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Many-dimensional random walks

Initial motivation: gas of particles in a finite random tube
(Comets, Popov, Schütz, Vachkovskaia, JSP–2010):

ω

H

Figure: Particles are injected at the left boundary, and killed at both
boundaries

Technical difficulty: prove that Pω[time ≤ εH2 | cross the tube]
is small.
This would be a concequence of a conditional CLT!
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

The model:
I in Z, to any pair (x , y) attach a positive number ωx ,y

(conductance between x and y ).

I P stands for the law of this field of conductances. We
assume that P is stationary and ergodic.

I define πx =
∑

y ωx ,y , and let the transition probabilities be

qω(x , y) =
ωx ,y

πx

I Px
ω is the quenched law of the random walk starting from x ,

so that

Px
ω[X (0) = x ] = 1, Px

ω[X (k+1) = z | X (k) = y ] = qω(y , z).
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

We assume “local uniform ellipticity” and polynomial tails of
jumps:

Condition E.
(i) There exists κ > 0 such that, P-a.s., qω(0,±1) ≥ κ.
(ii) Also, there exists κ̂ > 0 such that κ̂ ≤∑y∈Z ω0,y ≤ κ̂−1,

P-a.s.

Condition K. There exist constants K , β > 0 such that P-a.s.,
ω0,y ≤ K |y |−(3+β), for all y ∈ Z \ {0}.
(observe that this implies that the second moment of the jump
is uniformly bounded)
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

Brownian Meander:

Let W be the Brownian Motion starting from 0, and define
τ1 = sup{s ∈ [0,1] : W (s) = 0} and ∆1 = 1− τ1.

Then, the Brownian Meander W + is defined in this way:

W +(s) := ∆
−1/2
1 |W1(τ1 + s∆1)|, 0 ≤ s ≤ 1.

Informally, the Brownian Meander is the Brownian Motion
conditioned on staying positive on the time interval (0,1].

Example: simple random walk S, conditioned on
{S1 > 0, . . . ,Sn > 0}, after usual scaling converges to the
Brownian Meander.
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

Let
Λn := {X (k) > 0 for all k = 1, . . . ,n}

Consider the conditional quenched probability measure
Qn
ω[ · ] := Pω[ · | Λn].

Define the continuous map Z n(t), t ∈ [0,1]) as the natural
polygonal interpolation of the map k/n 7→ σ−1n−1/2X (k) (with σ
from the quenched CLT).

For each n, the random map Z n induces a probability measure
µn
ω on (C[0,1],B1): for any A ∈ B1,

µn
ω(A) := Qn

ω[Z n ∈ A].
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

Main result:

Theorem
Under Conditions E and K, we have that, P-a.s., µn

ω tends
weakly to PW + as n→∞, where PW + is the law of the
Brownian meander W + on C[0,1].

As a corollary of Theorem 1.1, we obtain a limit theorem for the
process conditioned on crossing a large interval. Define

τ̂n = inf{k ≥ 0 : Xk ∈ [n,∞)} and Λ′n = {τ̂n < τ̂}.

Corollary

Assume Conditions E and K. Then, conditioned on Λ′n, the
process converges to the “Brownian crossing”.
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

I strategy of the proof: force the walk a bit away from the
origin, and use the (unconditional) quenched invariance
principle.

I in fact, one needs even the “uniform” version of the
quenched invariance principle (i.e., at time t the rescaled
RW is “close” to BM uniformly with respect to the starting
point chosen in the interval of length O(

√
t) around the

origin)
I the main difficulty: control the (both conditional and

unconditional) exit measure from large intervals
I (observe that is ξ has only polynomial tail, then

P[x<ξ≤x+a]
P[ξ>x ] → 0 as x →∞)
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

The model:
I in Zd , to any unordered pair of neighbors attach a positive

number ωx ,y (conductance between x and y ).

I P stands for the law of this field of conductances. We
assume that P is stationary and ergodic.

I define πx =
∑

y∼x ωx ,y , and let the transition probabilities
be

qω(x , y) =

{ ωx,y
πx
, if y ∼ x ,

0, otherwise,

I Px
ω is the quenched law of the random walk starting from x ,

so that

Px
ω[X (0) = x ] = 1, Px

ω[X (k+1) = z | X (k) = y ] = qω(y , z).
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

(many recent papers) =⇒ under mild conditions on the law of
ω-s, the Quenched Invariance Principle holds:

For almost every environment ω, suitably rescaled trajectories
of the random walk converge to the Brownian Motion (with
nonrandom diffusion constant σ) in a suitable sense.

Main method of the proof: the “corrector approach”, i.e., find a
“stationary deformation” of the lattice such that the random
walk becomes martingale.

The corrector is shown to exist, but usually no explicit formula is
known for it.
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

Let
Λn := {X1(k) > 0 for all k = 1, . . . ,n}

(X1 is the first coordinate of X ).

Consider the conditional quenched probability measure
Qn
ω[ · ] := Pω[ · | Λn].

Define the continuous map Z n(t), t ∈ [0,1]) as the natural
polygonal interpolation of the map k/n 7→ σ−1n−1/2X (k) (with σ
from the quenched CLT).

For each n, the random map Z n induces a probability measure
µn
ω on (C[0,1],B1): for any A ∈ B1,

µn
ω(A) := Qn

ω[Z n ∈ A].
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

Condition E’. There exists κ > 0 such that, P-a.s.,
κ < ω0,x < κ−1 for x ∼ 0.

Denote by PW + ⊗ PW (d−1) the product law of Brownian meander
and (d − 1)-dimensional standard Brownian motion on the time
interval [0,1].

Now, we formulate our main result:

Theorem
Under Condition E’, we have that, P-a.s., µn

ω tends weakly to
PW + ⊗ PW (d−1) as n→∞ (as probability measures on C[0,1]).
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

Strategy of the proof: “go avay a little bit from the forbidden
area in a controlled way”

(we need to control the time and the vertical displacement), and
then use unconditional CLT (in fact, again, the uniform version
of the CLT makes life easier)

0

X(t)

ε
√

n

t =time to go out

vertical displacement
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

control of time:

0

N = ε
√
n

N
2

N
22

N
23. . .

α ∈ ( 1
4 , 1)

Pω[τN > n | Λn] ≈ small

Pω[τN > n | Λn] ≤ Pω[τN/2 > αn | Λn] + something small,

then iterate:

Pω[τ2−j N > αjn | Λn] ≤ Pω[τ2−(j+1)N > αj+1n | Λn]+smth very small
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

control of “vertical” displacement:

0

N = ε
√
n

N
2

N
22

N
23. . .

α ∈ ( 1
2 , 1)

Pω
[

sup
j≤τN

|X2(j)| > ε′N | Λn
]
≈ small

Gk =
{

sup
j∈(τ2−k N ,τ2−k+1N ]

|X2(j)− X2(τ2−k N)| ≤ ε′′αkN
}

observe that, for Gk , vertical size
horizontal size ' (2α)k
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One-dimensional random walks with unbounded jumps
Many-dimensional random walks

Open questions:

I not uniformly bounded conductances, RWs on percolation
clusters, . . . ?

I other types of conditioning?

I Pω[Λn] '?

I in particular, can one prove that
C1
n ≤ Pω[cross the strip of width n] ≤ C2

n ?
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