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Model description: cookie environments
• Let E := {±ej | j ∈ {1, 2, . . . , d}} be the set of unit

coordinate vectors in Z
d and denote by ME the set of

probability measures on E , each of which is called “a
cookie”. The set of cookie environments is denoted by
Ω := MZ

d×N

E .
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Dynamics of excited random walk

Let P be a probability measure on Ω. Denote by E the
expectation with respect to P.

• Random walk under the quenched measure: for ω ∈ Ω let
P0,ω be a probability measure on the set of nearest
neighbor paths such that P0,ω(X0 = 0) = 1 and

P0,ω(Xn+1 = Xn + e | (Xm)m≤n) = ωXn(e, LXn(n)), e ∈ E ,

where Lz(n) :=
∑n

m=0 1{Xm=z} be the number of visits to z
up to time n.

• The averaged measure for X := (Xn)n≥0 is defined as
follows: P0(·) := E(P0,ω(·)).
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Assumptions on the environment

We shall assume that either

(IID) ωz, z ∈ Z
d, are i.i.d. under P or

(SE) ωz, z ∈ Z
d, are stationary, ergodic w.r.t. to the shifts on Z

d.

Moreover, one of the following ellipticity conditions will be in
force:

(WEL) ∀z ∈ Z
d, e ∈ E : P [∀i ∈ N : ωz(e, i) > 0] > 0.

(EL) ∀z ∈ Z
d, e ∈ E and i ∈ N : P-a.s. ωz(e, i) > 0.

(UEL) ∃κ > 0 : ∀z ∈ Z
d, e ∈ E , i ∈ N ωz(e, i) ≥ κ P-a.s.

Obviously, (UEL)⇒(EL)⇒(WEL).



Model description General properties Concrete models

Sometimes we shall assume that ∃ ℓ ∈ R
d \ {0} such that

(POSℓ)
∑

e∈E
ωz(e, i) e · ℓ ≥ 0 P-a.s. ∀i ∈ N, ∀z ∈ Z

d.

The (possibly infinite) number of biased cookies at site z is
denoted by

M(ωz) := inf{j ∈ N0 | ∀e ∈ E ∀i > j : ωz(e, i) = 1/(2d)}.
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General properties: finite of infinite range

For z ∈ Z
d and e ∈ E write z

ω→ z + e if and only if
∑

i≥1 ωz(e, i) = ∞. Define bF := P[∀e ∈ F : 0 6 ω→ e] for F ⊆ E .

The transitive closure in Z
d of the relation ω→ is denoted also by

ω→.

Lemma
Let ω ∈ Ω and x, y ∈ Z

d with x
ω→ y. Then on the event that the

ERW visits x infinitely often, y is P0,ω-a.s. visited infinitely often
as well.

Theorem
Assume (IID) and (EL). If there is an orthogonal set F ⊂ E such
that bF = 0 then the range is P0-a.s. infinite. If there is no such
set then the range is P0-a.s. finite.1

1Kosygina, Zerner (2012, arxiv), used a lemma from Holmes, Salisbury
(2011, arxiv)
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General properties: recurrence and transience

Theorem (d = 1)
(a) Assume (SE) and (EL). Then the ERW is either recurrent or
transient or has P0-a.s. finite range.
(b) Assume (SE), (WEL) and P-a.s. M(ω0) ≤ 1. Then ERW is
recurrent.

Theorem (d ≥ 1, Kalikow-type zero-one law2)
Assume (IID) and (EL). For ℓ ∈ R

d \ {0} define
Aℓ := {limn→∞Xn · ℓ = ∞}. Then
P0[|Xn · ℓ| → ∞] = P0[Aℓ ∪A−ℓ] ∈ {0, 1}.

Theorem (d ≥ 2 directional transience3)
Assume (IID), (UEL), and (POSℓ) for some ℓ ∈ R

d \ {0}. If

E

[

∑

i≥1,e∈E ω0(e, i)e · ℓ
]

> 0, then P0(Aℓ) = 1.

2Kosygina, Zerner (2012, arxiv)
3Zerner (2006)
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Open problems

(1) Let d ≥ 2. Find conditions, which imply the zero-one law
P0[Aℓ] ∈ {0, 1} for all ℓ ∈ R

d \ {0}.
(2) Assume (IID) and (UEL) and suppose that ERW is
balanced: ωz(e, i) = ωz(−e, i) for all z ∈ Z, i ∈ N, e ∈ E . Is it
true that such walk is recurrent in d = 2 and transient for d ≥ 3?
For RWRE this is true4.
(3) A non-elliptic version of this problem5: Let d = d1 + d2 and
suppose that upon the first visit to to a vertex the walker
performs a d1-dimensional SSRW step in the first d1
coordinates but upon subsequent visits to the same vertex he
makes a SSRW step in the last d2 coordinates. The authors of
the problem gave a proof of transience when d1 = d2 = 2.

