K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

Excited random walks on \mathbb{Z}^d

Elena Kosygina

Baruch College and the CUNY Graduate Center

May 4, 2012

Model description: cookie environments

• Let $\mathcal{E} := \{\pm e_j \mid j \in \{1, 2, \ldots, d\}\}\$ be the set of unit coordinate vectors in \mathbb{Z}^d and denote by $\mathcal{M}_{\mathcal{E}}$ the set of probability measures on \mathcal{E} , each of which is called "a cookie". The set of cookie environments is denoted by $\Omega:=\mathcal{M}_{\mathcal{E}}^{\mathbb{Z}^d\times \mathbb{N}}$ $\mathcal{E}^{\alpha \times \mathbb{N}}$.

 ω_{-1} ω_0 ω_1 ω_2

Dynamics of excited random walk

Let P be a probability measure on Ω . Denote by E the expectation with respect to P.

• Random walk under the quenched measure: for $\omega \in \Omega$ let $P_{0,\omega}$ be a probability measure on the set of nearest neighbor paths such that $P_{0,\omega}(X_0 = 0) = 1$ and

$$
P_{0,\omega}(X_{n+1} = X_n + e | (X_m)_{m \le n}) = \omega_{X_n}(e, L_{X_n}(n)), e \in \mathcal{E},
$$

where $L_z(n) := \sum_{m=0}^n 1_{\{X_m = z\}}$ be the number of visits to z up to time n .

• The averaged measure for $X := (X_n)_{n \geq 0}$ is defined as follows: $P_0(\cdot) := \mathbb{E}(P_{0,\omega}(\cdot)).$

Assumptions on the environment

We shall assume that either

(IID) $\omega_z, z \in \mathbb{Z}^d$, are i.i.d. under \mathbb{P} or

(SE) $\omega_z, z \in \mathbb{Z}^d$, are stationary, ergodic w.r.t. to the shifts on \mathbb{Z}^d .

Moreover, one of the following ellipticity conditions will be in force:

(WEL)

\n
$$
\forall z \in \mathbb{Z}^d, e \in \mathcal{E}: \mathbb{P}[\forall i \in \mathbb{N}: \omega_z(e, i) > 0] > 0.
$$
\n(EL)

\n
$$
\forall z \in \mathbb{Z}^d, e \in \mathcal{E} \text{ and } i \in \mathbb{N}: \mathbb{P}\text{-a.s. } \omega_z(e, i) > 0.
$$
\n(UEL)

\n
$$
\exists \kappa > 0: \forall z \in \mathbb{Z}^d, e \in \mathcal{E}, i \in \mathbb{N} \ \omega_z(e, i) \geq \kappa \mathbb{P}\text{-a.s.}
$$

Obviously, (UEL)⇒(EL)⇒(WEL).

K ロ X x 4 B X X B X X B X 2 X 2 O Q Q

Sometimes we shall assume that $\exists \ \ell \in \mathbb{R}^d \setminus \{0\}$ such that

$$
\textbf{(POS}_{\ell}) \quad \sum_{e \in \mathcal{E}} \omega_z(e, i) \, e \cdot \ell \geq 0 \quad \mathbb{P}\text{-a.s. } \forall i \in \mathbb{N}, \ \forall z \in \mathbb{Z}^d.
$$

The (possibly infinite) number of biased cookies at site z is denoted by

$$
M(\omega_z) := \inf\{j \in \mathbb{N}_0 \mid \forall e \in \mathcal{E} \ \forall i > j : \omega_z(e, i) = 1/(2d)\}.
$$

General properties: finite of infinite range

For $z \in \mathbb{Z}^d$ and $e \in \mathcal{E}$ write $z \stackrel{\omega}{\rightarrow} z + e$ if and only if $\sum_{i\geq 1}\omega_z(e,i)=\infty.$ Define $b_F:=\mathbb{P}[\forall e\in F:0\not\stackrel{\dot{\omega}}{\to} e]$ for $F\subseteq \mathcal{E}.$ The transitive closure in \mathbb{Z}^d of the relation $\overset{\omega}{\rightarrow}$ is denoted also by $\stackrel{\omega}{\rightarrow}$

Lemma

Let $\omega \in \Omega$ and $x, y \in \mathbb{Z}^d$ with $x \stackrel{\omega}{\rightarrow} y$. Then on the event that the ERW visits x infinitely often, y is $P_{0,\omega}$ -a.s. visited infinitely often as well.

