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Model description General properties Concrete models

Model description: cookie environments

o Let&:={%e;|j€{1,2,...,d}} be the set of unit
coordinate vectors in Z? and denote by Mg the set of
probability measures on &, each of which is called “a
cookie”. The set of cookie environments is denoted by

 AfZExN
Q Ll Mg >< .
—1

0

w-_1 wo w1 w2



Model description

Dynamics of excited random walk

Let P be a probability measure on 2. Denote by [E the
expectation with respect to P.
¢ Random walk under the quenched measure: for w € () let
Py, be a probability measure on the set of nearest
neighbor paths such that P ,,(Xo = 0) = 1 and

Pow(Xnt1 = Xn + e (Xim)m<n) = wx, (e, Lx, (n)), e €&,

where L.(n) := 3" _, 1(x,,=- be the number of visits to z
up to time n.

e The averaged measure for X := (X,,),>0 is defined as
follows: Py(-) := E(Pou(+))-



Model description

Assumptions on the environment

We shall assume that either

(IID) w,, z € Z% areiid.underP or
(SE) w., z € Z%, are stationary, ergodic w.r.t. to the shifts on Z.

Moreover, one of the following ellipticity conditions will be in
force:

(WEL) VzeZiec& PVieN: w.ei)>0]>0.
(EL) VzeZlec&andiecN: P-as. w.(e,i) > 0.
(UEL) 3k>0:VzeZlec& ieN w,ei) >k P-as.

Obviously, (UEL)=-(EL)=(WEL).



Model description

Sometimes we shall assume that 3 ¢ € R?\ {0} such that

(POS)) Y wi(ei)e-£>0 P-as.VieN,VzeZ
ec&

The (possibly infinite) number of biased cookies at site z is
denoted by

M(w,) :==1inf{j e Ny |Ve € EVi > j :w,(e,i) =1/(2d)}.



General properties

General properties: finite of infinite range

For z € Z% and e € £ write z % = + e if and only if
>i>1 wz(e, i) = oo. Define bp :=P[Ve € F: 0 Fe]for F CE.
The transitive closure in Z? of the relation = is denoted also by

w

—.

Lemma

Letw € Q and z,y € Z% with z = . Then on the event that the
ERW visits z infinitely often, y is P .,-a.s. visited infinitely often
as well.

Theorem

Assume (IID) and (EL). If there is an orthogonal set F' C £ such
that b = 0 then the range is Py-a.s. infinite. If there is no such
set then the range is P,-a.s. finite.!

1Kosygina, Zerner (2012, arxiv), used a lemma from Holmes, Salisbury
(2011, arxiv)
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General properties: recurrence and transience

Theorem (d = 1)

(a) Assume (SE) and (EL). Then the ERW is either recurrent or
transient or has FPyp-a.s. finite range.

(b) Assume (SE), (WEL) and P-a.s. M (wp) < 1. Then ERW is
recurrent.

Theorem (d > 1, Kalikow-type zero-one law?)
Assume (IID) and (EL). For ¢ € R%\ {0} define

Ay = {limy, 00 X, - £ = 0}. Then

P()HXn . 6‘ — OO] = Po[Ag U A_g] S {O, 1}.

Theorem (d > 2 directional transience®)

Assume (IID), (UEL), and (POS,) for some ¢ ¢ R%\ {0}. If
E [2@1,665 wole, i)e - 4 > 0, then Py(4,) = 1.

2Kosygina, Zerner (2012, arxiv)
8Zerner (2006)
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Open problems

(1) Let d > 2. Find conditions, which imply the zero-one law
Py[Ag] € {0,1} for all £ € R4\ {0}.

(2) Assume (IID) and (UEL) and suppose that ERW is
balanced: w,(e,i) = w,(—e,i) forallz € Z, ie N, e £. Isit
true that such walk is recurrent in d = 2 and transient for d > 37
For RWRE this is true®.

(3) A non-elliptic version of this problem®: Let d = d; + d» and
suppose that upon the first visit to to a vertex the walker
performs a d;-dimensional SSRW step in the first d;
coordinates but upon subsequent visits to the same vertex he
makes a SSRW step in the last d, coordinates. The authors of
the problem gave a proof of transience when d; = dy = 2.

4see Zeitouni, LNM 1837 (2004), Th.3.3.22
>Benjamini, Kozma, Schapira (2011)
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Regeneration structure®

i Pit1 T,

Figure: Regeneration structure for d = 1: sizes and contents of the
shaded boxes are i.i.d..