4see Zeitouni, LNM 1837 (2004), Th.3.3.22
5Benjamini, Kozma, Schapira (2011)
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Regeneration structure6

FLT
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Figure: Regeneration structure for d = 1: sizes and contents of the
shaded boxes are i.i.d..

6goes back to H. Kesten, M.V. Kozlov, F. Spitzer (1975); H. Kesten (1977)
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Lemma (Existence of regeneration structure7)
Assume (IID) as well as (WEL) if d = 1 and (EL) if d ≥ 2. Let
ℓ ∈ R

d\{0} satisfy P0[Aℓ] > 0.
Then there are P0[ · | Aℓ]-a.s. infinitely many random times
τ1 < τ2 < . . . , so-called regeneration times, such that

Xm · ℓ < Xτk · ℓ ∀m < τk and Xm · ℓ ≥ Xτk · ℓ ∀m ≥ τk, k ∈ N,

the random
⋃

n∈N(Z
d)n-valued vectors

(Xn)0≤n≤τ1 , (Xn −Xτi)τi≤n≤τi+1 (i ≥ 1)

are independent w.r.t. P0[ · | Aℓ]. Moreover, the vectors
(Xn −Xτi)τi≤n≤τi+1 (i ≥ 1) have the same distribution under
P0[ · | Aℓ] as (Xn)0≤n≤τ1 under P0[ · | ∀n Xn · ℓ ≥ 0]. Also
E0[(Xτ2 −Xτ1) · ℓ | Aℓ] < ∞.

7Zerner (2006), Berard, Ramirez (2007)
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Theorem (directional law of large numbers)
Under the assumptions of the above lemma the following holds:
P0-a.s. on the

lim
n→∞

Xn · ℓ
n

= vℓ :=
E0[(Xτ2 −Xτ1) · ℓ | Aℓ]

E0[τ2 − τ1 | Aℓ]
∈ [0, 1].

Theorem (law of large numbers)
Assume (IID) as well as (WEL) if d = 1 and (EL) if d ≥ 2. Let
ℓ1, . . . , ℓd be a basis of Rd such that P0[Aℓi ∪A−ℓi ] = 1 for all
i = 1, . . . , d. Then there are v ∈ R

d and c ≥ 0 such that P0-a.s.

lim
n→∞

Xn

n
∈ {v,−cv}.

If, in addition, P0[Aℓi ] = 1 for all i = 1, . . . , d then X satisfies a
strong law of large numbers with velocity v ∈ R

d such that
v · ℓi ≥ 0 for all i = 1, . . . , d. (Proof follows Drewitz, Ramirez
(2010).)
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Open problem

Assume (IID), (UEL), and (POSℓ) for some ℓ ∈ R
d. Suppose

also that E
[

∑

i≥1,e∈E ω0(e, i)e · ℓ
]

> 0. Under these conditions

ERW is transient in the direction ℓ. When is it ballistic?
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No excitation after the first visit

The original ERW model and a modification8.
Let p ∈ (1/2, 1] and P = δω, where ∀z ∈ Z

d,

(BW)
ω(z, e1, 1) =

p

d
, ω(z,−e1, 1) =

1− p

d
, and

ω(z, e, i) =
1

2d
if i ∈ N and e ∈ E \ {e1,−e1} or if i ≥ 2.

Generalization: Assume that P satisfies (UEL), (IID), and that
for some ℓ ∈ R

d \ {0}

(MPRVℓ)
∃λ > 0 :

∑

e∈E
ω(0, e, 1) e · ℓ ≥ λ P-a.s. and

ω(0, e, i) = ω(0,−e, i)) P-a.s. for all i ≥ 2, e ∈ E .

8Benjamini, Wilson (2003), Menshikov, Popov, Ramirez, Vachkovskaia
(2012)
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ERW is called ballistic if it satisfies a SLLN with non-zero
speed.

