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Definition of Random Interlacement

Random interlacement is a ‘dependent percolation model’ introduced by
A.-S. Sznitman (2010).

» W* - space of doubly-infinite n.n. trajectories on 74, d > 3, modulo
time-shift.

v - a o-finite measure on W*.

v

v

(w;, u;) - cloud of labelled trajectories,
i.e. a Poisson point process on W* x [0, 00) with intensity v ® du

v

P law of this process
> 7" - the interlacement set,

I = U Range w;

tu;<u

» V¥ - the vacant set
Vu — Zd \I'LL
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Local specification for Random interlacement
Let A C V finite.
» equilibrium measure:
ea(z) = Prob[RW on V started at z never returns to A - 14(z).
> for every x € A, let N, be Poisson(ues(x)) random variable.
N_.'s independent
> at every point z start N, independent random walks X% i < N,.
> Then

7' NA™ An U U Range X (%9
z€A i<N,

3/16



Basic question

Understand the behaviour of the random sets 7% and V*.

Random interlacement is a correlated dependent percolation:

> density
PlzeZ"=1- e~ ueap(@)

> correlation
Corp(z € I% y € I%) ~ c(u)|z — y|*~ %

» no duality between V* and Z".
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Phase transition for V*

Theorem (Sznitman '10; Sznitman, Sidoravicius '09)
For every d > 3 there is u, = u.(d), such that

0 < u, <oo

and
> If u < uy, then V¥ contains an infinite connected component P-a.s.

> If u > uy, then there are P-a.s. only finite components of V*.
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Absence of phase transition for Z“

Trivially: For every u > 0, the interlacement set contain an infinite
connected component.

Theorem (Sznitman '10)
For every u > 0, d > 3,

P[Z* is connected] = 1.
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Absence of phase transition for Z“

Trivially: For every u > 0, the interlacement set contain an infinite
connected component.

Theorem (Sznitman '10)
For every u > 0, d > 3,

P[Z* is connected] = 1.

Theorem (C, Popov '12)
For every d > 3,

P[Z* is connected for every u > 0] = 1.
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How connected is Z"?
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How connected is Z"?

Theorem (Procaccia, Tykesson EJP'11; Rath, Sapozhnikov
ALEA'12)

Given that z,y € Z", it is possible to find a path between z and y

contained in the range of at most [d/2] trajectories from the underlying
Poisson point process.
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Is 7% close to Z%7?

Theorem (Rath, Sapozhnikov ECP'11)

For every u > 0, d > 3, the simple random walk on T" is transient.

Theorem (Rath, Sapozhnikov arXiv:1109.5086)

Let B, be the Bernoulli site percolation on 7% with parameter p
There exists p < 1 and R < oo such that P-a.s

T" N B, percolates in the slab Z* x [~ R, R]*~2.
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Chemical /graph /internal distance

Let

pu(z,y) = min{n : 9, 21, ..., 2, € Z* such that 2o = z,z, = y,
and ||z — xx—1]j1 =1 forall k=1,... n},

be the graph distance on Z“.

Question. Is it comparable to the Euclidean distance?
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Large deviations for chemical distance

Let
Pe[]=P[|0 € T"].
Theorem (C-Popov'12)
For every u > 0 and d > 3 there exist constants C', C' < co and
d € (0,1) such that

PY[there exists x € T N [—n, n]¢ such that p,(0,z) > Cn] < e
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Large deviations for chemical distance
Let
Py = P[0 € Z%].
Theorem (C-Popov'12)
For every u > 0 and d > 3 there exist constants C', C' < co and

d € (0,1) such that

PY[there exists x € T N [—n, n]¢ such that p,(0,z) > Cn] < Cle .

For the Bernoulli percolation the corresponding statement was shown by
Antal and Pisztora (1996), with 6 = 1.

We can show that § = 1 for d > 5.
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The shape theorem

Let A¥(n) ={y € Z" : pu(0,y) < n} be the ball around 0 of radius n in
the chemical distance.

Theorem
For every u > 0 and d > 3 there exists a compact convex set D, C R¢

such that for any € > 0, P{-a.s. for n large

(1=e)nD,NI*) C A%(n) C (1+¢e)nD,.
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The shape theorem

Let A¥(n) ={y € Z" : pu(0,y) < n} be the ball around 0 of radius n in
the chemical distance.

Theorem
For every u > 0 and d > 3 there exists a compact convex set D, C R¢
such that for any € > 0, P{-a.s. for n large

(1=e)nD,NI*) C A%(n) C (1+¢e)nD,.

Question. How D,, behaves as u — 07
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Implication for RW on torus

Let X be random walk on the torus ']I‘?V
and p% the graph distance on its range Zy = {Xo, ..., Xyna}.

Theorem
For large enough C' and -y, we have

N—oco

PNpf(z,y) < Clz —y|Va,y € Ty s.t. [z —y| > In" N] — 1
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Implication for RW on torus

Let X be random walk on the torus ']I‘?V
and p% the graph distance on its range Zy = {Xo, ..., Xyna}.

Theorem
For large enough C' and -y, we have

N—oco

PNpf(z,y) < Clz —y|Va,y € Ty s.t. [z —y| > In" N] — 1

Improves result of Shellef(- Procaccia) arXiv:1007.1401, who shows that
the same hold for C =log...log N, k > 1.
——

k times

12/16



Simple proof of the large deviation result.

Works in d > 5 only!
Based on Antal-Pisztora, Liggett-Schonmann-Stacey’97, and
Lemma (Rath-Sapozhnikov)

IP’{ ﬂ T B(MIU y} >1- ce R

z,y€Z*NB(R)
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Simple proof of the large deviation result.

Works in d > 5 only!

Based on Antal-Pisztora, Liggett-Schonmann-Stacey’97, and
Lemma (Rath-Sapozhnikov)

IP’[ ﬂ T B(MIU y} >1- ce R

z,y€T*NB(R)

Remark. The lemma implies that with a large probability

pu(@,y) < clz — y|*
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Strong supercriticality of Z*

Consider
» a box B(n), h€10,2/d)
» 11 <y such that gy > nd=27" ny <M,

v

72 independent random walks X,Ei) started in B(n).
ranges R;(m) = {Xéi)7 . .,Xéi)}.

v

Lemma
For every h > 0 there is 3(d, h) < oo such that with probability larger

than 1 — ce="" the following occurs:

» Any two points in U;<,, R;(2n*) can be connected by a path
included in at most B(h, d) sets R;(2n?), i < n.

> For every j < s,

Ri(n®)n | J Ri(2n®) #0.

i<m

> “a technical condition on remainders of trajectories”.
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Technical estimates

Let ¢.(A, n) be the probability that the random walk started from z hits
A before n, (z, A) = maxye4 |z — y|. Then for n > {(z, A)?

cdiam(A)¢(z, A)2~1¢
x A7 2 2
qz(A, n) {cA|l_df(x7A)2_d

with log corrections in d = 3.
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The end

Thank you for your attention.
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