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Graphical models

G = (V,E) finite undirected graph

Spin configuration σ ∈X V

(X finite alphabet)

Graphical model:
Model of random spin configuration
defined by local interactions
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Factor models

Factor model on G = (V,E):

Edge interaction ψ(σi, σj), vertex factor ψ̄(σi) (external field)
Taking product over all edges, vertices gives factor model

νG(σ) =
1

Z

∏
(ij)∈E

ψ(σi, σj)
∏
i∈V

ψ̄(σi)

Z = normalizing constant or partition funtion
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Potts model

X = [q] ≡ {1, . . . , q}

q-Potts model on G = (V,E):

νβ,BG (σ) =
1

ZG(β,B)

∏
(ij)∈E

eβ1{σi=σj}
∏
i∈V

eB1{σi=1}

β−1 = temperature

B = external field, in direction of distinguished spin 1

ZG(β,B) = partition function
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Potts model

Figure: David Wilson
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Potts model

νβ,BG (σ) =
1

ZG(β,B)

∏
(ij)∈E

eβ1{σi=σj}
∏
i∈V

eB1{σi=1}

β > 0 is ferromagnetic; β < 0 is anti-ferromagnetic (AF)

q = 2: Ising model

β = −∞: random proper q-colorings
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Independent set (hard-core) model

X = {0 = unoccupied, 1 = occupied}

The independent set (IS) or hard-core model on G = (V,E):

νλG(σ) =
1

ZG(λ)

∏
(ij)∈E

1{σiσj 6= 1}
∏
i∈V

λσi

1{σiσj 6= 1}: hard constraints; repulsive interactions

λ = fugacity or activity

ZG(λ) = partition function,
with ZG(1) = number of independent sets
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Independent set (hard-core) model

Figure: David Wilson
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Free energy density

Consider a sequence of (random) graphs Gn (n vertices) in the
thermodynamic limit n→∞

Asymptotics of partition function Zn ≡ ZGn?

Free energy φn ≡ n−1En[logZn]

Free energy density φ ≡ limn→∞ φn
(≈ exponential growth rate of Zn)

Does φ exist? Can its value be computed?

The purpose of this work is to give an answer
in the setting of locally tree-like graphs
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Locally tree-like graphs

In what sense is the random 3-regular graph locally like T3?

random 3-regular graph first few levels of T3
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Locally tree-like graphs

In ∈ Vn unif. random

Bt(In) radius t ball about In

Isomorphic to T td
(first t levels of Td)?
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Locally tree-like graphs: definition

Gn = (Vn, En) random graph sequence

In ∈ Vn uniformly random vertex

Definition.
Gn converges locally to Td if for all t ≥ 0,
Bt(In) converges in probability to T td

Notation: Gn →loc Td

[Can also make definition
with general (random) limiting tree]
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Locally tree-like graphs: examples

Examples.

The random d-regular graph converges locally to Td
More generally, so does the random k-partite d-regular graph
The Erdős-Rényi graph G(n, γ/n) converges locally to

the Pois(γ) Galton–Watson tree
T td does not converge locally to Td,

but rather to the random d-canopy tree

Local weak limits are unimodular measures
on the space of rooted graphs.
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The Bethe prediction

For factor models on graph sequence Gn →loc T ,

non-rigorous methods of statistical physics give an
explicit prediction for free energy density φ ≡ limn n

−1En[logZn]:

the Bethe prediction (or replica symmetric solution)

Bethe prediction is defined only in terms of limiting tree
— not the finite graphs Gn
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The Bethe prediction: definition

Bethe prediction for factor models on Gn →loc Td:
φ ≡ limn n

−1En[logZn] exists and equals the Bethe free energy

Φ ≡ Φ(h)

for h ∈ ∆ (X -simplex) a distinguished fixed point of the
Bethe or belief propagation (BP) recursion:

h(σ) ∼= ψ̄(σ)

(∑
σ′

ψ(σ, σ′)h(σ′)

)d−1
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The Bethe prediction: functional form

Functional form: Φ ≡ Φvx − Φe where

Φvx ≡ log

∑
σ

ψ̄(σ)

(∑
σ′

ψ(σ, σ′)h(σ′)

)d
Φe ≡ d

2
log

∑
σ,σ′

ψ(σ, σ′)h(σ)h(σ′)
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The Bethe prediction: interpretation of BP recursion

Interpretation of the BP fixed point:

Suppose factor model νn on Gn has local weak limit ν —
trans.-inv. Gibbs measure for factor model on Td

Ignore long cycles

Boundary data ≈ i.i.d.

