Chemical distance on random interlacements

Jiří Černý University of Vienna

joint work with Serguei Popov arXiv 1111.3979; EJP 2012

MSRI, 2 May 2012

Definition of Random Interlacement

Random interlacement is a 'dependent percolation model' introduced by A.-S. Sznitman (2010).

- ▶ W^* space of doubly-infinite n.n. trajectories on \mathbb{Z}^d , $d \geq 3$, modulo time-shift.
- \blacktriangleright *ν* a *σ*-finite measure on W^* .
- \blacktriangleright (w_i, u_i) cloud of labelled trajectories, i.e. a Poisson point process on $W^* \times [0, \infty)$ with intensity $\nu \otimes du$
- \blacktriangleright $\mathbb P$ law of this process
- \blacktriangleright *I*^{*u*} the **interlacement set**,

$$
\mathcal{I}^u = \bigcup_{i: u_i \le u} \text{Range } w_i
$$

 $\blacktriangleright \ \mathcal{V}^u$ - the **vacant** set

$$
\mathcal{V}^u=\mathbb{Z}^d\setminus\mathcal{I}^u
$$

Local specification for Random interlacement

Let $A \subset V$ finite.

\blacktriangleright equilibrium measure:

 $e_A(x) = \text{Prob}[\text{RW on V started at } x \text{ never returns to } A] \cdot \mathbf{1}_A(x).$

- ▶ for every $x \in A$, let N_x be Poisson $(ue_A(x))$ random variable. N_x 's independent
- ▶ at every point *x* start N_x independent random walks $X^{(x,i)}$, $i ≤ N_x$.
- \blacktriangleright Then

$$
\mathcal{I}^u \cap A \stackrel{\text{law}}{=} A \cap \bigcup_{x \in A} \bigcup_{i \leq N_x} \text{Range } X^{(x,i)}.
$$

Understand the behaviour of the random sets \mathcal{I}^u and \mathcal{V}^u .

Random interlacement is a correlated dependent percolation:

 \blacktriangleright density

$$
\mathbb{P}[x \in \mathcal{I}^u] = 1 - e^{-u \operatorname{cap}(x)}
$$

 \triangleright correlation

Cor<sub>$$
\mathbb{P}
$$</sub> $(x \in \mathcal{I}^u, y \in \mathcal{I}^u) \sim c(u)|x - y|^{2-d}$.

ightharpoonly no duality between \mathcal{V}^u and \mathcal{I}^u .

Phase transition for \mathcal{V}^u

Theorem (Sznitman '10; Sznitman, Sidoravicius '09) For every $d \geq 3$ there is $u_* = u_*(d)$, such that

 $0 < u_{+} < \infty$

and

- If $u < u_{\star}$, then V^u contains an infinite connected component \mathbb{P} -a.s.
- If $u > u_{\star}$, then there are \mathbb{P} -a.s. only finite components of \mathcal{V}^u .

Absence of phase transition for \mathcal{I}^u

Trivially: For every *u >* 0, the interlacement set contain an infinite connected component.

```
Theorem (Sznitman '10)
For every u > 0, d \geq 3,
```
 $\mathbb{P}[\mathcal{I}^u$ is connected $]=1$.

Absence of phase transition for \mathcal{I}^u

Trivially: For every *u >* 0, the interlacement set contain an infinite connected component.

```
Theorem (Sznitman '10)
For every u > 0, d > 3,
```
 $\mathbb{P}[\mathcal{I}^u$ is connected $]=1$.

```
Theorem (\check{C}, Popov'12)For every d \geq 3,
```
 $\mathbb{P}[\mathcal{I}^u$ is connected for every $u > 0] = 1$.

How connected is \mathcal{I}^u ?

Theorem (Procaccia, Tykesson EJP'11; Ráth, Sapozhnikov ALEA'12)

Given that $x, y \in \mathcal{I}^u$, it is possible to find a path between x and y contained in the range of at most $\lceil d/2 \rceil$ trajectories from the underlying Poisson point process.

Theorem (Ráth, Sapozhnikov ECP'11)

For every $u > 0$, $d \geq 3$, the simple random walk on \mathcal{I}^u is transient.

Theorem (Ráth, Sapozhnikov arXiv:1109.5086)

Let \mathcal{B}_p be the Bernoulli site percolation on \mathbb{Z}^d with parameter p There exists $p < 1$ and $R < \infty$ such that \mathbb{P} -a.s

 $\mathcal{I}^u \cap \mathcal{B}_p$ percolates in the slab $\mathbb{Z}^2 \times [-R,R]^{d-2}.$

Chemical/graph/internal distance

Let

$$
\rho_u(x, y) = \min\{n : \exists x_0, x_1, \dots, x_n \in \mathcal{I}^u \text{ such that } x_0 = x, x_n = y,
$$

and $||x_k - x_{k-1}||_1 = 1$ for all $k = 1, \dots, n\},$

be the graph distance on \mathcal{I}^u .

Question. Is it comparable to the Euclidean distance?

Large deviations for chemical distance

Let

$$
\mathbb{P}_0^u[\cdot] = \mathbb{P}[\cdot|0 \in \mathcal{I}^u].
$$

Theorem $(\check{C}$ -Popov'12)

For every $u > 0$ and $d \geq 3$ there exist constants $C, C' < \infty$ and $\delta \in (0,1)$ such that

 $\mathbb{P}_0^u[$ there exists $x \in \mathcal{I}^u \cap [-n, n]^d$ such that $\rho_u(0, x) > Cn] \leq C'e^{-n^{\delta}}.$

Large deviations for chemical distance

Let

$$
\mathbb{P}_0^u[\cdot] = \mathbb{P}[\cdot|0 \in \mathcal{I}^u].
$$

Theorem $(\check{C}$ -Popov'12)

For every $u > 0$ and $d \geq 3$ there exist constants $C, C' < \infty$ and $\delta \in (0,1)$ such that

 $\mathbb{P}_0^u[$ there exists $x \in \mathcal{I}^u \cap [-n, n]^d$ such that $\rho_u(0, x) > Cn] \leq C'e^{-n^{\delta}}.$

For the Bernoulli percolation the corresponding statement was shown by Antal and Pisztora (1996), with $\delta = 1$.

