◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

Excited random walks on \mathbb{Z}^d

Elena Kosygina

Baruch College and the CUNY Graduate Center

May 4, 2012

Model description: cookie environments

Let *E* := {±*e_j* | *j* ∈ {1, 2, ..., *d*}} be the set of unit coordinate vectors in Z^d and denote by *M_E* the set of probability measures on *E*, each of which is called "a cookie". The set of cookie environments is denoted by Ω := *M_E*^{Z^d×ℕ}.

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

(日) (日) (日) (日) (日) (日) (日) (日)

Dynamics of excited random walk

Let \mathbb{P} be a probability measure on Ω . Denote by \mathbb{E} the expectation with respect to \mathbb{P} .

• Random walk under the quenched measure: for $\omega \in \Omega$ let $P_{0,\omega}$ be a probability measure on the set of nearest neighbor paths such that $P_{0,\omega}(X_0 = 0) = 1$ and

$$P_{0,\omega}(X_{n+1} = X_n + e \,|\, (X_m)_{m \le n}) = \omega_{X_n}(e, L_{X_n}(n)), \ e \in \mathcal{E},$$

where $L_z(n) := \sum_{m=0}^n 1_{\{X_m = z\}}$ be the number of visits to z up to time n.

• The averaged measure for $X := (X_n)_{n \ge 0}$ is defined as follows: $P_0(\cdot) := \mathbb{E}(P_{0,\omega}(\cdot))$.

Assumptions on the environment

We shall assume that either

(IID) $\omega_z, z \in \mathbb{Z}^d$, are i.i.d. under \mathbb{P} or

(SE) $\omega_z, z \in \mathbb{Z}^d$, are stationary, ergodic w.r.t. to the shifts on \mathbb{Z}^d .

Moreover, one of the following ellipticity conditions will be in force:

(WEL)
$$\forall z \in \mathbb{Z}^d, e \in \mathcal{E}: \mathbb{P} [\forall i \in \mathbb{N} : \omega_z(e, i) > 0] > 0.$$

(EL) $\forall z \in \mathbb{Z}^d, e \in \mathcal{E} \text{ and } i \in \mathbb{N}: \mathbb{P}\text{-a.s. } \omega_z(e, i) > 0.$
(UEL) $\exists \kappa > 0: \forall z \in \mathbb{Z}^d, e \in \mathcal{E}, i \in \mathbb{N} \ \omega_z(e, i) \ge \kappa \mathbb{P}\text{-a.s.}$

Obviously, (UEL) \Rightarrow (EL) \Rightarrow (WEL).

Concrete models

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sometimes we shall assume that $\exists \ell \in \mathbb{R}^d \setminus \{0\}$ such that

$$(\mathsf{POS}_{\ell}) \quad \sum_{e \in \mathcal{E}} \omega_z(e, i) \, e \cdot \ell \ge 0 \quad \mathbb{P}\text{-a.s. } \forall i \in \mathbb{N}, \ \forall z \in \mathbb{Z}^d.$$

The (possibly infinite) number of biased cookies at site z is denoted by

$$M(\omega_z) := \inf\{j \in \mathbb{N}_0 \mid \forall e \in \mathcal{E} \ \forall i > j : \omega_z(e, i) = 1/(2d)\}.$$

General properties: finite of infinite range

For $z \in \mathbb{Z}^d$ and $e \in \mathcal{E}$ write $z \xrightarrow{\omega} z + e$ if and only if $\sum_{i \ge 1} \omega_z(e, i) = \infty$. Define $b_F := \mathbb{P}[\forall e \in F : 0 \xrightarrow{\omega} e]$ for $F \subseteq \mathcal{E}$. The transitive closure in \mathbb{Z}^d of the relation $\xrightarrow{\omega}$ is denoted also by $\xrightarrow{\omega}$.

Lemma

Let $\omega \in \Omega$ and $x, y \in \mathbb{Z}^d$ with $x \xrightarrow{\omega} y$. Then on the event that the ERW visits x infinitely often, y is $P_{0,\omega}$ -a.s. visited infinitely often as well.

