2 . . .

0

1

...

1

V0, j

Ui,0

Yi, j

Yi , j ∼ Gamma−1(µ)

Ui ,0 ∼ Gamma−1(θ)

V0, j ∼ Gamma−1(µ− θ)
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Stationary in what sense?

In (µ, θ)-model, compute Zm,n ∀ (m, n) ∈ Z2
+ and define

Um,n =
Zm,n

Zm−1,n
Vm,n =

Zm,n

Zm,n−1
Xm,n =

( Zm,n

Zm+1,n
+

Zm,n

Zm,n+1

)−1

For an undirected edge f :

{
Uf = Ux if f = {x − e1, x} (horiz)

Vf = Vx if f = {x − e2, x} (vert)

down-right path (zk) with

edges fk = {zk−1, zk}, k ∈ Z
�	

Ufk

� Vf`

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
• • interior points u of path (zk)

PPqXu
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•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

� Vf`

�	
UfkPPqXu

Theorem.

For any fixed down-right path,

{Ufk ,Vf` , Xu} are independent

with marginals

Ufk ∼ Gamma−1(θ)

Vf` ∼ Gamma−1(µ− θ)

Xu ∼ Gamma−1(µ)

There is an analogous property for last-passage percolation with
exponential weights that is a generalization of Burke’s Theorem (Output
Theorem) for M/M/1 queues.

Hence we could call this the “Burke property” of the log-gamma polymer.
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Taking advantage of the stationarity

-

6

0

0 1

V0, j

Ui,0

Yi, j

Initial weights (i , j ∈ N):

U−1
i,0 ∼ Gamma(θ), V−1

0, j ∼ Gamma(µ− θ)

Y−1
i, j ∼ Gamma(µ)

Coupling of two log-gamma models:

Original one with IID bulk weights, paths (1, 1)→ (m, n)

Stationary one, paths (0, 0)→ (m, n)

Strategy: (i) derive results for the stationary process, (ii) use coupling to
pass results to the original IID model.

Let us look at fluctuation exponents for logZ .
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Fluctuation exponents: stationary case

ξx

Exit point of path from x-axis

ξx = max{k ≥ 0 : xi = (i , 0) for 0 ≤ i ≤ k}

For θ, x > 0 define positive function

L(θ, x) =

∫ x

0

(
Ψ0(θ)− log y

)
x−θyθ−1ex−y dy

Theorem. For the stationary case,

Var
[
logZm,n

]
= nΨ1(µ− θ)−mΨ1(θ) + 2Em,n

[ ξx∑
i=1

L(θ,Y−1
i ,0 )

]
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Remark: polygamma functions

Ψn(s) =
dn+1

dsn+1
log Γ(s), n ≥ 0

These appear naturally because for Y−1 ∼ Gamma(µ)

E(logY ) = −Ψ0(µ) (digamma function)

Var(logY ) = Ψ1(µ) (trigamma function)

MSRI May 2012 35/51



Fluctuation exponent: stationary case

With 0 < θ < µ fixed and N ↗∞ assume

|m − NΨ1(µ− θ) | ≤ CN2/3 and | n − NΨ1(θ) | ≤ CN2/3 (1)

Theorem: Variance bounds in characteristic direction

For (m, n) as in (1), C1N
2/3 ≤ Var(logZm,n) ≤ C2N

2/3 .

Theorem: Off-characteristic CLT

Suppose n = Ψ1(θ)N and m = Ψ1(µ− θ)N + γNα with γ > 0, α > 2/3.
Then

N−α/2
{

logZm,n − E
(
logZm,n

)}
⇒ N

(
0, γΨ1(θ)

)
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Fluctuation bounds: original i.i.d. case

ps,t(µ) ≡ lim
N→∞

logZNs,Nt

N
= inf

θ∈(0,µ)
{−sΨ0(θ)− tΨ0(µ− θ)}

Theorem. Upper bound for fluctuation exponent:

P
{
| logZNs,Nt − Nps,t(µ) | ≥ bN1/3

}
≤ Cb−3/2

Proof idea. Couple to a stationary process with θ ∈ (0, µ) chosen by

sΨ1(θ)− tΨ1(µ− θ) = 0

Remark. Corresponding bounds exist for path with KPZ exponent 2/3.
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Combinatorial approach to log-gamma polymer

-• •
•
•
• • •
• •
• •
• • •

1 n

k

1

N

Fix N, let 1 ≤ k ≤ N and n ≥ 1 vary.

Π1
n,k = { admissible paths (1, 1) → (n, k) }

zk,1(n) =
∑
π∈Π1

n,k

wt(π) where

weight wt(π) =
∏

(i, j)∈π Yi, j

Π`n,k = { `-tuples π = (π1, . . . , π`) of disjoint

paths πj : (1, j) → (n, k − j + 1) }

-• • • • • • • •
•
•
•

• • • •

• • • • • • •

•
•

• • • • • •
• • •

•
•
•

1 n

k

k − 1

k − 2

1

2

3

N

weight wt(π) =
∏

(i, j)∈π Yi, j

τk,`(n) =
∑
π∈Π`n,k

wt(π)
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The sum of the weights of the `-tuples of non-intersecting paths

τk,`(n) =
∑
π∈Π`n,k

wt(π) for 1 ≤ k ≤ N, 1 ≤ ` ≤ n ∧ k .