Marginal of ν on U ≈
ν(σU |σ∂U )×

∏
v∈∂U h(σ)

Consistent family of marginals precisely when h is a BP fixed point

BP fixed point h
←→ ν ≡ νh candidate local weak limit of νn
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The Bethe prediction: interpretation of function Φ

BP fixed point h ←→ ν ≡ νh candidate local weak limit of νn

Heuristic for Φ ≡ Φvx − Φe:

h

h

h h

h

h

h
h

h

ψ
ψψ

ψ

Φvx(h) = log-partition of marginal of νh on star graph T 1
d

Φe(h) = 1/2 log-partition on d disjoint edges

If Gn is finite tree, can compute logZn by cutting edges recursively
n stars, contribution ≈ n · Φvx

nd/2 edges, each participating in two stars:
to correct for overcounting, subtract n · Φe

Only a heuristic: Gn are typically not trees!
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The Bethe prediction: multiple fixed points

Φ(h) ≡ Φ(νh) is (heuristic) formula for φ assuming νn →loc νh

If BP fixed point h is non-unique, assume νn →loc mixture(νh)

Bethe prediction becomes supremum of Φ(h) over fixed points h
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The Bethe prediction: some remarks

Bethe prediction computation only involves infinite tree Td,
not specific graph sequence Gn

Can make prediction for general (random) limiting trees

Bethe prediction is “replica symmetric” in the sense that there is a
fixed Gibbs measure ν in definition of Φ(ν)
— equivalently, take same h at each boundary vertex

h h

h

h
h

h
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Bethe prediction for ferromagnetic Potts

Bethe prediction specialized to ferromagnetic Potts:

Translation-invariant Gibbs measures
νf (free) and ν1 (maximally 1-biased)

Bethe prediction is Φ(νf) ∨ Φ(ν1)
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Bethe prediction for AF two-spin systems

Bethe prediction specialized to IS and AF Ising:

For Gn bipartite, local weak limits of νn
need only be semi-trans.-inv.

Extremal semi-trans.-inv. Gibbs measures
ν0, ν1 which disagree in non-uniqueness regimes

Bethe prediction is Φ = Φ(ν0) = Φ(ν1)

For Gn non-bipartite, same prediction believed to hold
in uniqueness regimes only
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Previous work: ferromagnetic Ising

Ferromagnetic Ising:

[Dembo–Montanari AAP ’10] verified Bethe prediction for all β ≥ 0,
B ∈ R, for graphs converging locally to Galton-Watson trees

Moment condition on root vertex degree later removed
[Dommers–Giardinà–van der Hofstad JSP ’10]

Proofs use an interpolation scheme, comparing ∂βφn with ∂βΦ
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Results: Ferro. Potts on general limiting tree

We developed a generalized interpolation scheme to show:

Theorem (Dembo, Montanari, S. ’11).

The Bethe prediction φ = Φ holds on locally tree-like graphs
with general limiting tree for:

Ferro. Ising at any B ∈ R
Ferro. Potts at B ≥ 0 with β sufficiently low (high)

(νf = ν1)
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Results: Potts on Td

Can obtain sharper results when Gn →loc Td:

Theorem (Dembo, Montanari, S. ’11).

For Potts model on Gn →loc Td,
lim infn φn ≥ Φ for all β,B ≥ 0.

Theorem (Dembo, Montanari, Sly, S. ’12).

For Potts model on Gn →loc Td with d even,
φ = Φ for all β,B ≥ 0.
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Previous work: AF two-spin free energy density

IS, AF Ising:

Bethe prediction φ = Φ holds for random regular graphs below
uniqueness threshold
[Bandyopadhyay–Gamarnik SODA ’06]

Existence of φ for random regular graphs and Erdős-Rényi graphs
[Bayati–Gamarnik–Tetali STOC ’10]
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Results: AF two-spin free energy density

Theorem (Dembo, Montanari, S. ’11).