6goes back to H. Kesten, M.V. Kozlov, F. Spitzer (1975); H. Kesten (1977)
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Lemma (Existence of regeneration structure”’)

Assume (11D) as well as (WEL) if d = 1 and (EL) if d > 2. Let
¢ € RN\{0} satisfy Py[A,] > 0.

Then there are Fy[ - | A/]-a.s. infinitely many random times
71 < T9 < ..., So-called regeneration times, such that

Xm A< Xy L Vm<1 and X, - 4> X -4 Vm > 13, k€N,

the random J, _(Z%)"-valued vectors

neN
(Xn)OSHSTU (Xn - XTi)Ti§n§7i+1 (Z > 1)

are independent w.r.t. Py - | A¢]. Moreover, the vectors

(X — X4, <n<ry, (i > 1) have the same distribution under
Pl - | Ag] as (Xy)o<n<r, under Pyl - | Vn X, - £ > 0]. Also
Eo[(Xr, — Xr) - 0] Ay] < 0.

"Zerner (2006), Berard, Ramirez (2007)
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Theorem (directional law of large numbers)

Under the assumptions of the above lemma the following holds:
Py-a.s. on the
Xn-EZ Eo[(Xr, — X)) - L] A

li = € |0,1].
nl—golo n ve Eo[TQ —T1 | Ag] [ ]

Theorem (law of large numbers)

Assume (IID) as well as (WEL) if d = 1 and (EL) if d > 2. Let
l1,...,44 be abasis of R? such that Py[A,, U A_,,] = 1 for all
i=1,...,d. Thenthere are v € R? and ¢ > 0 such that Py-a.s.

. Xy
nh_)H;O € {v, —cv}.
If, in addition, Py[A,,] =1 foralli =1,...,d then X satisfies a
strong law of large numbers with velocity v € R such that
v-¢; >0foralli=1,...,d. (Proof follows Drewitz, Ramirez
(2010).)
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Open problem

Assume (IID), (UEL), and (POS;) for some ¢ € R¢. Suppose
also that E [Zizmeg wo(e,i)e - 4 > 0. Under these conditions
ERW is transient in the direction ¢. When is it ballistic?



Concrete models

No excitation after the first visit

The original ERW model and a modification®.
Letp € (1/2,1] and P = 4,,, where Vz € Z4,

1
W(Z, €1, 1) = 27 UJ(Z, _6171) = T3 and

d

(BW) ;
w(z,e,i) = % if ie Nande e £\ {e1,—ei} or if i>2.
Generalization: Assume that PP satisfies (UEL), (IID), and that

for some ¢ € R\ {0}

IN>0:) w(0,e1)e-£> )\ P-as. and
(MPRV,) ceé
w(0,e,i) = w(0,—e,i)) P-a.s.foralli >2, ec&.

8Benjamini, Wilson (2003), Menshikov, Popov, Ramirez, Vachkovskaia
(2012)
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ERW is called ballistic if it satisfies a SLLN with non-zero
speed.

Theorem (d > 2, ballisticity and FCLT®)

Let ¢ € R4\ {0} and assume (MPRV,), (11D) and (UEL). Then the
ERW is ballistic and its velocity v satisfies v - £ > 0.

Moreover, there exists a non-degenerate d x d matrix G such
that with respect to P,

X[n} - [n]v
NLD
where Bg is the d-dimensional Brownian motion with

covariance matrix G.

Open question: under which conditions on d, the “strength” of
the first cookie, and the underlying process, the first cookie
determines the direction of the velocity? (See Holmes (2012).)

®Berard, Ramirez (2007), Menshikov, Popov, Ramirez, Vachkovskaia
(2012)

2 Bg(-) asn— oo,
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Boundedly many positive and negative cookies
per site, d =1

Assume (1ID), (WEL), and
(BD) 3IM e N:P-a.s. M(wo) < M.

The approach is based on the study of local times and analogs
of Ray-Knight theorems. 10

Continuous space-time analog, excited Brownian motions, was
introduced and studied by Raimond, Schapira (2011).

OHarris (1952), Knight (1963), Kesten, Kozlov, Spitzer (1975), Toth (1996).
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Basic propertiest?

e Recurrence and transience:
0 <46 <1 Xisrecurrent, i.e. for P-a.a. environments w, X returns
Py ,-a.s. infinitely many times to its starting point.
0 > 1 X is transient to the right, i.e. for P-a.a. environments w,
X, —oocasn — oo Fy-as..