Theorem

Assume (IID) and (EL). If there is an orthogonal set $F \subset \mathcal{E}$ such that $b_F = 0$ then the range is P_0 -a.s. infinite. If there is no such set then the range is P_0 -a.s. finite.¹

¹ Kosygina, Zerner (2012, arxiv), used a lemma from Holmes, Salisbury (2011, arxiv)

General properties: recurrence and transience

Theorem $(d = 1)$

(a) Assume (SE) and (EL). Then the ERW is either recurrent or transient or has P_0 -a.s. finite range. (b) Assume (SE), (WEL) and P-a.s. $M(\omega_0) < 1$. Then ERW is

recurrent.

Theorem ($d \geq 1$, Kalikow-type zero-one law²) Assume (IID) and (EL). For $\ell \in \mathbb{R}^d \setminus \{0\}$ define $A_\ell:=\{\lim_{n\to\infty}X_n\cdot \ell=\infty\}.$ Then $P_0[|X_n \cdot \ell| \to \infty] = P_0[A_\ell \cup A_{-\ell}] \in \{0, 1\}.$

Theorem $(d \geq 2$ directional transience³) Assume (IID), (UEL), and (POS_ℓ) for some $\ell \in \mathbb{R}^d \setminus \{0\}$. If $\mathbb{E}\left[\sum_{i\geq 1, e\in\mathcal{E}}\omega_0(e,i)e\cdot\ell\right]>0$, then $P_0(A_\ell)=1.$

²Kosygina, Zerner (2012, arxiv) 3 Zerner (2006)

Open problems

(1) Let $d > 2$. Find conditions, which imply the zero-one law $P_0[A_\ell] \in \{0, 1\}$ for all $\ell \in \mathbb{R}^d \setminus \{0\}.$ (2) Assume (IID) and (UEL) and suppose that ERW is balanced: $\omega_z(e, i) = \omega_z(-e, i)$ for all $z \in \mathbb{Z}, i \in \mathbb{N}, e \in \mathcal{E}$. Is it true that such walk is recurrent in $d = 2$ and transient for $d \geq 3$? For RWRE this is true⁴.

(3) A non-elliptic version of this problem⁵: Let $d=d_1+d_2$ and suppose that upon the first visit to to a vertex the walker performs a d_1 -dimensional SSRW step in the first d_1 coordinates but upon subsequent visits to the same vertex he makes a SSRW step in the last d_2 coordinates. The authors of the problem gave a proof of transience when $d_1 = d_2 = 2$.

⁴ see Zeitouni, LNM 1837 (2004), Th.3.3.22

⁵Benjamini, Kozma, Schapira (2011)

Regeneration structure⁶

Figure: Regeneration structure for $d = 1$: sizes and contents of the shaded boxes are i.i.d..

 6 goes back to H. Kesten, M.V. Kozlov, F. Spitzer [\(19](#page-7-0)[75](#page-9-0)[\);](#page-7-0) [H.](#page-8-0)[Ke](#page-4-0)[s](#page-5-0)[t](#page-11-0)[e](#page-12-0)[n](#page-4-0) [\(](#page-5-0)[1](#page-11-0)[9](#page-12-0)[77](#page-0-0)[\)](#page-31-0) 299

[Model description](#page-1-0) [General properties](#page-5-0) [Concrete models](#page-12-0) Concrete models and the General properties Concrete models ററ

Lemma (Existence of regeneration structure⁷) Assume (IID) as well as (WEL) if $d = 1$ and (EL) if $d > 2$. Let $\ell \in \mathbb{R}^d \backslash \{0\}$ satisfy $P_0[A_\ell] > 0$. Then there are $P_0[~\cdot \mid A_\ell]$ -a.s. infinitely many random times $\tau_1 < \tau_2 < \ldots$, so-called regeneration times, such that

$$
X_m \cdot \ell < X_{\tau_k} \cdot \ell \ \ \forall m < \tau_k \ \ \text{and} \ \ X_m \cdot \ell \ge X_{\tau_k} \cdot \ell \ \ \forall m \ge \tau_k, \ k \in \mathbb{N},
$$

the random $\bigcup_{n\in\mathbb{N}}(\mathbb{Z}^d)^n$ -valued vectors

$$
(X_n)_{0 \le n \le \tau_1}, \ (X_n - X_{\tau_i})_{\tau_i \le n \le \tau_{i+1}} \ (i \ge 1)
$$

are independent w.r.t. $P_0[\cdot | A_\ell].$ Moreover, the vectors $(X_n - X_{\tau_i})_{\tau_i \leq n \leq \tau_{i+1}} \ (i \geq 1)$ have the same distribution under $P_0[\mathrel{\;\cdot\;} \mid A_\ell]$ as $(X_n)_{0 \leq n \leq \tau_1}$ under $P_0[\mathrel{\;\cdot\;} \mid \forall n \ X_n \cdot \ell \geq 0]$. Also $E_0[(X_{\tau_2} - X_{\tau_1}) \cdot \ell \mid A_{\ell}] < \infty.$

