Chemical distance on random interlacements

Jiří Černý University of Vienna

joint work with Serguei Popov arXiv 1111.3979; EJP 2012

MSRI, 2 May 2012

Definition of Random Interlacement

Random interlacement is a 'dependent percolation model' introduced by A.-S. Sznitman (2010).

- W[★] space of doubly-infinite n.n. trajectories on Z^d, d ≥ 3, modulo time-shift.
- ▶ ν a σ -finite measure on W^{\star} .
- (w_i, u_i) cloud of labelled trajectories, i.e. a Poisson point process on $W^* \times [0, \infty)$ with intensity $\nu \otimes du$
- \mathbb{P} law of this process
- \mathcal{I}^u the interlacement set,

$$\mathcal{I}^u = \bigcup_{i:u_i \le u} \operatorname{Range} w_i$$

• \mathcal{V}^u - the vacant set

$$\mathcal{V}^u = \mathbb{Z}^d \setminus \mathcal{I}^u$$

Local specification for Random interlacement

Let $A \subset \mathbb{V}$ finite.

• equilibrium measure:

 $e_A(x) = \operatorname{Prob}[\mathsf{RW} \text{ on } \mathbb{V} \text{ started at } x \text{ never returns to } A] \cdot \mathbf{1}_A(x).$

- ▶ for every $x \in A$, let N_x be Poisson($ue_A(x)$) random variable. N_x 's independent
- ▶ at every point x start N_x independent random walks $X^{(x,i)}$, $i \leq N_x$.
- Then

$$\mathcal{I}^u \cap A \stackrel{\text{law}}{=} A \cap \bigcup_{x \in A} \bigcup_{i \le N_x} \text{Range} X^{(x,i)}.$$

Understand the behaviour of the random sets \mathcal{I}^u and \mathcal{V}^u .

Random interlacement is a correlated dependent percolation:

density

$$\mathbb{P}[x \in \mathcal{I}^u] = 1 - e^{-u \operatorname{cap}(x)}$$

correlation

$$\operatorname{Cor}_{\mathbb{P}}(x \in \mathcal{I}^u, y \in \mathcal{I}^u) \sim c(u)|x-y|^{2-d}$$

• no duality between \mathcal{V}^u and \mathcal{I}^u .

Theorem (Sznitman '10; Sznitman, Sidoravicius '09) For every $d \ge 3$ there is $u_{\star} = u_{\star}(d)$, such that

 $0 < u_{\star} < \infty$

and

- If $u < u_{\star}$, then \mathcal{V}^u contains an infinite connected component \mathbb{P} -a.s.
- If $u > u_{\star}$, then there are \mathbb{P} -a.s. only finite components of \mathcal{V}^{u} .

Absence of phase transition for \mathcal{I}^u

Trivially: For every u > 0, the interlacement set contain an infinite connected component.

```
Theorem (Sznitman '10)
For every u > 0, d \ge 3,
```

 $\mathbb{P}[\mathcal{I}^u \text{ is connected}] = 1.$

Absence of phase transition for \mathcal{I}^u

Trivially: For every u > 0, the interlacement set contain an infinite connected component.

```
Theorem (Sznitman '10)
For every u > 0, d \ge 3,
```

 $\mathbb{P}[\mathcal{I}^u \text{ is connected}] = 1.$

```
Theorem (Č, Popov '12)
For every d \ge 3,
```

 $\mathbb{P}[\mathcal{I}^u \text{ is connected for every } u > 0] = 1.$

How connected is \mathcal{I}^{u} ?

Theorem (Procaccia, Tykesson EJP'11; Ráth, Sapozhnikov ALEA'12)

Given that $x, y \in \mathcal{I}^u$, it is possible to find a path between x and y contained in the range of at most $\lceil d/2 \rceil$ trajectories from the underlying Poisson point process.

Theorem (Ráth, Sapozhnikov ECP'11)

For every u > 0, $d \ge 3$, the simple random walk on \mathcal{I}^u is transient.

Theorem (Ráth, Sapozhnikov arXiv:1109.5086)

Let \mathcal{B}_p be the Bernoulli site percolation on \mathbb{Z}^d with parameter pThere exists p < 1 and $R < \infty$ such that \mathbb{P} -a.s

$$\mathcal{I}^u \cap \mathcal{B}_p$$
 percolates in the slab $\mathbb{Z}^2 imes [-R,R]^{d-2}$

Chemical/graph/internal distance

Let

$$\begin{split} \rho_u(x,y) &= \min\{n : \exists x_0, x_1, \dots, x_n \in \mathcal{I}^u \text{ such that } x_0 = x, x_n = y, \\ & \text{ and } \|x_k - x_{k-1}\|_1 = 1 \text{ for all } k = 1, \dots, n\}, \end{split}$$

be the graph distance on \mathcal{I}^u .

Question. Is it comparable to the Euclidean distance?

Large deviations for chemical distance

Let

$$\mathbb{P}_0^u[\cdot] = \mathbb{P}[\cdot|0 \in \mathcal{I}^u].$$

Theorem (Č-Popov'12)

For every u>0 and $d\geq 3$ there exist constants $C,\,C'<\infty$ and $\delta\in(0,1)$ such that

 $\mathbb{P}^u_0[\textit{there exists } x \in \mathcal{I}^u \cap [-n,n]^d \textit{ such that } \rho_u(0,x) > Cn] \leq C' e^{-n^\delta}.$

Large deviations for chemical distance

Let

$$\mathbb{P}_0^u[\cdot] = \mathbb{P}[\cdot|0 \in \mathcal{I}^u].$$

Theorem (Č-Popov'12)

For every u>0 and $d\geq 3$ there exist constants $C,\,C'<\infty$ and $\delta\in(0,1)$ such that

 $\mathbb{P}^u_0[\textit{there exists } x \in \mathcal{I}^u \cap [-n,n]^d \textit{ such that } \rho_u(0,x) > Cn] \leq C' e^{-n^\delta}.$

For the Bernoulli percolation the corresponding statement was shown by Antal and Pisztora (1996), with $\delta = 1$.

