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1. General d + 1 dimensional model

1.1. Weak and strong disorder.

1.2. Variational formulas, large deviations.

2. 1+ 1 dimensions
2.1. KPZ universality
2.2. The three exactly solvable models.

2.3. Specific results for the log-gamma polymer: stationary process,
fluctuation exponents, tropical combinatorics.
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The model: directed polymer in a random environment

time N simple random walk measure P, expectation E
space-time environment {w(k,x) : k € N, x € Z9}
inverse temperature 5 > 0

quenched probability measure on paths

TR Quf} = 5 oxp] B3 ko) P}
n k=1

partition function Z, = E[exp{,@ Zw(k, Xk)}}
k=1

IP probability distribution on w, often {w(k,x)} i.i.d.
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Key quantities again:

o Quenched measure Q,{x.} = Zi exp{ﬂZw(k,xk)}P{X.}
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Key quantities again:

o Quenched measure Q,{x.} = Zi exp{ﬂZw(k,xk)}P{X.}

k=1

n
o Partition function Z, = E[exp{/BZw(k,Xk)}}
k=1

Questions:

@ Behavior of walk X, under @, on large scales: fluctuation exponents,
central limit theorems, large deviations

@ Behavior of log Z, (now also random as a function of w)

@ Dependence on 8 and d
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Model introduced by Huse and Henley 1985.
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Model introduced by Huse and Henley 1985.

Early rigorous results: diffusive behavior for d > 3 and small 8 > 0:

1988 Imbrie and Spencer: n*E®(|x(n)|?) = ¢ P-ass.

1989 Bolthausen: quenched CLT for n=/2x(n).
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1. General d + 1 dimensional model

1.1. Weak and strong disorder

[1989-2010: Imbrie, Spencer, Bolthausen, Carmona, Hu, Albeverio, Zhou,
Comets, Shiga, Yoshida, Vargas, Lacoin]

A(B) = log E(e#<(00))  EZ, = em(#)

Zn
Ez,

is a martingale with filtration G, = o{w(k,x) : k < n,x € Z9}.

W, =

= E[ eIB ZZ:I w(kvxk)_n)‘(ﬁ) ]

Martingale convergence theorem: W, — W, w.p.1.

Kolmogorov's 0-1 law: P(W,, > 0) =0 or 1.
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Zy

Wo =%z,

— Ws

Definition. {
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Zy
EZ,

W, = — Ws

Weak disorder: W, >0

Definition. .
Strong disorder: W, = 0.

{W,} uniformly integrable <= W, > 0 (weak disorder)

Theorem. 35, € [0, 00] such that

B €[0,8:.) = weak disorder

B € (Be,00) = strong disorder

For d € {1,2} B. =0, while for d > 3 5. € (0, o0].
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Alternative transition via free energy.
p(B) = lim n~tlog W, = lim n"'E(log W,).
n—o00

n—o00

Jensen’s inequality: p(3) < 0.

B<B. = p(B)=0

3 L such that
{ﬁ > pe = p(B) <0.

B > B. very strong disorder.
Very strong disorder C strong disorder.

Open question: Are these always the same?
Inde{1,2} B.=p.=0.

MSRI May 2012 8/51



Central limit theorem in weak disorder

MSRI May 2012 9/51



Central limit theorem in weak disorder

Xt(n) _ n_1/2XLntJ

MSRI May 2012 9/51



Central limit theorem in weak disorder

Xt(n) _ n_1/2XLntJ

B; = BM on R? with diffusion matrix d—1/

MSRI May 2012 9/51



Central limit theorem in weak disorder

Xt(n) _ n_1/2XLntJ

B; = BM on R? with diffusion matrix d—1/

Theorem. Under d > 3 and weak disorder,

EX[G(X'™)] — E[G(B.)] in P-probability.
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Central limit theorem in weak disorder

Xt(n) _ n_1/2XLntJ

B; = BM on R? with diffusion matrix d—1/

Theorem. Under d > 3 and weak disorder,

EX[G(X'™)] — E[G(B.)] in P-probability.

Proof idea. Construct RWRE Q¥ using W, > 0 as a density.
[Comets and Yoshida, 2006]
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Very strong disorder

If W5, = 0 then P-a.s. for large n

—log W, < €Y Q¢ 1(Xk = Xa).
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Very strong disorder

If W5, = 0 then P-a.s. for large n

—log W, < €Y Q¢ 1(Xk = Xa).
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Very strong disorder

If W = 0 then P-a.s. for large n
n ~
—log W, < €Y Q¢ 1(Xk = Xe).
k=1
In very strong disorder W,, — 0 exp. fast, hence localization:

lim max Q¥(X, =x)>c >0 P-as.

n—o00

Sufficient conditions for very strong disorder:

od=1or?2
o BN(B) — A(B) > log(2d). True for some distributions if 3 large
enough.
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1. General d + 1 dimensional model

1.2 Variational formulas, large deviations
[Rassoul-Agha, S, Yilmaz]
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1. General d + 1 dimensional model

1.2 Variational formulas, large deviations
[Rassoul-Agha, S, Yilmaz]

Question: describe P-a.s. limit lim n~'log Z,
n—o0

Generalize: Ey = expectation under arbitrary background RW X, on Z".