⁷Zerner (2006), Berard, Ramirez (2007)

Theorem (**directional law of large numbers)**

Under the assumptions of the above lemma the following holds: P_0 -a.s. on the

$$
\lim_{n \to \infty} \frac{X_n \cdot \ell}{n} = v_{\ell} := \frac{E_0[(X_{\tau_2} - X_{\tau_1}) \cdot \ell \mid A_{\ell}]}{E_0[\tau_2 - \tau_1 \mid A_{\ell}]} \in [0, 1].
$$

Theorem (**law of large numbers)**

Assume (IID) as well as (WEL) if $d = 1$ and (EL) if $d > 2$. Let ℓ_1,\ldots,ℓ_d be a basis of \mathbb{R}^d such that $P_0[A_{\ell_i}\cup A_{-\ell_i}]=1$ for all $i=1,\ldots,d.$ Then there are $v\in\mathbb{R}^d$ and $c\geq 0$ such that P_0 -a.s.

$$
\lim_{n \to \infty} \frac{X_n}{n} \in \{v, -cv\}.
$$

If, in addition, $P_0[A_{\ell_i}]=1$ for all $i=1,\ldots,d$ then X satisfies a strong law of large numbers with velocity $v \in \mathbb{R}^d$ such that $v \cdot \ell_i > 0$ for all $i = 1, \ldots, d$. (Proof follows Drewitz, Ramirez (2010).)

KORK ERREADEMENT

Open problem

Assume (IID), (UEL), and (POS $_{\ell}]$ for some $\ell \in \mathbb{R}^d.$ Suppose also that $\mathbb{E}\left[\sum_{i\geq 1, e\in\mathcal{E}}\omega_0(e,i)e\cdot\ell\right]>0.$ Under these conditions FRW is transient in the direction ℓ . When is it ballistic?

No excitation after the first visit

The original ERW model and a modification 8 . Let $p \in (1/2, 1]$ and $\mathbb{P} = \delta_{\omega}$, where $\forall z \in \mathbb{Z}^d$,

(BW)
$$
\omega(z, e_1, 1) = \frac{p}{d}
$$
, $\omega(z, -e_1, 1) = \frac{1-p}{d}$, and
\n $\omega(z, e, i) = \frac{1}{2d}$ if $i \in \mathbb{N}$ and $e \in \mathcal{E} \setminus \{e_1, -e_1\}$ or if $i \ge 2$.

Generalization: Assume that $\mathbb P$ satisfies (UEL), (IID), and that for some $\ell \in \mathbb{R}^d \setminus \{0\}$

$$
\text{(MPRV}_{\ell})\quad \exists \lambda > 0: \sum_{e\in \mathcal{E}} \omega(0, e, 1) \ e \cdot \ell \geq \lambda \quad \mathbb{P}\text{-a.s. and} \\\omega(0, e, i) = \omega(0, -e, i)) \quad \mathbb{P}\text{-a.s. for all } i \geq 2, \ e \in \mathcal{E}.
$$

⁸Benjamini, Wilson (2003), Menshikov, Popov, Ramirez, Vachkovskaia (2012)**KORK ERKERKERKERKER**

ERW is called ballistic if it satisfies a SLLN with non-zero speed.

Theorem $(d \geq 2)$, **ballisticity and FCLT**⁹)

Let $\ell \in \mathbb{R}^d \setminus \{0\}$ and assume (MPRV_{ℓ}), (IID) and (UEL). Then the ERW is ballistic and its velocity v satisfies $v \cdot \ell > 0$. Moreover, there exists a non-degenerate $d \times d$ matrix G such that with respect to P_0 ,

$$
\frac{X_{[n\cdot]} - [n\cdot]v}{\sqrt{n}} \stackrel{J_1}{\Rightarrow} B_G(\cdot) \quad \text{ as } n \to \infty,
$$

where B_G is the d-dimensional Brownian motion with covariance matrix G.