Define array z(n) = {zk,`(n) : 1 ≤ k ≤ N, 1 ≤ ` ≤ k ∧ n} by

zk,1(n) · · · zk,`(n) = τk`(n) =
∑
π∈Π`n,k

wt(π).

N = 4 array z11(n)

z22(n) z21(n) polymer

z33(n) z32(n) z31(n)

z44(n) z43(n) z42(n) z41(n)
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The mapping
weight matrix (Yi , j) 7→ array z(n)

is Kirillov’s tropical RSK correspondence (2001).

Obtained from classic, combinatorial RSK (Robinson-Schensted-Knuth)
correspondence via (max ,+) 7→ (+ , · ).

As in RSK, time evolution of array z(n) algorithmically through
row insertion:

At time step n, column n from weight matrix inserted into array,
entries {zk,`(n − 1)}k,` are updated to {zk,`(n)}k,`.

Details not illuminating.
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Make the input random.

Assumption. Weights {Yn, j} are independent, Yn, j ∼ Γ−1(θ̂n + θj),

where {θ̂n, θj} are real parameters such that γn, j ≡ θ̂n + θj > 0.

Can we say anything about partition function zN,1(n) ?

Markov kernel Πn for transition z(n − 1)→ z(n) of full array is
complicated.

Bottom row
y(n) = (zN,1(n), zN,2(n), . . . , zN,N(n))

of array turns out to be a more tractable Markov chain.

Theory of Markov functions is useful here.
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General Markov functions idea

∃ Markov kernel Π for z(n) on space T . T

?
T

Π∃ map φ : T → Y .

-φ
Y

-φ
Y

When is y(n) = φ(z(n)) Markov with kernel P̄ ?
?
P̄ ?

Sufficient condition. Suppose ∃ (positive but not necessary stochastic)
kernels P : Y → Y and K : Y → T such that

K (y , φ−1(y)) = 1 and K ◦ Π = P ◦ K

Set w(y) = K (y ,T ). Intertwining: Pw = w . Define stochastic kernels

K̄ (y , dz) =
1

w(y)
K (y , dz) and P̄(y , dỹ) =

w(ỹ)

w(y)
P(y , dỹ)
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w(ỹ)

w(y)
P(y , dỹ)
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w(ỹ)

w(y)
P(y , dỹ)
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Markov functions idea, continued

T

?
T

Π

-φ
Y�

K̄

-φ
Y
?
P̄

�
K̄

Then K̄ ◦ Π = P̄ ◦ K̄

Theorem. [Rogers and Pitman, 1981]

If z(n) starts with distribution K̄ (y , dz), then y(n) is Markov

in its own filtration with transition P̄ and initial state y(0) = y .
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Application of Markov functions to our array z(n)

Spaces: TN = space of arrays z of size N

YN = (0,∞)N = space of positive N-vectors y .

Define a (substochastic) kernel Pn on YN by

Pn(y , dỹ) =
N−1∏
i=1

exp

{
− ỹi+1

yi

} N∏
j=1

(
Γ(γn, j)

−1

(
yj
ỹj

)γn, j
exp

{
−
yj
ỹj

}
dỹj
ỹj

)
and intertwining kernel K : YN → TN by

K (y , dz) =
∏

1≤`≤k<N

(
zk,`
zk+1,`

)θk+1−θ`

× exp

(
−

zk,`
zk+1,`

−
zk+1,`+1

zk,`

)
dzk,`
zk,`

N∏
`=1

δy`(dzN,`)
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Application of Markov functions to our array z(n)

Then K ◦ Πn = Pn ◦ K .

Bottom row y(n) of array is a MC with kernel

P̄n(y , dỹ) =
w(ỹ)

w(y)
Pn(y , dỹ)

where w(y) = K (y ,TN).

Kernels and intertwining make sense also for complex parameters.

Beneficial because known special functions diagonalize the transition
kernel.
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w(ỹ)

w(y)
Pn(y , dỹ)
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Whittaker functions

GL(N,R)-Whittaker function is given for y ∈ YN , with λ ∈ CN , by

Ψλ(y) =
N∏
i=1

y−λii

∫
TN

Kλ(y , dz)

where Kλ is the previous intertwining kernel with θ replaced by λ.

(Givental’s integral representation in multiplicative variables.)

Intertwining develops into∫
(0,∞)N

Ψθ+λ(ỹ)

Ψθ(ỹ)
P̄n(y , dỹ) =

( N∏
i=1

Γ(γn,i + λi )

Γ(γn,i )

)
Ψθ+λ(y)

Ψθ(y)
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Goal: polymer partition function zN,1(n) (first element of bottom row).