We can show that $\delta = 1$ for $d \ge 5$.

The shape theorem

Let $\Lambda^u(n)=\{y\in \mathcal{I}^u:\rho_u(0,y)\leq n\}$ be the ball around 0 of radius n in the chemical distance.

Theorem

For every u > 0 and $d \ge 3$ there exists a compact convex set $D_u \subset \mathbb{R}^d$ such that for any $\varepsilon > 0$, \mathbb{P}_0^u -a.s. for n large

$$((1-\varepsilon)nD_u\cap\mathcal{I}^u)\subset\Lambda^u(n)\subset(1+\varepsilon)nD_u.$$

The shape theorem

Let $\Lambda^u(n)=\{y\in \mathcal{I}^u:\rho_u(0,y)\leq n\}$ be the ball around 0 of radius n in the chemical distance.

Theorem

For every u > 0 and $d \ge 3$ there exists a compact convex set $D_u \subset \mathbb{R}^d$ such that for any $\varepsilon > 0$, \mathbb{P}_0^u -a.s. for n large

$$((1-\varepsilon)nD_u\cap\mathcal{I}^u)\subset\Lambda^u(n)\subset(1+\varepsilon)nD_u.$$

Question. How D_u behaves as $u \to 0$?

Implication for RW on torus

Let X be random walk on the torus \mathbb{T}_N^d and ρ_N^u the graph distance on its range $\mathcal{I}_N^u = \{X_0, \dots, X_{uN^d}\}$.

Theorem

For large enough C and γ , we have

$$P^{N}\left[\rho_{N}^{u}(x,y) \leq C|x-y| \,\forall x, y \in \mathcal{I}_{N}^{u} \text{ s.t. } |x-y| \geq \ln^{\gamma} N\right] \xrightarrow{N \to \infty} 1$$

Implication for RW on torus

Let X be random walk on the torus \mathbb{T}_N^d and ρ_N^u the graph distance on its range $\mathcal{I}_N^u = \{X_0, \ldots, X_{uN^d}\}$.

Theorem

For large enough C and γ , we have

$$P^{N}\left[\rho_{N}^{u}(x,y) \leq C|x-y| \, \forall x, y \in \mathcal{I}_{N}^{u} \text{ s.t. } |x-y| \geq \ln^{\gamma} N\right] \xrightarrow{N \to \infty} 1$$

Improves result of Shellef(- Procaccia) arXiv:1007.1401, who shows that the same hold for $C = \log \ldots \log N$, $k \ge 1$.

 $k \ {\sf times}$

Simple proof of the large deviation result.

Works in $d \ge 5$ only!

Based on Antal-Pisztora, Liggett-Schonmann-Stacey'97, and Lemma (Ráth-Sapozhnikov)

$$\mathbb{P}\Big[\bigcap_{x,y\in\mathcal{I}^u\cap B(R)}x\overset{B(2R)\cap\mathcal{I}^u}{\longleftrightarrow}y\Big]\geq 1-ce^{-cR^{1/6}}$$

٠

Simple proof of the large deviation result.

Works in $d \ge 5$ only!

Based on Antal-Pisztora, Liggett-Schonmann-Stacey'97, and Lemma (Ráth-Sapozhnikov)

$$\mathbb{P}\Big[\bigcap_{x,y\in\mathcal{I}^u\cap B(R)}x\overset{B(2R)\cap\mathcal{I}^u}{\longleftrightarrow}y\Big]\geq 1-ce^{-cR^{1/6}}$$

٠

Remark. The lemma implies that with a large probability

$$\rho_u(x,y) \le c|x-y|^d$$

Strong supercriticality of \mathcal{I}^u

Consider

- ▶ a box B(n), $h \in [0, 2/d)$
- $\eta_1 \leq \eta_2$ such that $\eta_1 \geq n^{d-2-h}$, $\eta_2 \leq n^M$,
- η_2 independent random walks $X_k^{(i)}$ started in B(n).

• ranges
$$R_i(m) = \{X_0^{(i)}, \dots, X_m^{(i)}\}.$$

Lemma

For every h > 0 there is $\beta(d, h) < \infty$ such that with probability larger than $1 - ce^{-cn^{c'}}$ the following occurs:

- Any two points in $\cup_{i \leq \eta_1} R_i(2n^2)$ can be connected by a path included in at most $\beta(h, d)$ sets $R_i(2n^2)$, $i \leq \eta_1$.
- For every $j \leq \eta_2$,

$$R_j(n^2) \cap \bigcup_{i \le \eta_1} R_i(2n^2) \ne \emptyset.$$

"a technical condition on remainders of trajectories".

Technical estimates

Let $q_x(A, n)$ be the probability that the random walk started from x hits A before n, $\ell(x, A) = \max_{y \in A} |x - y|$. Then for $n \ge \ell(x, A)^2$

$$q_x(A, n) \ge \begin{cases} c \operatorname{diam}(A)\ell(x, A)^{2-d} \\ c|A|^{1-\frac{2}{d}}\ell(x, A)^{2-d} \end{cases}$$

with log corrections in d = 3.

Thank you for your attention.