Open question: under which conditions on d , the "strength" of the first cookie, and the underlying process, the first cookie determines the direction of the velocity? (See Holmes (2012).)

⁹Berard, Ramirez (2007), Menshikov, Popov, Ramirez, Vachkovskaia (2012)**KORK ERKERKERKERKER**

Boundedly many positive and negative cookies per site, $d = 1$

```
Assume (IID), (WEL), and
```

```
(BD) \exists M \in \mathbb{N}: P-a.s. M(\omega_0) \leq M.
```
The approach is based on the study of local times and analogs of Ray-Knight theorems.¹⁰

Continuous space-time analog, excited Brownian motions, was introduced and studied by Raimond, Schapira (2011).

¹⁰Harris (1952), Knight (1963), Kesten, Kozlov, S[pitz](#page-13-0)[er](#page-15-0) [\(1](#page-13-0)[97](#page-14-0)[5](#page-15-0)[\),](#page-11-0)[T](#page-29-0)[ot](#page-30-0)[h](#page-11-0) [\(](#page-12-0)[19](#page-31-0)[96](#page-0-0)[\).](#page-31-0) $\Box \odot \Diamond$

• **Recurrence and transience:**

 $0 \leq \delta \leq 1$ X is recurrent, i.e. for P-a.a. environments ω , X returns P_0 _ω-a.s. infinitely many times to its starting point. $\delta > 1$ X is transient to the right, i.e. for P-a.a. environments ω ,

 $X_n \to \infty$ as $n \to \infty$ P_0 _w-a.s..

¹¹Zerner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh (2008); Kosygina, Zerner (2008)K ロ X x 4 B X X B X X B X 2 X 2 O Q Q

• **Recurrence and transience:**

- $0 \leq \delta \leq 1$ X is recurrent, i.e. for P-a.a. environments ω , X returns P_0 _ω-a.s. infinitely many times to its starting point. $\delta > 1$ X is transient to the right, i.e. for P-a.a. environments ω , $X_n \to \infty$ as $n \to \infty$ P_0 _w-a.s..
	- **Strong law of large numbers:**

There is a deterministic $v \in [0,1]$ such that for P-a.a. environments ω , $\lim\limits_{n\to\infty}\frac{X_n}{n}$ $\frac{N_n}{n} = v \ P_{0,\omega}$ -a.s..

¹¹ Zerner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh (2008); Kosygina, Zerner (2008)

• **Recurrence and transience:**

- $0 \leq \delta \leq 1$ X is recurrent, i.e. for P-a.a. environments ω , X returns P_0 _ω-a.s. infinitely many times to its starting point.
	- $\delta > 1$ X is transient to the right, i.e. for P-a.a. environments ω , $X_n \to \infty$ as $n \to \infty$ P_0 _w-a.s..
	- **Strong law of large numbers:**

There is a deterministic $v \in [0, 1]$ such that for P-a.a. environments ω , $\lim_{n\to\infty}\frac{X_n}{n}$ $\frac{N_n}{n} = v \ P_{0,\omega}$ -a.s..

• **Ballisticity:**

Let v be the (linear) speed defined above. Then $v > 0$ iff $\delta > 2$.

¹¹ Zerner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh (2008); Kosygina, Zerner (2008)

• **Recurrence and transience:**

$0 \leq \delta \leq 1$ X is recurrent, i.e. for P-a.a. environments ω , X returns P_0 _ω-a.s. infinitely many times to its starting point.

- $\delta > 1$ X is transient to the right, i.e. for P-a.a. environments ω , $X_n \to \infty$ as $n \to \infty$ $P_{0,\omega}$ -a.s..
- **Strong law of large numbers:**

There is a deterministic $v \in [0,1]$ such that for P-a.a.

environments ω , $\lim_{n\to\infty}\frac{X_n}{n}$ $\frac{N_n}{n} = v \ P_{0,\omega}$ -a.s..

• **Ballisticity:**

Let v be the (linear) speed defined above. Then $v > 0$ iff $\delta > 2$. Moreover, in the transient case with $v = 0$ we have $1 < \delta < 2 \hspace{.2in} \frac{X_n}{n^{\delta/2}} \Rightarrow$ a power of a strictly stable r. v. with index $\delta/2;$ $\delta = 2 \qquad \frac{X_n}{\sqrt{1}}$ $n/\log n$ $\overset{\text{prob.}}{\rightarrow} c \in (0, \infty).$

¹¹ Zerner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh (2008); Kosygina, Zerner (2008)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990

Transient case: centering and scaling of X_n and T_n .