Theorem (d ≥ 2, ballisticity and FCLT9)
Let ℓ ∈ R

d\{0} and assume (MPRVℓ), (IID) and (UEL). Then the
ERW is ballistic and its velocity v satisfies v · ℓ > 0.
Moreover, there exists a non-degenerate d× d matrix G such
that with respect to P0,

X[n·] − [n·]v√
n

J1⇒ BG(·) as n → ∞,

where BG is the d-dimensional Brownian motion with
covariance matrix G.

Open question: under which conditions on d, the “strength” of
the first cookie, and the underlying process, the first cookie
determines the direction of the velocity? (See Holmes (2012).)

9Berard, Ramirez (2007), Menshikov, Popov, Ramirez, Vachkovskaia
(2012)
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Boundedly many positive and negative cookies
per site, d = 1

Assume (IID), (WEL), and

(BD) ∃M ∈ N: P-a.s. M(ω0) ≤ M .

The approach is based on the study of local times and analogs
of Ray-Knight theorems.10

Continuous space-time analog, excited Brownian motions, was
introduced and studied by Raimond, Schapira (2011).

10Harris (1952), Knight (1963), Kesten, Kozlov, Spitzer (1975), Toth (1996).
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Basic properties11

• Recurrence and transience:
0 ≤ δ ≤ 1 X is recurrent, i.e. for P-a.a. environments ω, X returns

P0,ω-a.s. infinitely many times to its starting point.
δ > 1 X is transient to the right, i.e. for P-a.a. environments ω,

Xn → ∞ as n → ∞ P0,ω-a.s..

11Zerner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh
(2008); Kosygina, Zerner (2008)
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Basic properties11

• Recurrence and transience:
0 ≤ δ ≤ 1 X is recurrent, i.e. for P-a.a. environments ω, X returns

P0,ω-a.s. infinitely many times to its starting point.
δ > 1 X is transient to the right, i.e. for P-a.a. environments ω,

Xn → ∞ as n → ∞ P0,ω-a.s..

• Strong law of large numbers:
There is a deterministic v ∈ [0, 1] such that for P-a.a.

environments ω, lim
n→∞

Xn

n
= v P0,ω-a.s..

• Ballisticity:
Let v be the (linear) speed defined above. Then v > 0 iff
δ > 2. Moreover, in the transient case with v = 0 we have

1 < δ < 2
Xn

nδ/2
⇒ a power of a strictly stable r. v. with index δ/2;

δ = 2
Xn

n/ logn

prob.→ c ∈ (0,∞).

11Zerner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh
(2008); Kosygina, Zerner (2008)
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Transient case: centering and scaling of Xn and Tn.

ξn(t) ηn(t)

δ > 4
X[nt]−[nt]v

v3/2
√
n

T[nt]−[nt]v−1

√
n

δ = 4
X[nt]−[nt]v

v3/2
√
n logn

T[nt]−[nt]v−1

√
n logn

2 < δ < 4
X[nt]−[nt]v

v1+2/δn2/δ

T[nt]−[nt]v−1

n2/δ
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Transient case: centering and scaling of Xn and Tn.

ξn(t) ηn(t)

δ > 4
X[nt]−[nt]v

v3/2
√
n

T[nt]−[nt]v−1

√
n

δ = 4
X[nt]−[nt]v

v3/2
√
n logn

T[nt]−[nt]v−1

√
n logn

2 < δ < 4
X[nt]−[nt]v

v1+2/δn2/δ

T[nt]−[nt]v−1

n2/δ

δ = 2
X[nt]−c[nt]Γ([n])

c2n(logn)−2

T[nt]−c−1[nt]D([n])

n

1 < δ < 2
X[nt]

nδ/2

T[nt]

n2/δ

Here t ≥ 0, Γ(n) ∼ 1/ log n, D(n) ∼ log n as n → ∞. FLT
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Convergence of one-dimensional distributions12

For α ∈ (0, 2], b > 0 let Zα,b be a strictly stable random variable
with index α, skewness β = 1, and scale b, i.e. (sign 0 = 0)

logEeiuZα,b =

{

−bα|u|α(1− i(sign u) tan πα
2 ) if α 6= 1;

−b|u|(1 + 2i
π (signu) log |u|) if α = 1.

12Basdevant, Singh (2008); Kosygina, Zerner (2008); Kosygina, Mountford
(2011)
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Let X∗
n = max
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Convergence of one-dimensional distributions12

For α ∈ (0, 2], b > 0 let Zα,b be a strictly stable random variable
with index α, skewness β = 1, and scale b, i.e. (sign 0 = 0)

logEeiuZα,b =

{

−bα|u|α(1− i(sign u) tan πα
2 ) if α 6= 1;

−b|u|(1 + 2i
π (signu) log |u|) if α = 1.