R = set of admissible steps.
n_1 log Z, = n1 log Eqg [eﬁ ZZ;é ka]
— 1 log Eo [ezz;é g(Tx,w, Zk+1,k+£)]

Introduced shift (T w), = wxy, steps Zx = Xk — Xk—1 € R,
Ziy= (4, 2o, ..., 24).

g(w, z1¢) is a function on , = Q x R’.
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n—1
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Define empirical measure R, =n g (5TXk
k=0

W, Zj4+1,k+£

a random probability measure on £2,.
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n—1
. .. -1
Define empirical measure R, =n E (5TXk
k=0

W, Zj4+1,k+£

a random probability measure on £2,.
n~tlog Z, = n"tlog Ey [e”R"(g)]

Task: understand large deviations of Pp{R, € - } under P-a.e. fixed w
(quenched).

Process: Markov chain (Tx,w, Zy11,n+¢) on & under a fixed w.

Evolution: pick random step z from R, then execute move

S, (w,z10) = (Thw, 2202).

Kernel p on Q,: p(n, S;n) = |R|7L for n = (w, z1.0).
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For u € M1(¢), g Markov kernel on €, usual relative entropy on Q2:

q(n, Sz1)
H(px qlpxp) = /ez;z (n. Sen) log 2=~ m(dn).

The effect of P in the background?
Let po = Q-marginal of © € M1(2). Define

Hp(p) = inf {H(ux quxp):pg=npn} if po <P
> otherwise.

Infimum taken over Markov kernels g that fix p.
Hp convex but not lower semicontinuous.
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Assumptions.

o Environment {wy} IID under P.

@ g local function on Q,, E|g|P < oo for some p > v.

Theorem. Deterministic limit

Ng) = lim n~tlog Eo[e"(&)]  exists P-as.

n—o0

and  A(g) = HI(g) = sup sup {E'lgAc] — Hp(p)}

Remarks.
o A(g) > —o0.
o IID directed & Ip > v : E|g|P < oo = A(g) finite.
o With higher moments of g admit mixing P.

@ Analogous result for point-to-point free energy.
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Quenched weak LDP (large deviation principle) under Q,.
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Quenched weak LDP (large deviation principle) under Q,.

1
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Quenched weak LDP (large deviation principle) under Q,.

1

By e ol 1A Z1c)]

Qn(A) =

Rate function I(p) = Cu;%{ Hp(p) — E*(g AN c)+N(g) }.

Theorem. Assumptions as above and A(g) finite. Then P-a.s.
for compact F C M1(2) and open G C M1(2):

T —1 < _ *%
[lim n~*log Qu{Rn € F} < Jnf 17 (u (1)

lim n~tlog Q,{R, € G} > — inf I"*(p)
n—o0 HEG
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Quenched weak LDP (large deviation principle) under Q,.

1
Eq [e”Rn(g)]

Qn(A) = Eo[e"(&)1 4(w, Z1 00)]

Rate function I(p) = Cu;%{ Hp(p) — E*(g AN c)+N(g) }.

Theorem. Assumptions as above and A(g) finite. Then P-a.s.
for compact F C M1(2) and open G C M1(2):

T —1 < ok
lim n~%log Qn{Rn € F} < inf 1 (1)

lim n~tlog Q,{R, € G} > — inf I"*(p)

n—o00 HeG
[ID environment, directed walk = full LDP holds.
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2. 141 dim systems

2.1. KPZ and EW universality

Two different universality classes for 1+1 dim systems.
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2. 141 dim systems

2.1. KPZ and EW universality

Two different universality classes for 1+1 dim systems.

Kardar-Parisi-Zhang (KPZ)

o time ~ n, spatial correlations ~ n%/3, fluctuations ~ nl/3

1

o limits related to Tracy-Widom distributions

Edwards-Wilkinson (EW)

o time ~ n, spatial correlations ~ n'/2, fluctuations ~ n'/*

o Gaussian limits

MSRI May 2012 16/51



KPZ class: 1+1 dim directed polymer

time N {w(k,x)} i.i.d. under P

Z, = E[exp{ﬁzn:w(k,Xk)}}

k=1

0 space Z. Zn,u = E[exp{ﬁiw(kaxk)} , Xn = U]

k=1

Qn(x) = 5 exp{5 Y wlkxt)} Plx)
n k=1
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Expected KPZ behavior