117erner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh
(2008); Kosygina, Zerner (2008)
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Basic propertiest?

e Recurrence and transience:

0 <0 <1 X isrecurrent, i.e. for P-a.a. environments w, X returns
Py ,-a.s. infinitely many times to its starting point.
0 > 1 X is transient to the right, i.e. for P-a.a. environments w,
X, —oocasn — oo Fy-as..

e Strong law of large numbers:
There is a deterministic v € [0, 1] such that for P-a.a.

, . X
environments w, lim — =v Py -a.s..
n—oo N

117erner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh
(2008); Kosygina, Zerner (2008)



Concrete models

Basic propertiest?

e Recurrence and transience:
0 <0 <1 X isrecurrent, i.e. for P-a.a. environments w, X returns
Py ,-a.s. infinitely many times to its starting point.
0 > 1 X is transient to the right, i.e. for P-a.a. environments w,
X, —oocasn — oo Fy-as..
e Strong law of large numbers:
There is a deterministic v € [0, 1] such that for P-a.a.

, . X
environments w, lim — =v Py -a.s..

n—oo N
e Ballisticity:
Let v be the (linear) speed defined above. Then v > 0 iff
0> 2.

117erner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh
(2008); Kosygina, Zerner (2008)



Concrete models

Basic propertiest?

e Recurrence and transience:
0 <46 <1 Xisrecurrent, i.e. for P-a.a. environments w, X returns
Py ,-a.s. infinitely many times to its starting point.
0 > 1 X is transient to the right, i.e. for P-a.a. environments w,
X, —oocasn — oo Fy-as..

e Strong law of large numbers:
There is a deterministic v € [0, 1] such that for P-a.a.

, . X
environments w, lim — =v Py -a.s..
n—oo N

e Ballisticity:
Let v be the (linear) speed defined above. Then v > 0 iff
0 > 2. Moreover, in the transient case with v = 0 we have
1<d<?2 f—;; = a power of a strictly stable r. v. with index 4/2;
n

Xn rob.
_on P (0, 00).
n/logn

117erner (2005), Mountford, Pimentel, Valle (2006), Basdevant, Singh
(2008); Kosygina, Zerner (2008)

0=2




Model description General properties Concrete models

Transient case: centering and scaling of X,, and T,,.

&n(t) M (t)
Xing—[nt]v Ty —[ntjo™!
0>4 v S
§ =4 X[nt]_[nt]v T[nt]_[nt]v_l
- v3/2/nlogn vnlogn
X —[nt]v Ty —[nt]o™t
2<6<4 | THman L —




Concrete models

Transient case: centering and scaling of X,, and T,,.

&n(t) M (t)
Xing—[nt]v Ty —[ntjo™!
0>4 LN 7
5 — 4 X[m]—[nt]v T[m]—[nt]v_l
- v3/2/nlogn vnlogn
X —[nt]v Ty —[nt]o™t
2<d<4 Ul[Jrg]/W ! t]n2/5
5=29 Xpnyy—c[nt]C([n]) | Tinyy—c” ' [nt]D([n])
- c?n(logn)—2 n
X, T,
1<6<2 e L

Heret > 0, I'(n) ~ 1/logn, D(n) ~ logn as n — oc.
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Convergence of one-dimensional distributions!?
For o € (0,2], b > 0 let Z,, ;, be a strictly stable random variable
with index «, skewness = 1, and scale b, i.e. (sign 0 = 0)

log FeitZab —b%u|*(1 — i(signu) tan 55*) if o # 1;
T )
8 —bjul(1+ Z (signu) loglul) ifa=1

12Basdevant, Singh (2008); Kosygina, Zerner (2008); Kosygina, Mountford
(2011)
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Convergence of one-dimensional distributions!?
For o € (0,2], b > 0 let Z,, ;, be a strictly stable random variable
with index «, skewness = 1, and scale b, i.e. (sign 0 = 0)

—b%u|*(1 — i(signu) tan 55*) if o # 1;

log EettZab — % /s .
—blu|(1 + = (signw) log|ul) ifa=1.

Let X = Jmax Xom. Then {T,, <k} = {X; > n}. This allowed

us to transfer results from 7,, to X,, (provided that we can
control inf,,>, X,).