Theorem

Assume (IID) and (EL). If there is an orthogonal set $F \subset \mathcal{E}$ such that $b_F = 0$ then the range is P_0 -a.s. infinite. If there is no such set then the range is P_0 -a.s. finite.¹

¹Kosygina, Zerner (2012, arxiv), used a lemma from Holmes, Salisbury (2011, arxiv) < □ → < ∄ → < ≧ → < ≧ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < < ⇒ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < ≥ → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → < < → <

General properties: recurrence and transience

Theorem (d = 1)

(a) Assume (SE) and (EL). Then the ERW is either recurrent or transient or has P_0 -a.s. finite range.

(b) Assume (SE), (WEL) and \mathbb{P} -a.s. $M(\omega_0) \leq 1$. Then ERW is recurrent.

Theorem ($d \ge 1$, Kalikow-type zero-one law²) Assume (IID) and (EL). For $\ell \in \mathbb{R}^d \setminus \{0\}$ define $A_\ell := \{\lim_{n\to\infty} X_n \cdot \ell = \infty\}$. Then $P_0[|X_n \cdot \ell| \to \infty] = P_0[A_\ell \cup A_{-\ell}] \in \{0, 1\}.$

Theorem ($d \ge 2$ directional transience³) Assume (IID), (UEL), and (POS_{ℓ}) for some $\ell \in \mathbb{R}^d \setminus \{0\}$. If $\mathbb{E}\left[\sum_{i\ge 1, e\in \mathcal{E}} \omega_0(e, i)e \cdot \ell\right] > 0$, then $P_0(A_\ell) = 1$.

²Kosygina, Zerner (2012, arxiv) ³Zerner (2006)

Open problems

(1) Let $d \ge 2$. Find conditions, which imply the zero-one law $P_0[A_\ell] \in \{0,1\}$ for all $\ell \in \mathbb{R}^d \setminus \{0\}$. (2) Assume (IID) and (UEL) and suppose that ERW is balanced: $\omega_z(e,i) = \omega_z(-e,i)$ for all $z \in \mathbb{Z}$, $i \in \mathbb{N}$, $e \in \mathcal{E}$. Is it true that such walk is recurrent in d = 2 and transient for $d \ge 3$? For RWRE this is true⁴.

(3) A non-elliptic version of this problem⁵: Let $d = d_1 + d_2$ and suppose that upon the first visit to to a vertex the walker performs a d_1 -dimensional SSRW step in the first d_1 coordinates but upon subsequent visits to the same vertex he makes a SSRW step in the last d_2 coordinates. The authors of the problem gave a proof of transience when $d_1 = d_2 = 2$.

⁵Benjamini, Kozma, Schapira (2011)

⁴see Zeitouni, LNM 1837 (2004), Th.3.3.22

Regeneration structure⁶

Figure: Regeneration structure for d = 1: sizes and contents of the shaded boxes are i.i.d..

⁶goes back to H. Kesten, M.V. Kozlov, F. Spitzer (1975); H. Kesten (1977)

Lemma (Existence of regeneration structure⁷) Assume (IID) as well as (WEL) if d = 1 and (EL) if $d \ge 2$. Let $\ell \in \mathbb{R}^d \setminus \{0\}$ satisfy $P_0[A_\ell] > 0$. Then there are $P_0[\cdot | A_\ell]$ -a.s. infinitely many random times $\tau_1 < \tau_2 < \ldots$, so-called regeneration times, such that

$$X_m \cdot \ell < X_{\tau_k} \cdot \ell \ \forall m < \tau_k \text{ and } X_m \cdot \ell \ge X_{\tau_k} \cdot \ell \ \forall m \ge \tau_k, \ k \in \mathbb{N},$$

the random $\bigcup_{n\in\mathbb{N}}(\mathbb{Z}^d)^n$ -valued vectors

$$(X_n)_{0 \le n \le \tau_1}, \ (X_n - X_{\tau_i})_{\tau_i \le n \le \tau_{i+1}} \ (i \ge 1)$$

are independent w.r.t. $P_0[\cdot | A_\ell]$. Moreover, the vectors $(X_n - X_{\tau_i})_{\tau_i \le n \le \tau_{i+1}}$ $(i \ge 1)$ have the same distribution under $P_0[\cdot | A_\ell]$ as $(X_n)_{0 \le n \le \tau_1}$ under $P_0[\cdot | \forall n \ X_n \cdot \ell \ge 0]$. Also $E_0[(X_{\tau_2} - X_{\tau_1}) \cdot \ell | A_\ell] < \infty$.

