- Speaker:Balint Toth (joint work with Horvath and Veto)
- Title:Scaling limits for self-interacting random walks and diffusions
- Note-taker:Xiaoqin Guo
- 1. Model. Consider continuous time nearest neighbor jump process $t \mapsto X(t) \in \mathbb{Z}^d$. Let

$$l(t,z) = l(0,z) + |\{s \le t : X(s) = z\}|.$$

 $w: \mathbb{R} \to (0, \infty)$ is an increasing function. Define the law of the (self-repelling) walks:

$$P(X(t + dt) = y | \mathcal{F}_t, X(t) = x) = 1_{x \sim y} w(l(t, x) - l(t, y)) dt + o(dt).$$

Define

$$s(u) = \frac{w(u) + w(-u)}{2}, r(u) = \frac{w(u) - w(-u)}{2}$$

Assume ellipticity: $\inf_u w(u) = \gamma > 0.$

2. Conjecture (Amit-Parisi-Peliti):

Related works:

- d = 1, B.Toth '95(related model), Toth+Werner '98, Toth+Veto '10, Tarres+Toth+Valko '11.
- $d = 2, EX(t)^2 \gg t \log \log t$, Toth+Valko '11.
- $d \geq 3$, this talk.
- 3. Environment viewed from the random walker: $\eta(t) = (\eta(t, x))_{x \in \mathbb{Z}^d} := (l(t, X(t) + x))_{x \in \mathbb{Z}^d}$ is a cadlag Markov process in

$$\Omega = \left\{ \omega = (\omega(x))_{x \in \mathbb{Z}^d} : \lim_{|x| \to \infty} \frac{|\omega(x)|}{|x|^{\epsilon}} = 0, \forall \epsilon > 0 \right\}.$$

 τ_z : translation from $\Omega \to \Omega$, $\mathcal{U} := \{e : |e| = 1\}$. $(\eta(t))$ has generator

$$(Gf)(\omega) = \sum_{e \in \mathcal{U}} w(\omega(o) - \omega(e))(f(\tau_e \omega) - f(\omega)) + Df(\omega),$$

where $Df(\omega) = \frac{\partial f}{\partial \omega(0)}(\omega)$.

4. The stationary and ergodic measure for the environment process $\eta(t)$. Define the Gibbs measure π on Ω : for $\Lambda \subset \mathbb{Z}^d$,

$$\mathrm{d}\pi(\omega_x|\omega_{\Lambda^c}) = Z_{\Lambda}^{-1} \exp\{-\frac{1}{2} \sum_{\substack{x \sim y \\ x, y \in \Lambda}} R(w(x) - w(y)) - \sum_{\substack{x \sim y, \\ x \in \Lambda, y \in \Lambda^c}} R(\omega(x) - \omega(y))\} \prod_{x \in \Lambda} \mathrm{d}\omega_x,$$

where $R : \mathbb{R} \to [0, \infty)$ is defined by $R(u) = \int_0^u r(v) \, \mathrm{d}v$. Remark: If R(u) = u, then π is the free Gaussian field on \mathbb{Z}^d .

- 5. Theorem:
 - 1) Under minimal technical conditions on $w(\cdot)$,

$$\gamma \leq \overline{\lim_{t \to \infty}} \frac{1}{t} E[X(t)^2] < \infty.$$

2) Assume $r(u) = u, s(u) = au^4 + bu^2 + c$ (a, b, c are constants chosen s.t. s > 0). Then

$$\lim_{t \to \infty} \left(\frac{E[X_k(t)X_l(t)]}{t} \right) = (a_{kl}) > 0,$$

and the finite dimensional marginal distribution of $\frac{X(Nt)}{\sqrt{N}} \implies$ Brownian motion with diffusion matrix (a_{kl}) .

6. Proof: Split X(t) as

$$X(t) = (X(t) - \int_0^t \varphi(\eta_s) \,\mathrm{d}s) + \int_0^t \varphi(\eta_s) \,\mathrm{d}s$$

such that $(X(t) - \int_0^t \varphi(\eta_s) \, ds)$ is a martingale. Then use Kipnis-Varadhan theory to control $\int_0^t \varphi(\eta_s) \, ds$.