12Basdevant, Singh (2008); Kosygina, Zerner (2008); Kosygina, Mountford
(2011)
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Convergence of one-dimensional distributions!?
For o € (0,2], b > 0 let Z,, ;, be a strictly stable random variable
with index «, skewness = 1, and scale b, i.e. (sign 0 = 0)

—b%u|*(1 — i(signu) tan 55*) if o # 1;

log EettZab — % /s .
—blu|(1 + = (signw) log|ul) ifa=1.

Let X = Jax Xom. Then {T,, <k} = {X; > n}. This allowed
<m<n

us to transfer results from 7, to X,, (provided that we can

control inf,,>, X,).

Theorem

Z5 /2.5 if 6 € (1,4);

Zap ~ N(0,20%), ifd§>4.

Constant b > 0 depends on the cookie distribution. This can be

translated into a result about &,,(1).

12Basdevant, Singh (2008); Kosygina, Zerner (2008); Kosygina, Mountford
(2011)

(1) =
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Two Skorohod topologies, J; versus M;
Consider D(]0, 1]). Recall that for z,y € D(|0, 1])

pa(z,y) = inf [ sup |z,(t) — z(A(#))] + sup [A(t) —¢[]
A€M 4e0,1] te[0,1]

For each of the two pictures below p;, (z,,z) — 0 as n — oo.
—_— Ip

X X

—_— T

1n 1/n
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Two Skorohod topologies, J; versus M;

M, topology is weaker than J;. Informally (and with some
omissions), par, (z,y) =" distance between the completed
graphs of z and y, I', and I',". For each of the two pictures
below pus, (25, ) — 0as n — oo but py, (x,,z) 4 0.

T

X _ X

xT




Concrete models

Two Skorohod topologies, J; versus M;

M topology is less demanding than J;. Informally (and with
some omissions), par, (x,y) =" distance between the completed
graphs of z and y, I', and I',/". For each of the two pictures

below pus, (zn,x) — 0a@s n — oo but py, (x,,z) 4 0.
- F:}:,,
X - FJI,‘ X
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Two Skorohod topologies, J; versus M;

Consider the inverse maps and notice that for the first picture
pu(zt,271) — 0 and for the second pyy, (z; 1, 271) — 0 as

n

n — oQ.
At — I;l t
— !
1 1
2¢/n —_ ]./nT
T -
X X




Functional limit theorems

Theorem

Concrete models

If o € (1,2) then &, i%g as n — oo. Here ¢ is the inverse of

the stable subordinator n for which 7(1) 4 Zs5/2,b-
If § € (2,4) then

&n J\:/[>1 & as n— oo,
where ¢ is a stable process with index ¢/2 such that

J
&(1) 4 —Z5/2,5- Moreover, &, 75; &.
If § > 4 then

fng\/?bB as n — oo,

where B is the standard Brownian motion?3.

BKosygina, Zerner (2012,arxiv)
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Recurrent case

X, .
e IfO<d < 1then§,(t) = [n] converges to Brownian

vn

motion perturbed at extrema’4. More precisely,

Theorem
Assume that 0 < ¢ < 1. Let W(-) be the unique pathwise
solution®® of

W(t) = B(t) + 8(max, W (s) ~ min W(s)), W(0) =0,
where B is the standard Brownian motion. Then ¢, Ay,

e The process W is not defined for § = 1. What is the limiting
process for the case § = 1?

Dolgopyat (2011), Dolgopyat, Kosygina (2012, arxiv)
15Carmona, Petit, Yor (1998), Chaumont, Doney (1999)
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[ le]

Boundary case § = 116

Theorem
Letd = 1. Then

Xl
_ B
cy/nlogn = 020z, (),

where ¢ > 0 is a constant.

This statement might look puzzling: the process X,,, n > 0, is
recurrent, yet the limiting process is transient. It is easier to
believe that the above result holds if we replace X, with its
running maximum Xf;ﬂ. The stated result comes from the fact
that with an overwhelming probability the maximum amount of
“backtracking” of X; from X for j < [T'n] is of order /n, which

is negligible on the scale /nlogn.

18Dolgopyat, Kosygina (2012) , arxiv)
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Further results and open questions for d = 1

Assume (IID), (WEL) and (BD):
e Large deviations (under F,) (Peterson (2012, arxiv)).

e The behavior of the maximum local time (Rastegar,
Roiterstein, (2012, arxiv)).

Open question: Characterize the limiting behavior of ERW
under the quenched measure Fy .



	Model description
	General properties
	Concrete models
	The ``boundary case''