⁷Zerner (2006), Berard, Ramirez (2007)

Theorem (directional law of large numbers)

Under the assumptions of the above lemma the following holds: P_0 -a.s. on the

$$\lim_{n \to \infty} \frac{X_n \cdot \ell}{n} = v_\ell := \frac{E_0[(X_{\tau_2} - X_{\tau_1}) \cdot \ell \mid A_\ell]}{E_0[\tau_2 - \tau_1 \mid A_\ell]} \in [0, 1].$$

Theorem (law of large numbers)

Assume (IID) as well as (WEL) if d = 1 and (EL) if $d \ge 2$. Let ℓ_1, \ldots, ℓ_d be a basis of \mathbb{R}^d such that $P_0[A_{\ell_i} \cup A_{-\ell_i}] = 1$ for all $i = 1, \ldots, d$. Then there are $v \in \mathbb{R}^d$ and $c \ge 0$ such that P_0 -a.s.

$$\lim_{n \to \infty} \frac{X_n}{n} \in \{v, -cv\}.$$

If, in addition, $P_0[A_{\ell_i}] = 1$ for all i = 1, ..., d then X satisfies a strong law of large numbers with velocity $v \in \mathbb{R}^d$ such that $v \cdot \ell_i \ge 0$ for all i = 1, ..., d. (Proof follows Drewitz, Ramirez (2010).)

・ロト・「聞・ 《聞・ 《聞・ 《曰・

Open problem

Assume (IID), (UEL), and (POS_{ℓ}) for some $\ell \in \mathbb{R}^d$. Suppose also that $\mathbb{E}\left[\sum_{i\geq 1, e\in \mathcal{E}} \omega_0(e, i)e \cdot \ell\right] > 0$. Under these conditions ERW is transient in the direction ℓ . When is it ballistic?

No excitation after the first visit

The original ERW model and a modification⁸. Let $p \in (1/2, 1]$ and $\mathbb{P} = \delta_{\omega}$, where $\forall z \in \mathbb{Z}^d$,

(BW)
$$\begin{split} & \omega(z,e_1,1)=\frac{p}{d}, \quad \omega(z,-e_1,1)=\frac{1-p}{d}, \text{ and} \\ & \omega(z,e,i)=\frac{1}{2d} \quad \text{if } i\in\mathbb{N} \text{ and } e\in\mathcal{E}\setminus\{e_1,-e_1\} \text{ or } \text{ if } i\geq 2. \end{split}$$

Generalization: Assume that \mathbb{P} satisfies (UEL), (IID), and that for some $\ell \in \mathbb{R}^d \setminus \{0\}$

$$\begin{array}{l} (\mathsf{MPRV}_\ell) & \exists \lambda > 0: \sum_{e \in \mathcal{E}} \omega(0,e,1) \; e \cdot \ell \geq \lambda \quad \mathbb{P}\text{-a.s. and} \\ & \omega(0,e,i) = \omega(0,-e,i)) \; \; \mathbb{P}\text{-a.s. for all } i \geq 2, \; e \in \mathcal{E}. \end{array}$$

ERW is called ballistic if it satisfies a SLLN with non-zero. speed.

Theorem ($d \ge 2$, ballisticity and FCLT⁹)

Let $\ell \in \mathbb{R}^d \setminus \{0\}$ and assume (MPRV $_\ell$), (IID) and (UEL). Then the ERW is ballistic and its velocity v satisfies $v \cdot \ell > 0$. Moreover, there exists a non-degenerate $d \times d$ matrix G such that with respect to P_0 ,

$$\frac{X_{[n\cdot]} - [n\cdot]v}{\sqrt{n}} \stackrel{J_1}{\Rightarrow} B_G(\cdot) \quad \text{as } n \to \infty,$$

where B_{C} is the *d*-dimensional Brownian motion with covariance matrix G.

Open question: under which conditions on d, the "strength" of the first cookie, and the underlying process, the first cookie determines the direction of the velocity? (See Holmes (2012).)

⁹Berard, Ramirez (2007), Menshikov, Popov, Ramirez, Vachkovskaia (2012)

Boundedly many positive and negative cookies per site, d = 1

```
Assume (IID), (WEL), and
```

```
(BD) \exists M \in \mathbb{N}: \mathbb{P}\text{-a.s. } M(\omega_0) \leq M.
```

The approach is based on the study of local times and analogs of Ray-Knight theorems.¹⁰

Continuous space-time analog, excited Brownian motions, was introduced and studied by Raimond, Schapira (2011).