Conjectures. Under a moment assumption on weights:

log Zn nx — nf(x)
Cn1/3

LN Fcue (Tracy-Widom)

o Under averaged measure EQ, path fluctuations of order n?/3.
e Endpoint of path ~ T =arg max {Ax(t) — t2}, where
te

Ao = Airy, process. Polymer endpoint distribution. [Moreno, Quastel, Remenik]

Known.

o Partial results for a handful of exactly solvable models.

o “Weak universality” of Alberts-Khanin-Quastel.
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Kardar-Parisi-Zhang (KPZ) universality

In KPZ class also

@ zero-temperature polymer, or last-passage percolation model
o Other 1+1 dim growth models (PNG, ballistic deposition)

o particle systems with drift and nonlinear flux function (ASEP, ZRP)
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EW class: Random average process (RAP)

state of the system is

afunctiono :Z —- R

Discrete-time evolution:

Zwtk )oe-1(k +))

wek = (wek(J) 2 ]J| £ R) random probability vectors, 11D over (t, k)
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RAP scaling limit

v = Zx]Ew(x) 0’ = Z(X — v)? Bw(x).

X

Initially o(0) =0, IID increments {0(0) — 0;_1(0)}.
Scaled height process

zo(t,r) = n Yo e (= ntv] + |rv/n]) — porv/n '}, (t,r) € Ry x R.

Theorem. [Balazs, Rassoul-Agha, S. 2006] Zn(t, r) = Z(t, r) where Z is the
Gaussian process

2(tr) = a / / Go(esy(r — X)AW(s,X) + @ / Pong(r — x)B(x) dx

[0,t] xR R
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Edwards-Wilkinson (EW) universality

RAP is an example from the EW universality class.
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Edwards-Wilkinson (EW) universality

RAP is an example from the EW universality class.
In this class also
o current of independent random walks (incl. RWRE)

@ symmetric simple exclusion process

@ Hammersley's serial harness process
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1986 Kardar, Parisi and Zhang: general model for height function h(t, x)
of a 141 dimensional growing interface:

he = Yho + L(h)2 + W
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he = Lhe + 2(h)>+ W
Rigorous meaning was unclear.
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Zi = YZo + ZW
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1986 Kardar, Parisi and Zhang: general model for height function h(t, x)
of a 141 dimensional growing interface:

he = Yho + L(h)2 + W

Rigorous meaning was unclear.
Formally, Z = exp(h) satisfies a stochastic heat equation (SHE):

Zi = YZo + ZW

Define h = logZ as the Hopf-Cole solution of KPZ.
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o Balazs, Quastel, and S. (2011): With initial height function

h(0, x) a two-sided Brownian motion in x € R,

Git?3 < Var(h(t,0)) < Gt?/3
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KPZ behavior of KPZ equation

o Balazs, Quastel, and S. (2011): With initial height function
h(0, x) a two-sided Brownian motion in x € R,

Git?3 < Var(h(t,0)) < Gt?/3

o Amir-Corwin-Quastel and Sasamoto-Spohn (2011):
Start SHE with Z(0, x) = do(x).
Found explicit probability distribution for h(t, x).
Cross-over distribution because it has
{Tracy—Widom Fcue limit in the scale t1/3 ast oo

Gaussian limit in the scale t1/4 as t \, 0.
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Role of KPZ equation

o Member of the KPZ universality class because long-term behavior has
right exponent and Fgyg limit.
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Role of KPZ equation

o Member of the KPZ universality class because long-term behavior has
right exponent and Fgyg limit.

@ Universal cross-over between KPZ class and EW class.

@ Limit of discrete models when asymmetry or noise suitably tuned to
zero as the limit is taken.

o First result Bertini and Giacomin 1997: height function of weakly
asymmetric simple exclusion process converges to Hopf-Cole solution
of KPZ.
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Three exactly solvable 1+1 dim models (positive temperature)
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2. 141 dim systems

2.2 Exactly solvable directed polymers

Three exactly solvable 1+1 dim models (positive temperature)

o Continuum directed random polymer, or Hopf-Cole solution of the
KPZ equation, or log Z where Z solves SHE.

o Semidiscrete polymer, or cont-time RW paths in Brownian
environment (O'Connell-Yor 2001).

o Log-gamma polymer (S 2009).

Borodin-Corwin: a common algebraic framework, Macdonald processes.

Next brief look at the two discrete models.

MSRI May 2012



Semidiscrete polymer

Environment: independent Brownian motions Bi, By, Bs, . ..
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Semidiscrete polymer

Environment: independent Brownian motions Bi, By, Bs, . ..

Partition function:
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Semidiscrete polymer

Environment: independent Brownian motions Bi, By, Bs, . ..

