Large Deviations and Slowdown Asymptotics of Excited Random Walks

Jonathon Peterson

Department of Mathematics Purdue University

May 4, 2012

(M, p) Cookie Random Walk Initially *M* cookies at each site.

(M, p) Cookie Random Walk Initially *M* cookies at each site.

• Cookie available: Eat cookie. Move right with probability $p \in (0, 1)$

(M, p) Cookie Random Walk Initially *M* cookies at each site.

• **Cookie available:** Eat cookie. Move right with probability $p \in (0, 1)$

(M, p) Cookie Random Walk Initially *M* cookies at each site.

• **Cookie available:** Eat cookie. Move right with probability $p \in (0, 1)$

(M, p) Cookie Random Walk Initially *M* cookies at each site.

- **Cookie available:** Eat cookie. Move right with probability $p \in (0, 1)$
- No cookies: Move right/left with probability ¹/₂.

(M, p) Cookie Random Walk Initially *M* cookies at each site.

- **Cookie available:** Eat cookie. Move right with probability $p \in (0, 1)$
- No cookies: Move right/left with probability ¹/₂.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

- M cookies at each site.
- Cookie *strengths* $p_1, p_2, ..., p_M \in (0, 1)$.

Random i.i.d. cookie environments

- M cookies per site.
- $\omega_x(j)$ strength of *j*-th cookie at site *x*.
- Cookie environment ω = {ω_x} is i.i.d.
 Cookies within a stack may be dependent.

Recurrence/Transience and LLN

Average drift per site

$$\delta = E\left[\sum_{j=1}^{M} (2\omega_0(j) - 1)\right]$$

Theorem (Zerner '05, Zerner & Kosygina '08)

The cookie RW is recurrent if and only if $\delta \in [-1, 1]$.

Recurrence/Transience and LLN

Average drift per site

$$\delta = E\left[\sum_{j=1}^{M} (2\omega_0(j) - 1)\right]$$

Theorem (Zerner '05, Zerner & Kosygina '08)

The cookie RW is recurrent if and only if $\delta \in [-1, 1]$.

Theorem (Basdevant & Singh '07, Zerner & Kosygina '08)

$$\lim_{n\to\infty} X_n/n = v_0$$
, and $v_0 > 0 \iff \delta > 2$.

No explicit formula is known for v_0 .

Limiting Distributions for Excited Random Walks

Theorem (Basdevant & Singh '08, Kosygina & Zerner '08, Dolgopyat '11)

Excited random walks have the following limiting distributions.

Regime	Re-scaling	Limiting Distribution
$\delta \in (1,2)$	$\frac{X_n}{n^{\delta/2}}$	$\left(rac{\delta}{2}$ -stable $ ight)^{-\delta/2}$
$\delta \in (2,4)$	$\frac{X_n - nv_0}{n^{2/\delta}}$	Totally asymmetric $rac{\delta}{2}$ -stable
$\delta >$ 4	$\frac{X_n - nv_0}{A\sqrt{n}}$	Gaussian

Results are also known for other values of δ .

Note: $\delta > 1$ results similar to transient RWRE.

Limiting Distributions for Excited Random Walks

Theorem (Basdevant & Singh '08, Kosygina & Zerner '08, Dolgopyat '11)

Hitting times $T_n = \min\{k \ge 0 : X_k = n\}$ of excited random walks have the following limiting distributions.

Regime	Re-scaling	Limiting Distribution
$\delta \in (1,2)$	$\frac{T_n}{n^{2/\delta}}$	Totally asymmetric $rac{\delta}{2}$ -stable
$\delta \in (2,4)$	$\frac{T_n - n/v_0}{n^{2/\delta}}$	Totally asymmetric $rac{\delta}{2}$ -stable
$\delta > 4$	$\frac{T_n - n/v_0}{A\sqrt{n}}$	Gaussian

Results are also known for other values of δ .

Note: $\delta > 1$ results similar to transient RWRE.