¹⁰Harris (1952), Knight (1963), Kesten, Kozlov, Spitzer (1975), Toth (1996).

Recurrence and transience:

- $0 \le \delta \le 1$ X is recurrent, i.e. for \mathbb{P} -a.a. environments ω , X returns $P_{0,\omega}$ -a.s. infinitely many times to its starting point.
 - $\delta > 1~~X$ is transient to the right, i.e. for \mathbb{P} -a.a. environments ω ,

 $X_n \to \infty$ as $n \to \infty P_{0,\omega}$ -a.s..

¹¹Zerner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh (2008); Kosygina, Zerner (2008)

Recurrence and transience:

- $0 \le \delta \le 1$ X is recurrent, i.e. for \mathbb{P} -a.a. environments ω , X returns $P_{0,\omega}$ -a.s. infinitely many times to its starting point.
 - $$\begin{split} \delta > 1 \ \ X \text{ is transient to the right, i.e. for } \mathbb{P}\text{-a.a. environments } \omega, \\ X_n \to \infty \text{ as } n \to \infty \ P_{0,\omega}\text{-a.s..} \end{split}$$
 - Strong law of large numbers:

There is a deterministic $v \in [0, 1]$ such that for \mathbb{P} -a.a. environments ω , $\lim_{n \to \infty} \frac{X_n}{n} = v P_{0,\omega}$ -a.s..

¹¹Zerner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh (2008); Kosygina, Zerner (2008)

Recurrence and transience:

- $0 \le \delta \le 1$ X is recurrent, i.e. for \mathbb{P} -a.a. environments ω , X returns $P_{0,\omega}$ -a.s. infinitely many times to its starting point.
 - $$\begin{split} \delta > 1 \ \ X \text{ is transient to the right, i.e. for } \mathbb{P}\text{-a.a. environments } \omega, \\ X_n \to \infty \text{ as } n \to \infty \ P_{0,\omega}\text{-a.s..} \end{split}$$
 - Strong law of large numbers:

There is a deterministic $v \in [0, 1]$ such that for \mathbb{P} -a.a. environments ω , $\lim_{n \to \infty} \frac{X_n}{n} = v P_{0,\omega}$ -a.s..

• Ballisticity:

Let v be the (linear) speed defined above. Then v > 0 iff $\delta > 2$.

¹¹Zerner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh (2008); Kosygina, Zerner (2008)

Recurrence and transience:

$0 < \delta < 1$ X is recurrent, i.e. for P-a.a. environments ω , X returns $P_{0,\omega}$ -a.s. infinitely many times to its starting point.

- $\delta > 1$ X is transient to the right, i.e. for P-a.a. environments ω , $X_n \to \infty$ as $n \to \infty P_{0,\omega}$ -a.s..
- Strong law of large numbers:

There is a deterministic $v \in [0, 1]$ such that for \mathbb{P} -a.a. environments ω , $\lim_{n \to \infty} \frac{X_n}{n} = v P_{0,\omega}$ -a.s..

Ballisticity:

Let v be the (linear) speed defined above. Then v > 0 iff $\delta > 2$. Moreover, in the transient case with v = 0 we have $1 < \delta < 2$ $\frac{X_n}{n^{\delta/2}} \Rightarrow$ a power of a strictly stable r. v. with index $\delta/2$; $\delta = 2 \qquad \frac{X_n}{n/\log n} \stackrel{\text{prob.}}{\to} c \in (0,\infty).$

¹¹Zerner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh (2008); Kosygina, Zerner (2008) ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Transient case: centering and scaling of X_n and T_n .

	$\xi_n(t)$	$\eta_n(t)$
$\delta > 4$	$\frac{X_{[nt]} - [nt]v}{v^{3/2}\sqrt{n}}$	$\frac{T_{[nt]} - [nt]v^{-1}}{\sqrt{n}}$
$\delta = 4$	$\frac{X_{[nt]} - [nt]v}{v^{3/2}\sqrt{n\log n}}$	$\frac{T_{[nt]} - [nt]v^{-1}}{\sqrt{n\log n}}$
$2 < \delta < 4$	$\frac{X_{[nt]} - [nt]v}{v^{1+2/\delta}n^{2/\delta}}$	$\frac{T_{[nt]} - [nt]v^{-1}}{n^{2/\delta}}$

Transient case: centering and scaling of X_n and T_n .