KORKARYKERKE PORCH

Transient case: centering and scaling of X_n and T_n .

Here $t \geq 0$, $\Gamma(n) \sim 1/\log n$, $D(n) \sim \log n$ as $n \to \infty$.

Convergence of one-dimensional distributions¹² For $\alpha \in (0, 2], b > 0$ let $Z_{\alpha, b}$ be a strictly stable random variable with index α , skewness $\beta = 1$, and scale b, i.e. (sign $0 = 0$)

$$
\log E e^{iuZ_{\alpha,b}} = \begin{cases}\n-b^{\alpha}|u|^{\alpha}(1 - i(\text{sign } u) \tan \frac{\pi \alpha}{2}) & \text{if } \alpha \neq 1; \\
-b|u|(1 + \frac{2i}{\pi}(\text{sign } u) \log |u|) & \text{if } \alpha = 1.\n\end{cases}
$$

¹²Basdevant, Singh (2008); Kosygina, Zerner (2008); Kosygina, Mountford (2011)K ロ X x 4 B X X B X X B X 2 X 2 O Q Q

Convergence of one-dimensional distributions¹² For $\alpha \in (0, 2], b > 0$ let $Z_{\alpha, b}$ be a strictly stable random variable with index α , skewness $\beta = 1$, and scale b, i.e. (sign $0 = 0$)

$$
\log E e^{iuZ_{\alpha,b}} = \begin{cases}\n-b^{\alpha}|u|^{\alpha}(1-i(\text{sign }u)\tan\frac{\pi\alpha}{2}) & \text{if } \alpha \neq 1; \\
-b|u|(1+\frac{2i}{\pi}(\text{sign }u)\,\log|u|) & \text{if } \alpha = 1.\n\end{cases}
$$

Let $X_n^* = \max_{0 \le m \le n} X_m$. Then $\{T_n \le k\} = \{X_k^* \ge n\}$. This allowed us to transfer results from T_n to X_n (provided that we can control inf_{m>n} X_m).

¹²Basdevant, Singh (2008); Kosygina, Zerner (2008); Kosygina, Mountford (2011)**KORK ERKERKERKERKER**

Convergence of one-dimensional distributions¹² For $\alpha \in (0, 2], b > 0$ let $Z_{\alpha, b}$ be a strictly stable random variable with index α , skewness $\beta = 1$, and scale b, i.e. (sign $0 = 0$)

$$
\log E e^{iuZ_{\alpha,b}} = \begin{cases}\n-b^{\alpha}|u|^{\alpha}(1-i(\text{sign }u)\tan\frac{\pi\alpha}{2}) & \text{if } \alpha \neq 1; \\
-b|u|(1+\frac{2i}{\pi}(\text{sign }u)\,\log|u|) & \text{if } \alpha = 1.\n\end{cases}
$$

Let $X_n^* = \max\limits_{0 \leq m \leq n} X_m.$ Then $\{T_n \leq k\} = \{X_k^* \geq n\}.$ This allowed $0 \leq m \leq n$ us to transfer results from T_n to X_n (provided that we can control inf_{m≥n} X_m).

Theorem

 $\eta_n(1) \Rightarrow$ $\int Z_{\delta/2,b},$ if $\delta \in (1,4);$ $Z_{2,b} \sim N(0, 2b^2)$, if $\delta \ge 4$.

Constant $b > 0$ depends on the cookie distribution. This can be translated into a result about $\xi_n(1)$.

¹²Basdevant, Singh (2008); Kosygina, Zerner (2008); Kosygina, Mountford (2011) Two Skorohod topologies, J_1 versus M_1

Consider $D([0, 1])$. Recall that for $x, y \in D([0, 1])$

$$
\rho_{J_1}(x, y) = \inf_{\lambda \in \Lambda} \left[\sup_{t \in [0, 1]} |x_n(t) - x(\lambda(t))| + \sup_{t \in [0, 1]} |\lambda(t) - t| \right]
$$

For each of the two pictures below $\rho_{J_1}(x_n,x) \to 0$ as $n \to \infty.$

KORK ERKERKERKERKER

Two Skorohod topologies, J_1 versus M_1

 M_1 topology is weaker than J_1 . Informally (and with some omissions), $\rho_{M_1}(x,y)$ =" distance between the completed graphs of x and y, Γ_x and Γ_y ". For each of the two pictures below $\rho_{M_1}(x_n,x) \to 0$ as $n \to \infty$ but $\rho_{J_1}(x_n,x) \not\to 0$.