Partition function:

Zoe(B) = / exp[B(Bi(s1) + Balsz) — Bals1) +

0<s1 <" <sp—1 <t

+ B3(S3) — B3(52) + -+ Bn(t) — B,,(s,,_l) )] dsl,n—l

Results:
o Model by O'Connell-Yor (2001).
o KPZ exponents by Valké-S (2010).

o Link to quantum Toda lattice via tropical combinatorics by O'Connell
(2010).
o Tracy-Widom limit by Borodin-Corwin (2011). Next talk!
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Log-gamma polymer

Mm.n = { up-right lattice paths x, : (1,1) — (m, n) }

" Weights Y; ; = e“(i)

1D environment w = {Y; ; : (i,j) € N?}

n
Partition function: Zp, , = Z H Y.
X, €MNmn k=1

Fix 0 < p < oo, take Y,_J1 ~ Gamma(p).
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Log-gamma polymer

Mm.n = { up-right lattice paths x, : (1,1) — (m, n) }

n Weights Y; ; = e“(i)
1D environment w = {Y; ; : (i,j) € N?}
1
1 m z
Partition function: Zp, , = Z H Y
X.enm,n k=1
Fix 0 < u < oo, take Y,_J1 ~ Gamma(p). Gamma density: f(x) = byt~ 1e ™
Results:

o Model and KPZ exponents (S 2010).
o Large deviations (Georgiou, S 2011).
@ Tropical combinatorics (Corwin, O'Connell, S, Zygouras 2011).
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2.3 Log-gamma polymer

What is special about this choice of weight distribution?
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1. The process has a stationary version
This enables us to derive

o explicit free energy density

@ some explicit large deviation rate functions for log Z
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2. 141 dim systems

2.3 Log-gamma polymer

What is special about this choice of weight distribution?

1. The process has a stationary version

This enables us to derive

o explicit free energy density

@ some explicit large deviation rate functions for log Z
o some KPZ exponents for log Z and the path.

2. It can be “solved” with ideas from tropical combinatorics
This yields

@ an explicit formula for the Laplace transform of Z
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Stationary version of log-gamma polymer

o Parameters 0 < 6 < p.
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Stationary version of log-gamma polymer

o Parameters 0 < 0 < p.
o Bulk weights Y; ; fori,j € N={1,2,3,...} as before.

o Boundary weights U;p= Yo and Vg ;= Yo ;.

Voj|  Yij

1
0| 1 Uio
0 1 2
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Stationary version of log-gamma polymer

o Parameters 0 < 0 < p.

o Bulk weights Y; ; fori,j € N={1,2,3,...} as before.

o Boundary weights U;p= Yo and Vg ;= Yo ;.

Yy ~ Gamma~L(s)
Vo il Y,
1 g Uio ~ Gamma~1(0)
0| 1 Uio Vo,j ~ Gamma~1(u —0)
0o 1 2
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Theorem.

For any fixed down-right path,
{Ug,, Vg,, X,} are independent
with marginals

Ur, ~ Gamma~1(6)

k
Ve, ~ Gamma !(p —6)

4

X, ~ Gamma~1(u)
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Theorem.
For any fixed down-right path,
{Ug,, Vg,, X,} are independent
with marginals
Us, ~ Gamma*(0)

~ Gamma~(p —0)

Vs,

4

X, ~ Gamma~1(p)

There is an analogous property for last-passage percolation with
exponential weights that is a generalization of Burke's Theorem (Output
Theorem) for M/M/1 queues.
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Theorem.

For any fixed down-right path,
{Ug,, Vg,, X,} are independent
with marginals

Ur, ~ Gamma~1(6)

k
Ve, ~ Gamma !(p —6)

4

X, ~ Gamma~1(p)

There is an analogous property for last-passage percolation with
exponential weights that is a generalization of Burke's Theorem (Output
Theorem) for M/M/1 queues.

Hence we could call this the “Burke property” of the log-gamma polymer.
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Taking advantage of the stationarity

Initial weights (i,j € N):
. Y,'yj
o U;OI ~ Gamma(6), VOTJ-I ~ Gamma(u — 6)
o 1 Uio Y:Jl ~ Gamma(p)
0
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Taking advantage of the stationarity

Initial weights (i,j € N):
. Y,'yj
o U;OI ~ Gamma(6), VOTJ-I ~ Gamma(u — 0)
o 1| U Y:Jl ~ Gamma(p)

Coupling of two log-gamma models:
o Original one with IID bulk weights, paths (1,1) — (m, n)
o Stationary one, paths (0,0) — (m, n)

Strategy: (i) derive results for the stationary process, (ii) use coupling to
pass results to the original [ID model.