Let X∗
n = max

0≤m≤n
Xm. Then {Tn ≤ k} = {X∗

k ≥ n}. This allowed

us to transfer results from Tn to Xn (provided that we can
control infm≥nXm).

Theorem

ηn(1) ⇒
{

Zδ/2,b, if δ ∈ (1, 4);

Z2,b ∼ N(0, 2b2), if δ ≥ 4.

Constant b > 0 depends on the cookie distribution. This can be
translated into a result about ξn(1).

12Basdevant, Singh (2008); Kosygina, Zerner (2008); Kosygina, Mountford
(2011)
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Two Skorohod topologies, J1 versus M1

Consider D([0, 1]). Recall that for x, y ∈ D([0, 1])

ρJ1(x, y) = inf
λ∈Λ

[ sup
t∈[0,1]

|xn(t)− x(λ(t))|+ sup
t∈[0,1]

|λ(t)− t|]

For each of the two pictures below ρJ1(xn, x) → 0 as n → ∞.
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Two Skorohod topologies, J1 versus M1

M1 topology is weaker than J1. Informally (and with some
omissions), ρM1(x, y) =" distance between the completed
graphs of x and y, Γx and Γy". For each of the two pictures
below ρM1(xn, x) → 0 as n → ∞ but ρJ1(xn, x) 6→ 0.
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Two Skorohod topologies, J1 versus M1

M1 topology is less demanding than J1. Informally (and with
some omissions), ρM1(x, y) =" distance between the completed
graphs of x and y, Γx and Γy". For each of the two pictures
below ρM1(xn, x) → 0 as n → ∞ but ρJ1(xn, x) 6→ 0.
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Two Skorohod topologies, J1 versus M1

Consider the inverse maps and notice that for the first picture
ρU (x

−1
n , x−1) → 0 and for the second ρM1(x

−1
n , x−1) → 0 as

n → ∞.

10
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Functional limit theorems

Recall IID structure

Theorem
If δ ∈ (1, 2) then ξn

J1⇒ ξ as n → ∞. Here ξ is the inverse of

the stable subordinator η for which η(1)
d
= Zδ/2,b.

If δ ∈ (2, 4) then

ξn
M1⇒ ξ as n → ∞,

where ξ is a stable process with index δ/2 such that

ξ(1)
d
= −Zδ/2,b. Moreover, ξn

J1
6⇒ ξ.

If δ ≥ 4 then
ξn

J1⇒
√
2bB as n → ∞,

where B is the standard Brownian motion13.

13Kosygina, Zerner (2012,arxiv)
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Recurrent case

• If 0 ≤ δ < 1 then ξn(t) =
X[nt]√

n
converges to Brownian

motion perturbed at extrema14. More precisely,

Theorem
Assume that 0 ≤ δ < 1. Let W (·) be the unique pathwise
solution15 of

W (t) = B(t) + δ( max
0≤s≤t

W (s)− min
0≤s≤t

W (s)), W (0) = 0,

where B is the standard Brownian motion. Then ξn
J1⇒ W .

• The process W is not defined for δ = 1. What is the limiting
process for the case δ = 1?

14Dolgopyat (2011), Dolgopyat, Kosygina (2012, arxiv)
15Carmona, Petit, Yor (1998), Chaumont, Doney (1999)



Model description General properties Concrete models

Boundary case δ = 116

Theorem
Let δ = 1. Then

X[n·]
c
√
n log n

J1⇒ max
0≤s≤·

B(s),

where c > 0 is a constant.

This statement might look puzzling: the process Xn, n ≥ 0, is
recurrent, yet the limiting process is transient. It is easier to
believe that the above result holds if we replace X[nt] with its
running maximum X∗

[nt]. The stated result comes from the fact
that with an overwhelming probability the maximum amount of
“backtracking” of Xj from X∗

j for j ≤ [Tn] is of order
√
n, which

is negligible on the scale
√
n log n.

16Dolgopyat, Kosygina (2012) , arxiv)
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Further results and open questions for d = 1

Assume (IID), (WEL) and (BD):

• Large deviations (under P0) (Peterson (2012, arxiv)).

• The behavior of the maximum local time (Rastegar,
Roiterstein, (2012, arxiv)).

Open question: Characterize the limiting behavior of ERW
under the quenched measure P0,ω.
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