Large Deviations for Excited Random Walks

Theorem (P. '12)

 X_n/n has a large deviation principle with rate function $I_X(x)$. That is, for any open $G \subset [-1, 1]$

$$\liminf_{n\to\infty}\frac{1}{n}\log P(X_n/n\in G)\geq -\inf_{x\in G}I_X(x)$$

and for any closed $F \subset [-1,1]$

$$\limsup_{n\to\infty}\frac{1}{n}\log P(X_n/n\in F)\leq -\inf_{x\in F}I_X(x)$$

Informally, $P(X_n \approx xn) \approx e^{-nI_X(x)}$.

Large Deviations for Hitting Times of Excited Random Walks

$$T_x = \inf\{n \ge 0 : X_n = x\}, \qquad x \in \mathbb{Z}.$$

Theorem (P. '12)

 T_n/n has a large deviation principle with rate function $I_T(t)$.

Large Deviations for Hitting Times of Excited Random Walks

$$T_x = \inf\{n \ge 0 : X_n = x\}, \qquad x \in \mathbb{Z}.$$

Theorem (P. '12)

 T_n/n has a large deviation principle with rate function $I_T(t)$. T_{-n}/n has a large deviation principle with rate function $\overline{I}_T(t)$.

Large Deviations for Hitting Times of Excited Random Walks

$$T_x = \inf\{n \ge 0 : X_n = x\}, \qquad x \in \mathbb{Z}.$$

Theorem (P. '12)

 T_n/n has a large deviation principle with rate function $I_T(t)$. T_{-n}/n has a large deviation principle with rate function $\overline{I}_T(t)$.

Implies LDP for X_n/n .

$$P(X_n > xn) \approx P(T_{xn} < n).$$

$$I_X(x) = \begin{cases} xI_T(1/x) & x \in (0,1] \\ 0 & x = 0 \\ |x|\overline{I}_T(1/|x|) & x \in [-1,0) \end{cases}$$

Properties of the rate function $I_X(x)$

• $I_X(x)$ is a convex function.

Properties of the rate function $I_X(x)$

I_X(x) is a convex function.
Zero Set $\delta \in [-2, 2]$: *I_X(x) = 0 \leftarrow x = 0*. $\delta > 2$: *I_X(x) = 0 \leftarrow x \in [0, v₀]*.

Properties of the rate function $I_X(x)$

- $I_X(x)$ is a convex function.
- 2 Zero Set
 - $\begin{array}{ll} \flat \ \delta \in [-2,2]: & I_X(x) = 0 \iff x = 0. \\ \flat \ \delta > 2: & I_X(x) = 0 \iff x \in [0,v_0]. \end{array}$

Oerivatives

• $I'_X(0) = \lim_{x\to 0} I_X(x)/x = 0.$

Properties of the rate function $I_T(t)$

• $I_T(t)$ is a convex function.

Properties of the rate function $I_T(t)$

I_T(t) is a convex function.
2 Zero Set

$$\begin{array}{ll} \flat \ \delta \in [-2,2]: & I_{\mathcal{T}}(t) > 0 \ \text{but} \ \lim_{t \to \infty} I_{\mathcal{T}}(t) = 0. \\ \flat \ \delta > 2: & I_{\mathcal{T}}(t) = 0 \ \Longleftrightarrow \ t \ge 1/v_0. \end{array}$$

Slowdown probability asymptotics

 $I_X(x) = 0 \iff x \in [0, v_0].$ $P(X_n < xn)$ decays sub-exponentially for $x \in [0, v_0].$

Slowdown probability asymptotics

 $I_X(x) = 0 \iff x \in [0, v_0].$ $P(X_n < xn)$ decays sub-exponentially for $x \in [0, v_0].$

Theorem (P. '12)

If $\delta > 2$, then

and
$$\lim_{n \to \infty} \frac{\log P(X_n < xn)}{\log n} = 1 - \frac{\delta}{2}, \quad \forall x \in (0, v_0)$$
$$\lim_{n \to \infty} \frac{\log P(T_n > tn)}{\log n} = 1 - \frac{\delta}{2}, \quad \forall t > 1/v_0.$$

Similar to slowdown asymptotics for RWRE.

$$T_n \stackrel{\text{Law}}{=} n + 2\sum_{i=1}^n V_i + 2\sum_{i=1}^\infty V_i^{(n)}$$

