- Thursday, May 03, 2012
- Speaker:Yuval Peres (joint work with Noam Berger)
- Title:Detecting the trail of the random walker
- Note taker:Xiaoqin Guo
- 1. Riddle (Kantorovich):Consider discrete time Markov chain on a space with *n* states.Can we bound (τ_y) is the hitting time of *y*.

$$
P(\exists y, \tau_y = t) \le f(n, t) \stackrel{t \to \infty}{\longrightarrow} 0?
$$

- *•* Example (Kozma, Zeitouni) on a graph of bounded degree, *f ∼ n* ²*/t*.
- 2. On \mathbb{Z}^d , start with iid fair coins everywhere. Consider a random walk path starting from the origin (e.g. simple random walk, oriented random walk). On the random walk path *S*, replace the fair coin by $(q, 1 - q)$ coins. This yields a law Q_S for the scenery. Define the average scenery

$$
Q = \int Q_S \, \mathrm{d}\varphi(S),
$$

where φ is the law on transient paths.

Question: Can we distinguish between the original scenery $P = \mu^{\mathbb{Z}^d}$ and *Q*? $(\mu = (\frac{1}{2}, \frac{1}{2})$ $\frac{1}{2}$) is the law of a fair coin. Denote $Q_S = \nu^S \mu^{\mathbb{Z}^d \setminus S}$. *ν* is the biased coin.)

For $d \leq 4$, we expect $P \perp Q$.

- 3. **Theorem** (Berger, P.)
	- (a) For SRW, $P \perp Q$ for all d and $q \neq \frac{1}{2}$ $rac{1}{2}$.

(b) For oriented random walk, $P \perp Q$ for $d \leq 3$; $P \sim Q$ for $d \geq 4$ and some $q \neq \frac{1}{2}$ $\frac{1}{2}$.

(c) For $d = 2, q \neq \frac{1}{2}$ $\frac{1}{2}$, *P* ⊥ *Q* for any *ϕ*.

For $d \geq 3$, $\exists q \neq \frac{1}{2}$ $\frac{1}{2}$ such that $P \sim Q$ for some φ .

- Proposition: The SRW on $\mathbb{Z}^d, d \geq 3$ will for infinitely many *n*, fill more than half of a cube of side $(\log n)^{\frac{1}{d-2}}$ before reaching distance *n* from the origin.
- 4. Proof of (b), $d > 4$.

(Using techniques in Levin-Pemantle-P. and Bolthausen-Sznitman) We will prove the absolute continuity by bounding the l^2 -norm of R-N derivative.

Lemma: $d \geq 4$, consider two independent copies of oriented random

walks *S*, \tilde{S} . $(\varphi \times \varphi)(|S \cap \tilde{S}| \ge k) \le e^{-ck}$. Look at a box of side *n*. We will show

$$
\int (\frac{\mathrm{d}Q_n}{\mathrm{d}P_n})^2 \,\mathrm{d}P \le B
$$

for $B < \infty$ independent of *n*. (P_n, Q_n) are measures restricted to the configuration ω of coins in a box of side *n*). Let Γ be the space of paths starting from the origin.

$$
\int (\frac{dQ_n}{dP_n})^2 dP = \int_{\Omega} \int_{\Gamma} \int_{\Gamma} \frac{Q_S(\omega) Q_{\tilde{S}}(\omega)}{P_n(\omega) P_n(\omega)} d\varphi(S) d\varphi(\tilde{S}) dP_n
$$

=
$$
\int_{\Omega} \int_{\Gamma} \int_{\Gamma} \prod_{\substack{v \in \text{Box of side } n \\ \text{and } v \in S \cap \tilde{S}}} \frac{Q_S(\omega_v) Q_{\tilde{S}}(\omega_v)}{P(\omega_v)^2} d\varphi(S) d\varphi(\tilde{S}) dP_n.
$$

Note that $\int \frac{Q_S(\omega_v) Q_{\tilde{S}}(\omega_v)}{P(\omega_v)^2} = \int (\frac{d\nu}{d\mu})$ $\frac{d\nu}{d\mu}$ ² $d\mu$. (b) follows by taking *q* near $\frac{1}{2}$.