- Thursday, May 03, 2012
- Speaker: Omer Angel
- Title: Linearly reinforced random walks
- Note taker: Xiaoqin Guo
- 1. Model:
 - G = (V, E): an undirected graph.
 - $a_e > 0$: initial weight of edge $e \in E$.
 - Every time the random walker visits an edge, the weight of the edge increases by 1. ("linear reinforcement" random walk)
- 2. Observations:
 - LRRW is partially exchangeable
 - (Diaconius-Freedman) recurrence \Rightarrow RWRE, i.e., the law \mathbb{P} of the RRW = $\int P^{\omega} d\mu(\omega)$, where μ is a law of the environment.
 - (Merkl-Rolles) the same equivalence for not recurrent LRRW+ explicit expression of μ ("magic formula").
 - (Pemantle) transient/recurrent results on trees.
 - (Merkl-Rolles) recurrent on stretched \mathbb{Z}^2 .
- 3. Theorem In any graph with bounded degrees, the LRRW is recurrent for small enough initial weights $a_e < a$, where a depends on the maximal degree.

Remark: Sabot-Tarres have a different proof of this theorem.

Theorem For s < 1/3, $\mathbb{E}(\omega_e)^s \leq (C\sqrt{a})^{\operatorname{dist}(e,v_o)}$, where $a = \max_e a_e$ and C depends on s and the maximal degree.

Theorem On any non-amenable graph with degrees bounded by K, LRRW is transient if $a_e > a_0$ for $a_0 = a_0(\iota, K)$, where ι is the Cheeger constant.