Let us look at fluctuation exponents for log Z.
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Fluctuation exponents: stationary case

Exit point of path from x-axis

& =max{k >0:x; = (i,0) for 0 <j < k}

Ex
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& =max{k >0:x; = (i,0) for 0 <j < k}

Ex

For 0, x > 0 define positive function

L(O,x) = Wo(0) — logy)x~?y?~1eX Y dy
0
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Fluctuation exponents: stationary case

Exit point of path from x-axis

& =max{k >0:x; = (i,0) for 0 <j < k}

Ex

For 0, x > 0 define positive function

L(O,x) = / (\IIO(Q) - Iogy)x_aye_lex_y dy
0
Theorem. For the stationary case,
Ex
Var[log Zp,n] = nW1(p — 60) — mW1(0) + 2 Ep, p [ Z Lo, Y,_Ol)]
i=1
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Remark: polygamma functions

dn+1
V,(s) = pas ) log I'(s), n>0

These appear naturally because for Y1 ~ Gamma(u)

E(log Y) = —Wo(u) (digamma function)

Var(log Y) = W1(u) (trigamma function)
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Fluctuation exponent: stationary case

With 0 < 6 < p fixed and N 7 oo assume

|m—NW(n—0)] < CN?2 and |n— NVi(0)] < CN?3 (1)
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Theorem: Variance bounds in characteristic direction
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Fluctuation exponent: stationary case

With 0 < 6 < p fixed and N 7 oo assume

|m—NW(n—0)] < CN?2 and |n— NVi(0)] < CN?3 (1)

Theorem: Variance bounds in characteristic direction
For (m,n) asin (1), CiN?3 < Var(log Zm ) < GN?/3 .

Theorem: Off-characteristic CLT

Suppose n = Wi (0)N and m = Vy(p — )N 4+ yN with v > 0, a > 2/3.
Then
N=/2{log Zp — E(l0g Zmn) |} = N(0,7¥1(6))
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Fluctuation bounds: original i.i.d. case
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Fluctuation bounds: original i.i.d. case

psi(n) = lim —— == = GEI(rng{ sWo(0) — tWo(u —0)}
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psi(n) = lim —— == = gé&fﬂ){—swow)—t%(u—‘?)}

Theorem. Upper bound for fluctuation exponent:

P{ |log Zus,ve — Nps.()| = BNY3 |} < €=
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psi(n) = lim —— == = eel(rg)fﬂ){—swow)—t%(u—f?)}

Theorem. Upper bound for fluctuation exponent:

P{ |log Zus,ve — Nps.()| = BNY3 |} < €=

Proof idea. Couple to a stationary process with 6 € (0, 1) chosen by

S\Ul(e) — tllll(p — 9) =0
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Fluctuation bounds: original i.i.d. case

W T o s v®) = el 0)

Theorem. Upper bound for fluctuation exponent:

P{ |log Zus,ve — Nps.()| = BNY3 |} < €=

Proof idea. Couple to a stationary process with 6 € (0, 1) chosen by

S\Ul(e) — t\Ul(,u — 9) =0
Remark. Corresponding bounds exist for path with KPZ exponent 2/3.
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Combinatorial approach to log-gamma polymer

N Fix N, let 1 < k< N and n>1 vary.
B M}, = { admissible paths (1,1) — (n, k) }
zi1(n) = Z wt(m) where
ﬂEI'I,l,’k
1 weight wt(m) = ]_[(,-’j)e7T Yij
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Combinatorial approach to log-gamma polymer

N Fix N, let 1 < k< N and n>1 vary.
B M}, = { admissible paths (1,1) — (n, k) }
zi1(n) = Z wt(m) where
ﬂEI'I,l,’k
1 weight wt(m) = ]_[(,-’j)e7T Yij

N¢ . = { t-tuples = = (m,...,m) of disjoint

paths 7; : (1,j) — (n,k—j+1) }
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Combinatorial approach to log-gamma polymer

N Fix N, let 1 < k< N and n>1 vary.
B M}, = { admissible paths (1,1) — (n, k) }
zi1(n) = Z wt(m) where

ﬂEI'I,l,’k

1 weight wt(m) = [[; jyex Yij

1 n

N I'If;’k = { l-tuples m = (m1,...,m) of disjoint
paths 7 : (1,j) — (n,k—j+1)}

3

2

1
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Combinatorial approach to log-gamma polymer

N Fix N, let 1 < k< N and n>1 vary.
B M}, = { admissible paths (1,1) — (n, k) }
zi1(n) = Z wt(m) where
ﬂEI'I,l,’k
1 weight wt(m) = ]_[(,-’j)e7T Yij
1 n
N I'If;’k = { l-tuples m = (m1,...,m) of disjoint
paths 7 : (1,j) — (n,k—j+1)}
weight wt(m) = [[; jyex Yi.j
3
2
1
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Combinatorial approach to log-gamma polymer