	$\xi_n(t)$	$\eta_n(t)$
$\delta > 4$	$\frac{X_{[nt]}-[nt]v}{v^{3/2}\sqrt{n}}$	$\frac{T_{[nt]} - [nt]v^{-1}}{\sqrt{n}}$
$\delta = 4$	$\frac{X_{[nt]} - [nt]v}{v^{3/2}\sqrt{n\log n}}$	$\frac{T_{[nt]} - [nt]v^{-1}}{\sqrt{n\log n}}$
$2<\delta<4$	$\frac{X_{[nt]}-[nt]v}{v^{1+2/\delta}n^{2/\delta}}$	$\frac{T_{[nt]}-[nt]v^{-1}}{n^{2/\delta}}$
$\delta = 2$	$\frac{X_{[nt]}-c[nt]\Gamma([n])}{c^2n(\log n)^{-2}}$	$\frac{T_{[nt]} - c^{-1}[nt]D([n])}{n}$
$1 < \delta < 2$	$\frac{X_{[nt]}}{n^{\delta/2}}$	$\frac{T_{[nt]}}{n^{2/\delta}}$

Here $t \ge 0$, $\Gamma(n) \sim 1/\log n$, $D(n) \sim \log n$ as $n \to \infty$.

Convergence of one-dimensional distributions¹² For $\alpha \in (0, 2]$, b > 0 let $Z_{\alpha,b}$ be a strictly stable random variable with index α , skewness $\beta = 1$, and scale b, i.e. (sign 0 = 0)

$$\log E e^{iuZ_{\alpha,b}} = \begin{cases} -b^{\alpha}|u|^{\alpha}(1-i(\operatorname{sign} u)\tan\frac{\pi\alpha}{2}) & \text{if } \alpha \neq 1;\\ -b|u|(1+\frac{2i}{\pi}(\operatorname{sign} u)\log|u|) & \text{if } \alpha = 1. \end{cases}$$

¹²Basdevant, Singh (2008); Kosygina, Zerner (2008); Kosygina, Mountford (2011) □ □ ► ((2012) (2012) (2012)

Convergence of one-dimensional distributions¹² For $\alpha \in (0, 2]$, b > 0 let $Z_{\alpha,b}$ be a strictly stable random variable with index α , skewness $\beta = 1$, and scale b, i.e. (sign 0 = 0)

$$\log E e^{iuZ_{\alpha,b}} = \begin{cases} -b^{\alpha}|u|^{\alpha}(1-i(\operatorname{sign} u)\tan\frac{\pi\alpha}{2}) & \text{if } \alpha \neq 1;\\ -b|u|(1+\frac{2i}{\pi}(\operatorname{sign} u)\log|u|) & \text{if } \alpha = 1. \end{cases}$$

Let $X_n^* = \max_{0 \le m \le n} X_m$. Then $\{T_n \le k\} = \{X_k^* \ge n\}$. This allowed us to transfer results from T_n to X_n (provided that we can control $\inf_{m \ge n} X_m$).

Convergence of one-dimensional distributions¹² For $\alpha \in (0, 2]$, b > 0 let $Z_{\alpha,b}$ be a strictly stable random variable with index α , skewness $\beta = 1$, and scale b, i.e. (sign 0 = 0)

$$\log E e^{iuZ_{\alpha,b}} = \begin{cases} -b^{\alpha}|u|^{\alpha}(1-i(\operatorname{sign} u)\tan\frac{\pi\alpha}{2}) & \text{if } \alpha \neq 1; \\ -b|u|(1+\frac{2i}{\pi}(\operatorname{sign} u)\log|u|) & \text{if } \alpha = 1. \end{cases}$$

Let $X_n^* = \max_{0 \le m \le n} X_m$. Then $\{T_n \le k\} = \{X_k^* \ge n\}$. This allowed us to transfer results from T_n to X_n (provided that we can control $\inf_{m \ge n} X_m$).

Constant b > 0 depends on the cookie distribution. This can be translated into a result about $\xi_n(1)$.

