- Friday, May 04, 2012

- Speaker: Jian Ding

- Title: Maxima of two-dimensional discrete Gaussian free field

- Note taker: Xiaoqin Guo

1. Definition of the Gaussian free field.

 V_N : a 2-dimensional box of side N.

 $(\eta_v, v \in V_N)$: mean-zero Gaussian process with $\eta|_{\partial V_N} = 0$. Ways to define the GFF (η_v) :

- Markov field
- Density $f(\eta_v) \propto e^{-\sum_{u \sim v} (\eta_u \eta_v)^2/16}$.
- Use the Green function of the simple random walks in V_N to define the covariance
- $E(\eta_u \eta_v)^2$:=effective resistance between u and v.

2. Review of results in BBM/BRW

- (Bramson) *Precise estimate on the expectation of the maximum displacement (use truncated second moment method)
 - *Connection to KPP equation (determine the limiting law)
- (Bolthausen, Deuschel, Giacomin '01)
 - *Asymptotics of the maximum displacement $(\sim 2\sqrt{\frac{2}{\pi}}\log N)$
 - *A key ingredient in analyzing the repulsion in the presence of hard wall.
- (Chatterjee '08)
 - *Variance of the maximum displacement $\sim o(\log N)$
 - *Super-concentration vs multiple peaks
 - *Use abstract method: hypercontractivity.
- (Bolthausen, Deuschel, Zeitouni '10)
 - * $(M_N EM_N)$ is tight along a subsequence;

$$EM_N = 2\sqrt{\frac{2}{\pi}}(\log N - \frac{3}{8\log 2}\log\log N) + o(1).$$

* "Expectation is the King" (-Zeitouni)

• (D. '11)

 $\Longrightarrow \operatorname{Var}(M_N) \times 1.$

*Use "sprinkling" method (Ajtai, Komlos, Szemeredi '82)

Results on the maxima:

- BBM: Arguin-Bovier-Kistler, Aidekon-Berestycki, Brunet, Shi
- GFF: Daviaud '06: Geometry of the set of points $\geq \eta^m N$ for $\eta \in (0,1)$.

3. Results of D.-Zeitouni

- (1) $\eta_u, \eta_v \ge EM_N c \Rightarrow N/K(c) \le |u v| \le K(c)$ with high probability.
- (2) $\#\{u: \eta_u \ge M_N \lambda\}$ is $\exp(\theta(\lambda))$.
- (3) Gap of the largest two values has Gaussian decay for the right tail.