We can show that $\delta = 1$ for $d \geq 5$.

The shape theorem

Let $\Lambda^u(n) = \{y \in \mathcal{I}^u : \rho_u(0, y) \leq n\}$ be the ball around 0 of radius n in the chemical distance.

Theorem

For every $u > 0$ and $d \geq 3$ there exists a compact convex set $D_u \subset \mathbb{R}^d$ such that for any $\varepsilon > 0$, \mathbb{P}^u_0 -a.s. for *n* large

$$
((1 - \varepsilon) n D_u \cap \mathcal{I}^u) \subset \Lambda^u(n) \subset (1 + \varepsilon) n D_u.
$$

The shape theorem

Let $\Lambda^u(n) = \{y \in \mathcal{I}^u : \rho_u(0, y) \leq n\}$ be the ball around 0 of radius n in the chemical distance.

Theorem

For every $u > 0$ and $d \geq 3$ there exists a compact convex set $D_u \subset \mathbb{R}^d$ such that for any $\varepsilon > 0$, \mathbb{P}^u_0 -a.s. for *n* large

$$
((1 - \varepsilon) n D_u \cap \mathcal{I}^u) \subset \Lambda^u(n) \subset (1 + \varepsilon) n D_u.
$$

Question. How D_u behaves as $u \to 0$?

Implication for RW on torus

Let X be random walk on the torus \mathbb{T}^d_N and ρ_N^u the graph distance on its range $\mathcal{I}_N^u = \{X_0, \ldots, X_{uN^d}\}$. Theorem

For large enough *C* and *γ*, we have

$$
P^N\big[\rho_N^u(x,y)\leq C|x-y|\,\forall x,y\in\mathcal{I}_N^u\text{ s.t. }|x-y|\geq\ln^\gamma N\big]\xrightarrow{N\to\infty}1
$$

Implication for RW on torus

Let X be random walk on the torus \mathbb{T}^d_N and ρ_N^u the graph distance on its range $\mathcal{I}_N^u = \{X_0, \ldots, X_{uN^d}\}$. Theorem For large enough *C* and *γ*, we have

$$
P^N\big[\rho_N^u(x,y)\leq C|x-y|\,\forall x,y\in\mathcal{I}_N^u\text{ s.t. }|x-y|\geq\ln^\gamma N\big]\xrightarrow{N\to\infty}1
$$

Improves result of Shellef(- Procaccia) arXiv:1007.1401, who shows that the same hold for $C = \log \ldots \log N, \: k \geq 1.$

 \overline{k} times

Simple proof of the large deviation result.

Works in *d* ≥ 5 only!

Based on Antal-Pisztora, Liggett-Schonmann-Stacey'97, and Lemma (Ráth-Sapozhnikov)

$$
\mathbb{P}\Big[\bigcap_{x,y\in\mathcal{I}^u\cap B(R)} x \stackrel{B(2R)\cap\mathcal{I}^u}{\longleftrightarrow} y\Big] \ge 1 - ce^{-cR^{1/6}}
$$

.

Simple proof of the large deviation result.

Works in *d* ≥ 5 only!

Based on Antal-Pisztora, Liggett-Schonmann-Stacey'97, and Lemma (Ráth-Sapozhnikov)

$$
\mathbb{P}\Big[\bigcap_{x,y\in\mathcal{I}^u\cap B(R)} x \stackrel{B(2R)\cap\mathcal{I}^u}{\longleftrightarrow} y\Big] \ge 1 - ce^{-cR^{1/6}}
$$

.

Remark. The lemma implies that with a large probability

$$
\rho_u(x, y) \leq c|x - y|^d
$$

Strong supercriticality of \mathcal{I}^u

Consider

- ► a box $B(n)$, $h \in [0, 2/d)$
- \blacktriangleright $η_1 ≤ η_2$ such that $η_1 ≥ n^{d-2-h}$, $η_2 ≤ n^M$,
- \blacktriangleright η_2 independent random walks $X_k^{(i)}$ $\binom{n}{k}$ started in $B(n)$.

$$
\blacktriangleright \ \ \text{ranges } R_i(m) = \{X_0^{(i)}, \dots, X_m^{(i)}\}.
$$

Lemma

For every $h > 0$ there is $\beta(d, h) < \infty$ such that with probability larger than $1 - ce^{-cn^{c'}}$ the following occurs:

^I Any two points in ∪*i*≤*η*1*Ri*(2*n* 2) can be connected by a path i *included in at most* $\beta(h, d)$ sets $R_i(2n^2)$, $i \leq \eta_1$.

 \blacktriangleright For every $j < \eta_2$,

$$
R_j(n^2) \cap \bigcup_{i \leq \eta_1} R_i(2n^2) \neq \emptyset.
$$

• "a technical condition on remainders of trajectories".

Technical estimates

Let $q_x(A, n)$ be the probability that the random walk started from x hits *A* before *n*, $\ell(x, A) = \max_{y \in A} |x - y|$. Then for $n \ge \ell(x, A)^2$

$$
q_x(A, n) \ge \begin{cases} c \operatorname{diam}(A) \ell(x, A)^{2-d} \\ c|A|^{1-\frac{2}{d}} \ell(x, A)^{2-d} \end{cases}
$$

with log corrections in $d = 3$.

Thank you for your attention.