- Thursday, May 03, 2012
- Speaker: Perla Sousi
- Title: Self-interacting random walks
- Note taker: Xiaoqin Guo
- 1. Model
	- μ_1, μ_2 are two zero-mean probability measures on \mathbb{R}^3 . They are fully supported (i.e., $\text{Supp}(\mu_i)$ contain 3 linearly independent vectors).
	- $\xi_1^1, \ldots, \xi_i^1, \ldots$ are iid $\sim \mu_1$.
	- $\xi_1^2, \ldots, \xi_i^2, \ldots$ are iid $\sim \mu_2$.
	- Random walks $X_0 = 0$, $X_{t+1} = X_t + \xi_{t+1}^{l(t)}$, where $l(t) \in \{1, 2\}$ is $\sigma(X_0,\ldots,X_t)$ -measurable.
- 2. **Theorem 1**(Peres-Popov-S.) For any 2 such measures in $\mathbb{R}^d, d \geq 3$, and any adapted l, X_t is transient.

Theorem 2(Peres-Popov-S.) In \mathbb{R}^d , there exist *d* such measures and an adapted rule l such that X_t is recurrent. (*Open question*: Transience for $d-1$ measures in \mathbb{R}^d ?)

• Proof for Theorem 1, the case $d \geq 5$: Use local CLT. Since

$$
\{X_n \in B(0,R)\} \subset \{\exists i_1, i_2 : i_1 + i_2 = n, \xi_1^1 + \ldots + \xi_{i_1}^1 + \xi_1^2 + \ldots + \xi_{i_2}^2 \in B(o,R)\},\
$$

by LCLT,

$$
P(X_n \in B(0, R)) \le (n+1) \max_{i_1 > n/2} P(\xi_1^1 + \dots + \xi_{i_1}^1 + \xi_1^2 + \dots + \xi_{i_2}^2 \in B(o, R))
$$

$$
\le C(n+1)R^d/n^{d/2},
$$

which is summable for $d \geq 5 \implies$ transience.

• Proof of Theorem 1, $d = 3$: Assume $Z_i \sim \mu_i$ and $||Z_i|| \leq A < \infty$ a.-s., $i = 1, 2$.

Idea: Find a function $\varphi > 0$, $\varphi(x) \stackrel{|x| \to \infty}{\longrightarrow} 0$ such that $\varphi(X_t)$ is a supermartingale $\Rightarrow X_t$ is transient (by the martingale convergence theorem and $\lim |X_t| = \infty$). Take $\varphi(x) = \|x\|^{-\alpha} \wedge 1$ for some $\alpha > 0$. It suffices to show

 $E[\varphi(x+Z_i) - \varphi(x)] \leq 0$, $\forall i = 1, 2$ and *x* large.

Consider the Taylor expansion of φ

• Example of recurrence case: In \mathbb{R}^3 , when the walker is at $x =$ (x_1, x_2, x_3) , he picks the direction e_i such that $|x_i| = \max_j |x_j|$ with probability $1 - \epsilon$, and picks the other directions with probabilities $\epsilon/2$. Then add ± 1 to the chosen coordinate. When ϵ is small enough, the walk is recurrent.