N Fix N, let 1 < k< N and n>1 vary.
B M}, = { admissible paths (1,1) — (n, k) }
zi1(n) = Z wt(m) where
ﬂEI'I,l,’k
1 weight wt(m) = [[; jyex Yij
1 n
N I'If;’k = { l-tuples m = (m1,...,m) of disjoint
paths 7 : (1,j) — (n,k—j+1)}
weight wt(m) = [[; jyex Yi.j
3
: The(n) = Z wt(m)

0
1 n 7r6|'|nyk
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The sum of the weights of the ¢-tuples of non-intersecting paths

Tie(n) = > wi(m) for 1< k<N, 1<f<nAk.
ﬂeﬂf;’k
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The sum of the weights of the ¢-tuples of non-intersecting paths

Tie(n) = > wi(m) for 1< k<N, 1<f<nAk.
ﬂeﬂﬁk

Define array z(n) = {zke(n) : 1< k<N, 1 << kAn}by

zea(n) -+ zie(n) = mee(n) = > wi(w).

14
ﬂeﬂmk
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The sum of the weights of the ¢-tuples of non-intersecting paths

Tie(n) = > wi(m) for 1< k<N, 1<f<nAk.

7TE|'|,{7,<
Define array z(n) = {zxe(n): 1<k <N, 1 <0< kAn} by

zea(n) -+ zie(n) = mee(n) = > wi(w).

ﬂ'el'lf,’k
N = 4 array z11(n)
25(n) 21(n) polymer
233(11) Z32(I7) Z31(I7)
Z44(n) z43(n) z45(n) z41(n)
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The sum of the weights of the ¢-tuples of non-intersecting paths

Tie(n) = > wi(m) for 1< k<N, 1<f<nAk.

ﬂeﬂﬁk
Define array z(n) = {zxe(n): 1<k <N, 1 <0< kAn} by

zea(n) -+ zie(n) = mee(n) = > wi(w).

ﬂeﬂ?k
N = 4 array z11(n)
25(n) 21(n) polymer
z33(n) z35(n) z31(n)
Z44(n) z43(n) z45(n) z41(n)
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The mapping
weight matrix (Y; ;) +~ array z(n)

is Kirillov's tropical RSK correspondence (2001).
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The mapping
weight matrix (Y; j) +— array z(n)

is Kirillov's tropical RSK correspondence (2001).

Obtained from classic, combinatorial RSK (Robinson-Schensted-Knuth)
correspondence via (max,+) — (+, ).

As in RSK, time evolution of array z(n) algorithmically through
row insertion:

o At time step n, column n from weight matrix inserted into array,
entries {zy ¢(n — 1)}« are updated to {zx ¢(n)}x -

o Details not illuminating.
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where {,, 6;} are real parameters such that 7, ; = 0, + 6; > 0.
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Make the input random.
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Can we say anything about partition function zy 1(n) ?
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Make the input random.

Assumption. Weights {Y), j} are independent, Y, ; ~ F_l(én +6)),
where {é,,, 6;} are real parameters such that v, ; = 0, + 0; > 0.

Can we say anything about partition function zy 1(n) ?

Markov kernel I, for transition z(n — 1) — z(n) of full array is
complicated.

Bottom row
y(n) = (zn1(n), zn2(n), . .., zy n(n))

of array turns out to be a more tractable Markov chain.
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Make the input random.

Assumption. Weights {Y), j} are independent, Y, ; ~ F_l(én +6)),

where {,, 6;} are real parameters such that v, ; = 8, + 6; > 0.
Can we say anything about partition function zy 1(n) ?

Markov kernel I, for transition z(n — 1) — z(n) of full array is
complicated.

Bottom row
y(n) = (zn1(n), zn2(n), . .., zy n(n))

of array turns out to be a more tractable Markov chain.

Theory of Markov functions is useful here.

MSRI May 2012 41/51
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General Markov functions idea

3 Markov kernel I for z(n) on space T. T

|
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Sufficient condition. Suppose 3 (positive but not necessary stochastic)
kernels P: Y — Y and K : Y — T such that
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General Markov functions idea

3 Markov kernel I for z(n) on space T. T—9 oy
dmap¢: T =Y. ﬂ\ P?
When is y(n) = ¢(z(n)) Markov with kernel P ? ¢

T—Y

Sufficient condition. Suppose 3 (positive but not necessary stochastic)
kernels P: Y — Y and K : Y — T such that

Ky, oY (y))=1 and KoM=PoK

Set w(y) = K(y, T).
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3 Markov kernel I for z(n) on space T. T—9 oy
dmap¢: T =Y. ﬂ\ P?
When is y(n) = ¢(z(n)) Markov with kernel P ? ¢

T—Y

Sufficient condition. Suppose 3 (positive but not necessary stochastic)
kernels P: Y — Y and K : Y — T such that

Ky, oY (y))=1 and KoM=PoK

Set w(y) = K(y, T). Intertwining: Pw = w.
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General Markov functions idea