Two Skorohod topologies, J_1 versus M_1

 M_1 topology is less demanding than J_1 . Informally (and with some omissions), $\rho_{M_1}(x,y) =$ " distance between the completed graphs of x and y, Γ_x and Γ_y ". For each of the two pictures below $\rho_{M_1}(x_n,x) \to 0$ as $n \to \infty$ but $\rho_{J_1}(x_n,x) \not\to 0$. 1 t 1 t x 0 1 0 1 1 x $2/n$ 1/n $-\Gamma_{x_n}$ Γ_x

Two Skorohod topologies, J_1 versus M_1

Consider the inverse maps and notice that for the first picture $\rho_U(x_n^{-1},x^{-1})\to 0$ and for the second $\rho_{M_1}(x_n^{-1},x^{-1})\to 0$ as $n \to \infty$. 0 1 1 $\frac{1}{n}$ 1/n 1 $0 \qquad \qquad 1$ t x t x $\frac{x^{-1}}{x^{-1}}$

KORK ERKERKERKERKER

KORKAR KERKER E VOOR

Functional limit theorems

Theorem

 \triangleright [Recall](#page-20-0) \bigcup \triangleright [IID structure](#page-8-1)

If $\delta \in (1,2)$ then $\xi_n \stackrel{J_1}{\Rightarrow} \xi$ as $n \to \infty$. Here ξ is the inverse of the stable subordinator η for which $\eta(1) \stackrel{d}{=} Z_{\delta/2,b}$. If $\delta \in (2, 4)$ then

$$
\xi_n\stackrel{M_1}{\Rightarrow}\xi\quad\text{as}\quad n\to\infty,
$$

where ξ is a stable process with index $\delta/2$ such that $\xi(1) \stackrel{d}{=} -Z_{\delta/2,b}$. Moreover, $\xi_n \not\stackrel{J_1}{\not\Rightarrow} \xi$. If $\delta > 4$ then $\xi_n \stackrel{J_1}{\Rightarrow} \sqrt{2b} B$ as $n \to \infty$,

where B is the standard Brownian motion¹³.

¹³Kosygina, Zerner (2012,arxiv)

Recurrent case

• If $0 \leq \delta < 1$ then $\xi_n(t) = \frac{X_{[nt]}}{\sqrt{n}}$ \sqrt{n} converges to Brownian motion perturbed at extrema¹⁴. More precisely,

Theorem

Assume that $0 \le \delta < 1$. Let $W(\cdot)$ be the unique pathwise solution¹⁵ of

$$
W(t) = B(t) + \delta(\max_{0 \le s \le t} W(s) - \min_{0 \le s \le t} W(s)), \quad W(0) = 0,
$$

where B is the standard Brownian motion. Then $\xi_n\stackrel{J_1}{\Rightarrow}W.$

• The process W is not defined for $\delta = 1$. What is the limiting process for the case $\delta = 1$?

¹⁴Dolgopyat (2011), Dolgopyat, Kosygina (2012, arxiv)

¹⁵Carmona, Petit, Yor ([19](#page-28-1)98), Chaumont, Doney (199[9\)](#page-30-0) ∢*ಡ* ⊧ ∢ ≣ ⊧ ತ≣ ಿಇ**್**

Boundary case $\delta = 1^{16}$

Theorem Let $\delta = 1$. Then

$$
\frac{X_{[n\cdot]}}{c\sqrt{n}\log n} \stackrel{J_1}{\Rightarrow} \max_{0\leq s\leq \cdot} B(s),
$$

where $c > 0$ is a constant.

This statement might look puzzling: the process X_n , $n \geq 0$, is recurrent, yet the limiting process is transient. It is easier to believe that the above result holds if we replace $X_{[nt]}$ with its running maximum $X_{[nt]}^*.$ The stated result comes from the fact that with an overwhelming probability the maximum amount of "backtracking" of X_j from X_j^* for $j\leq [Tn]$ is of order \sqrt{n} , which is negligible on the scale $\sqrt{n}\log n$.

¹⁶Dolgopyat, Kosygina (2012), arxiv)

KORK ERKERKERKERKER

Further results and open questions for $d=1$

Assume (IID), (WEL) and (BD):

- Large deviations (under P_0) (Peterson (2012, arxiv)).
- The behavior of the maximum local time (Rastegar, Roiterstein, (2012, arxiv)).

Open question: Characterize the limiting behavior of ERW under the quenched measure $P_{0,\omega}$.