Utilizing Whittaker functions (analogous to Fourier analysis) find

E(e−s zN,1(n)) =

∫
ιRN

s
∑N

i=1(θi−λi )
∏

1≤i , j≤N
Γ(λi − θj)

×
n∏

m=1

N∏
i=1

Γ(λi + θ̂m)

Γ(θi + θ̂m)
sN(λ) dλ

with Sklyanin measure sN(λ) =
1

(2πι)NN!

∏
j 6=k

Γ(λj − λk)−1.

Future goal: asymptotics for distribution of log zN,1(n)?
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Work in progress: intermediate disorder exponents

Fluctuation exponents:

nχ ∼ order of fluctuations of logZn

nζ ∼ order of fluctuations of the polymer path

KPZ: χ = 1/3 ζ = 2/3 (β > 0)

Diffusive: χ = 0 ζ = 1/2 (β = 0)

Intermediate disorder regime: take β = β0n
−α.

Interesting window α ∈ [0, 1/4].

α = 0 KPZ universality α = 1/4 diffusive regime.

Alberts-Khanin-Quastel conj: χ(α) = 1
3 (1− 4α) ζ(α) = 2

3 (1− α).

Theorem. These exponents valid for stationary semidiscrete polymer.
Upper bounds valid for model without boundaries. [Moreno, S, Valkó]
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MSRI May 2012 48/51



Work in progress: intermediate disorder exponents

Fluctuation exponents:

nχ ∼ order of fluctuations of logZn

nζ ∼ order of fluctuations of the polymer path

KPZ: χ = 1/3 ζ = 2/3 (β > 0)

Diffusive: χ = 0 ζ = 1/2 (β = 0)

Intermediate disorder regime: take β = β0n
−α.

Interesting window α ∈ [0, 1/4].

α = 0 KPZ universality α = 1/4 diffusive regime.

Alberts-Khanin-Quastel conj: χ(α) = 1
3 (1− 4α) ζ(α) = 2

3 (1− α).

Theorem. These exponents valid for stationary semidiscrete polymer.
Upper bounds valid for model without boundaries. [Moreno, S, Valkó]
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Explicit large deviations for log Z

L.m.g.f. of logY , Y ∼ Γ−1(µ):

Mµ(ξ) = logE
(
eξ log Y

)
=

{
log Γ(µ− ξ)− log Γ(µ) ξ ∈ (−∞, µ)

∞ ξ ∈ [µ,∞).

For i.i.d. Γ−1(µ) model, let

Λs,t(ξ) = lim
n→∞

n−1 logE
(
eξ log Zns,nt

)
, ξ ∈ R

Theorem. [Georgiou, S 2011]

Λs,t(ξ) =


p(s, t)ξ ξ < 0

inf
θ∈(ξ,µ)

{
tMθ(ξ) − sMµ−θ(−ξ)

}
0 ≤ ξ < µ

∞ ξ ≥ µ.
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
p(s, t)ξ ξ < 0

inf
θ∈(ξ,µ)

{
tMθ(ξ) − sMµ−θ(−ξ)

}
0 ≤ ξ < µ

∞ ξ ≥ µ.
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Explicit large deviations for log Z

L.m.g.f. of logY , Y ∼ Γ−1(µ):

Mµ(ξ) = logE
(
eξ log Y

)
=

{
log Γ(µ− ξ)− log Γ(µ) ξ ∈ (−∞, µ)

∞ ξ ∈ [µ,∞).

For i.i.d. Γ−1(µ) model, let

Λs,t(ξ) = lim
n→∞

n−1 logE
(
eξ log Zns,nt

)
, ξ ∈ R

Theorem. [Georgiou, S 2011]

Λs,t(ξ) =


p(s, t)ξ ξ < 0

inf
θ∈(ξ,µ)

{
tMθ(ξ) − sMµ−θ(−ξ)

}
0 ≤ ξ < µ

∞ ξ ≥ µ.

MSRI May 2012 49/51



Λs,t linear on R− because for r < p(s, t)

lim
n→∞

n−1 logP{logZns,nt ≤ nr} = −∞.

Right tail LDP: for r ≥ p(s, t)

Js,t(r) ≡ − lim
n→∞

n−1 logP{logZns,nt ≥ nr} = Λ∗s,t(r)

Proof of formula for Λs,t goes by first finding Js,t and then convex
conjugation.
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Starting point for proof of large deviations

-

6

•
•
•
• • • •• •

• •
• • •

0 1 bnsc

0

1

bntc

`

Z θns,nt =
nt∑
`=1

(∏̀
j=1

V0, j

)
Z(1,`),(ns,nt)

+
ns∑
k=1

( k∏
i=1

Ui,0

)
Z(k,1),(ns,nt)

Divide by
∏nt

j=1 V0, j :

ns∏
i=1

Ui,nt =
nt∑
`=1

( nt∏
j=`+1

V−1
0, j

)
Z(1,`),(ns,nt)

+
ns∑
k=1

( nt∏
j=1

V−1
0, j

)( k∏
i=1

Ui,0

)
Z(k,1),(ns,nt)

Now we know LDP for log(l.h.s) and can extract logZ from the r.h.s.
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