3 Markov kernel I for z(n) on space T. T—9 oy
dmap¢: T =Y. ﬂ\ P?
When is y(n) = ¢(z(n)) Markov with kernel P ? ¢

T—Y

Sufficient condition. Suppose 3 (positive but not necessary stochastic)
kernels P: Y — Y and K : Y — T such that

Ky, oY (y))=1 and KoM=PoK

Set w(y) = K(y, T). Intertwining: Pw = w. Define stochastic kernels

K(y,dz) = K(y, dz)

R
w(y)
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General Markov functions idea

3 Markov kernel I for z(n) on space T. T—9 oy
dmap¢: T =Y. ﬂ\ P?
When is y(n) = ¢(z(n)) Markov with kernel P ? ¢

T—Y

Sufficient condition. Suppose 3 (positive but not necessary stochastic)
kernels P: Y — Y and K : Y — T such that

Ky, 0 ' (y))=1 and KoM=PoK
Set w(y) = K(y, T). Intertwining: Pw = w. Define stochastic kernels

R(y,dZ)ZﬁK(y,dZ) and P(%Cﬁ/)z%P(y,d?)
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Markov functions idea, continued

®
T —— Y
Then KoM=PokK K
n\ P
T ¢ Y
K
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Markov functions idea, continued

!

Then KoM=PokK \
o

\{
< X|‘
~.<

X!

Theorem. [Rogers and Pitman, 1981]
If z(n) starts with distribution K(y, dz), then y(n) is Markov

in its own filtration with transition P and initial state y(0) = y.
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Application of Markov functions to our array z(n)

Spaces: Ty = space of arrays z of size N

Yn = (0,00)N = space of positive N-vectors y.
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Application of Markov functions to our array z(n)

Spaces: Ty = space of arrays z of size N
Yn = (0,00)N = space of positive N-vectors y.

Define a (substochastic) kernel P, on Yy by

N N Vi . 5.
Vi —“1( Y ’ Y dy
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yi S 7 7307
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Application of Markov functions to our array z(n)

Spaces: Ty = space of arrays z of size N
Yn = (0,00)N = space of positive N-vectors y.

Define a (substochastic) kernel P, on Yy by

N N Vi . 5.
Vi —“1( Y ’ Y dy

Pa(y, dy) = Hexp{ H}H(F(%J) 1(7’_) eXP{—TJ} —J)
yi S 7 7307

and intertwining kernel K : Yy — Ty by

Okr1—0¢

Z
1<t<k<N NkHLE

Zkt  Zkg1e+1 | 92k
X exp (— : LA ) H(S}’é dzp ¢)
Zk4+1 .0 Zk 0 Zk .0 -1
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Application of Markov functions to our array z(n)

Then Koll,=P,o K.
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Application of Markov functions to our array z(n)

Then Koll, = P,o K.
Bottom row y(n) of array is a MC with kernel
w(y)
Poly,dy) = Pu(y, dy)
w(y)
where w(y) = K(y, Tn).
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where w(y) = K(y, Tn).

Kernels and intertwining make sense also for complex parameters.
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Application of Markov functions to our array z(n)

Then Koll, = P,o K.
Bottom row y(n) of array is a MC with kernel
w(y)
Poly,dy) = Pu(y, dy)
w(y)
where w(y) = K(y, Tn).

Kernels and intertwining make sense also for complex parameters.

Beneficial because known special functions diagonalize the transition
kernel.

MSRI May 2012 45/51



Whittaker functions

GL(N,R)-Whittaker function is given for y € Yy, with A € CV, by

Hy, /ny,dZ)

where K), is the previous intertwining kernel with 6 replaced by A.

(Givental's integral representation in multiplicative variables.)
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Whittaker functions

GL(N,R)-Whittaker function is given for y € Yy, with A € CV, by

Hy, /ny,dZ)

where K), is the previous intertwining kernel with 6 replaced by A.

(Givental's integral representation in multiplicative variables.)

Intertwining develops into

N

Vo (7) = B C(vn,i + X))\ Vo (y)
/(o,oo)m () V) = (E[l o) )‘Ve(}’)

MSRI May 2012 46/51



Goal: polymer partition function zy 1(n) (first element of bottom row).
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Goal: polymer partition function zy 1(n) (first element of bottom row).

Utilizing Whittaker functions (analogous to Fourier analysis) find
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(RN i
1<i, j<N

n

N
X H ) sn(A) dA
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Goal: polymer partition function zy 1(n) (first element of bottom row).

Utilizing Whittaker functions (analogous to Fourier analysis) find

E(efszN,l(n)) :/ 52?1:1(91'*)"') H F()\,-—QJ-)
(RN i
1<i, j<N
n N
< T fgr g s o

m=1 /:1

1
with Sklyanin measure  sy(\) = ——— | [T\ — M) ™h
(2m)N N 1;{ J
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Goal: polymer partition function zy 1(n) (first element of bottom row).