Consider D([0,1]). Recall that for $x, y \in D([0,1])$

$$\rho_{J_1}(x,y) = \inf_{\lambda \in \Lambda} [\sup_{t \in [0,1]} |x_n(t) - x(\lambda(t))| + \sup_{t \in [0,1]} |\lambda(t) - t|]$$

For each of the two pictures below $\rho_{J_1}(x_n, x) \to 0$ as $n \to \infty$.

 M_1 topology is weaker than J_1 . Informally (and with some omissions), $\rho_{M_1}(x, y) =$ " distance between the completed graphs of x and y, Γ_x and Γ_y ". For each of the two pictures below $\rho_{M_1}(x_n, x) \to 0$ as $n \to \infty$ but $\rho_{J_1}(x_n, x) \not\to 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 M_1 topology is less demanding than J_1 . Informally (and with some omissions), $\rho_{M_1}(x, y) =$ " distance between the completed graphs of x and y, Γ_x and Γ_y ". For each of the two pictures below $\rho_{M_1}(x_n, x) \to 0$ as $n \to \infty$ but $\rho_{J_1}(x_n, x) \not\to 0$. $- \Gamma_{x_n}$ х t 0 2/n1/n

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ · の < @

Consider the inverse maps and notice that for the first picture $\rho_U(x_n^{-1}, x^{-1}) \to 0$ and for the second $\rho_{M_1}(x_n^{-1}, x^{-1}) \to 0$ as $n \to \infty$. $- x_n^{-1}$ $- x^{-1}$ t 1 1/n 2/nХ х 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�??

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Functional limit theorems

Recall IID structure

Theorem

If $\delta \in (1,2)$ then $\xi_n \stackrel{J_1}{\Rightarrow} \xi$ as $n \to \infty$. Here ξ is the inverse of the stable subordinator η for which $\eta(1) \stackrel{d}{=} Z_{\delta/2,b}$. If $\delta \in (2,4)$ then

$$\xi_n \stackrel{M_1}{\Rightarrow} \xi \quad \text{as} \quad n \to \infty,$$

where ξ is a stable process with index $\delta/2$ such that $\xi(1) \stackrel{d}{=} -Z_{\delta/2,b}$. Moreover, $\xi_n \stackrel{J_1}{\not\Rightarrow} \xi$. If $\delta \ge 4$ then $\xi_n \stackrel{J_1}{\Rightarrow} \sqrt{2b} B$ as $n \to \infty$,

where B is the standard Brownian motion¹³.

¹³Kosygina, Zerner (2012,arxiv)

Recurrent case

• If $0 \le \delta < 1$ then $\xi_n(t) = \frac{X_{[nt]}}{\sqrt{n}}$ converges to Brownian motion perturbed at extrema¹⁴. More precisely,

Theorem

Assume that $0 \le \delta < 1$. Let $W(\cdot)$ be the unique pathwise solution¹⁵ of

$$W(t) = B(t) + \delta(\max_{0 \le s \le t} W(s) - \min_{0 \le s \le t} W(s)), \quad W(0) = 0,$$

where *B* is the standard Brownian motion. Then $\xi_n \stackrel{J_1}{\Rightarrow} W$.

• The process W is not defined for $\delta = 1$. What is the limiting process for the case $\delta = 1$?

¹⁴Dolgopyat (2011), Dolgopyat, Kosygina (2012, arxiv)

Boundary case $\delta = 1^{16}$

Theorem Let $\delta = 1$. Then

$$\frac{X_{[n\cdot]}}{c\sqrt{n}\log n} \stackrel{J_1}{\Rightarrow} \max_{0 \le s \le \cdot} B(s),$$

where c > 0 is a constant.

This statement might look puzzling: the process X_n , $n \ge 0$, is recurrent, yet the limiting process is transient. It is easier to believe that the above result holds if we replace $X_{[nt]}$ with its running maximum $X^*_{[nt]}$. The stated result comes from the fact that with an overwhelming probability the maximum amount of "backtracking" of X_j from X^*_j for $j \le [Tn]$ is of order \sqrt{n} , which is negligible on the scale $\sqrt{n} \log n$.

¹⁶Dolgopyat, Kosygina (2012), arxiv)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Further results and open questions for d = 1

Assume (IID), (WEL) and (BD):

- Large deviations (under *P*₀) (Peterson (2012, arxiv)).
- The behavior of the maximum local time (Rastegar, Roiterstein, (2012, arxiv)).

Open question: Characterize the limiting behavior of ERW under the quenched measure $P_{0,\omega}$.