Utilizing Whittaker functions (analogous to Fourier analysis) find

E(efsz,v,l(n)) — / 52?1:1(91'*)"') H F()\,-—QJ-)
(RN i
1<i, j<N

n

N
X H ) sn(A) dA

m=1 /:1

with Sklyanin measure  sy(\) = m H Oy — M)t
| j#k

Future goal: asymptotics for distribution of log zy 1(n)?
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Work in progress: intermediate disorder exponents
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Work in progress: intermediate disorder exponents

Fluctuation exponents:
@ nX ~ order of fluctuations of log Z,
o n° ~ order of fluctuations of the polymer path
KPZ: x=1/3 ¢(=2/3 (>0
Diffusive: x =0 ¢(=1/2 (B=0)
Intermediate disorder regime: take g = Gon~“.
Interesting window « € [0,1/4].
«a = 0 KPZ universality a = 1/4 diffusive regime.
Alberts-Khanin-Quastel conj:  x(a) = 3(1 — 4a) ((a) = 3(1 - ).

Theorem. These exponents valid for stationary semidiscrete polymer.
Upper bounds valid for model without boundaries. [Moreno, S, Valkd]

MSRI May 2012 48/51



Explicit large deviations for log Z

L.m.gf oflog¥, Y ~ 1(u):

logM(pw — &) —logM(n) & € (—o0,u)

i) =leg ) = {oo § € [n,00)
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Explicit large deviations for log Z

L.m.gf oflog¥, Y ~ 1(u):

logM(pw — &) —logM(n) & € (—o0,u)

i) =leg ) = {oo § € [n,00)

For i.i.d. T~1(x) model, let

/\S,t(g) = lim nfl |C)g]E(e€|oans,nt)7 £€ R

n—oo
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Explicit large deviations for log Z

L.m.gf oflogy, Y ~ I 1(u):

M, (€) = log (€98 Y) = {l;g M — &) — log (1) Z i E;Z(;,),u)

For i.i.d. T™1(x) model, let

As,t(g) = lim nfl |C)g]E(e£|oans,nt)7 £€ R

n—oo

Theorem. [Georgiou, S 2011]

p(s, t)§ £<0
Ast(€) = eei(”gfu){t"/’e(f) — sMy_p(—€)} 0<&<up
00 &> .
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o As; linear on R_ because for r < p(s, t)

[im n_l IogIP’{|0g Zns,nt < nr} = —o0.
n—oo
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o As; linear on R_ because for r < p(s, t)

[im n_l |0g]P){|0g Zns,nt < nr} = —o0.
n—oo

e Right tail LDP: for r > p(s, t)

Jsi(r) = — n||_)rT;o n! log P{log Znsnt > nr} = /\;t(r)
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o As; linear on R_ because for r < p(s, t)

lim n! log P{log Znsnt < nr} = —oo.

n—o0

e Right tail LDP: for r > p(s, t)

Jst(r) = — lim ntlogP{log Zys.ne > nr} = Ns.+(r)

n—oo

@ Proof of formula for Ag ; goes by first finding Js : and then convex
conjugation.
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Starting point for proof of large deviations

Lnt] nt 4
Zfont = Z ( VO,j) Z(1,0),(ns,nt)
=1 Nj=1
4
ns k
+ ( ) (k,1),(ns,nt)
k=1 1

=

o
° ele-@
@ e

1 Lns]
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Starting point for proof of large deviations
Lnt] nt 4
ns nt — Z( VO,j) Z(l,l),(ns,nt)
=1 \j=1
4

ns k
+ ( ) (k,1),(ns,nt)
k=1 1

=

o
° ele-@
@ e

1 Lns]

Divide by [}Z; Vo, :

ns
HUi,nt = ( H Voj>zlé ),(ns,nt)
i=1 Z 1

j=0+1

ns nt k
+ < H VOTJ1> ( H Ui,O) Z(k,1),(ns,nt)
k=1 \ j=1

i=1
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Starting point for proof of large deviations
Lnt] nt 4
ns nt — Z( VO,j) Z(l,l),(ns,nt)
=1 \j=1
4

oee ns k
+ ( Ui > (k,1),(ns,nt)
k=1 1

i=

o
° ele-@
@ e

1 Lns]

Divide by [}Z; Vo, :

HUi,nt = Z( H VOJ> (1,€),(ns,nt)
i=1

{=1 > j=(+1

ns nt k
+ Z( 11 Voff) ( 11 U,-,o) Z(k,1) (ns,nt)
k=1 j=1

i=1
Now we know LDP for log(l.h.s) and can extract log Z from the r.h.s.
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