The Bethe prediction φ = Φ holds on locally tree-like graphs
for the IS model at sufficiently low λ.

(ν0 = ν1 & reg. conds)

Theorem (Sly, S. ’12).

For the Ising and IS models on Gn →loc Td with Gn bipartite,
φ = Φ for all parameter values.
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Previous work: complexity of two-spin systems

Two-spin systems — algorithmic results:

Ferromagnetic:
fpras for ferro. Ising at all temperatures, arbitrary magnetic field
[Jerrum–Sinclair ALP ’90]

Anti-ferromagnetic:
AF two-spin systems have uniqueness thresholds on Td:
λc(d) for IS, βafc (B, d) < 0 for AF Ising

fptas for IS partition function ZG(λ) on bdd. deg. graphs,
λ < λc(d) [Weitz STOC ’06]

fptas for AF Ising partition function ZG(β,B) on bdd. deg.
graphs, βafc (B, d) < β < 0 [Sinclair–Srivastava–Thurley ’11]
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Previous work: complexity of AF two-spin systems

Hardness results for IS:

ZG(λ) hard to approximate on d-regular graphs when
λ > c/d [Luby–Vigoda STOC ’97];
λ = 1 and d > 25 [Dyer–Frieze–Jerrum FOCS ’99]

Phase transition at λc(d):

[Mossel–Weitz–Wormald PTRF ’09] Local mcmc mixes slowly on
random bipartite d-reg. graphs, λc(d) < λ < λc(d) + ε(d)

[Sly FOCS ’10] ZG(λ) hard to approximate on d-regular graphs
for λc(d) < λ < λc(d) + ε(d)
— first rigorous indication that
computational transition for finite d-regular graphs ←→
statistical physics phase transition for the model on Td

Subsequently improved to λ > λc(d) for d 6= 4, 5
[Galanis–Ge–Štefankovič–Vigoda–Yang ’11]
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Results: complexity of AF two-spin systems

Theorem (Sly, S. ’12).

(a) For d ≥ 3, λ > λc(d) the IS partition function ZG(λ)
is hard to approx. on the class of d-regular graphs.

(b) For d ≥ 3, β < βafc (B, d), the Ising partition function ZG(β,B)
is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising

(a) & [Weitz STOC ’06]

complete classification of hard-core complexity except at λc(d)
(b) & [Jerrum–Sinclair ALP ’90] & [Sinclair–Srivastava–Thurley ’11]

complete classification of Ising complexity except at βaf
c (B, d)

Interpolation & methods from [Montanari–Mossel–Sly PTRF ’12]

allow us to completely avoid difficult second moment calculations of

previous works on this subject

In independent work, Galanis–Štefankovič–Vigoda ’12
established (a), and (b) with B = 0
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established (a), and (b) with B = 0

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on d-regular graphs 29 / 41



Results: complexity of AF two-spin systems

Theorem (Sly, S. ’12).

(a) For d ≥ 3, λ > λc(d) the IS partition function ZG(λ)
is hard to approx. on the class of d-regular graphs.

(b) For d ≥ 3, β < βafc (B, d), the Ising partition function ZG(β,B)
is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising

(a) & [Weitz STOC ’06]

complete classification of hard-core complexity except at λc(d)
(b) & [Jerrum–Sinclair ALP ’90] & [Sinclair–Srivastava–Thurley ’11]

complete classification of Ising complexity except at βaf
c (B, d)

Interpolation & methods from [Montanari–Mossel–Sly PTRF ’12]

allow us to completely avoid difficult second moment calculations of

previous works on this subject

In independent work, Galanis–Štefankovič–Vigoda ’12
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established (a), and (b) with B = 0

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on d-regular graphs 29 / 41



Results: complexity of AF two-spin systems

Theorem (Sly, S. ’12).

(a) For d ≥ 3, λ > λc(d) the IS partition function ZG(λ)
is hard to approx. on the class of d-regular graphs.

(b) For d ≥ 3, β < βafc (B, d), the Ising partition function ZG(β,B)
is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising

(a) & [Weitz STOC ’06]

complete classification of hard-core complexity except at λc(d)
(b) & [Jerrum–Sinclair ALP ’90] & [Sinclair–Srivastava–Thurley ’11]

complete classification of Ising complexity except at βaf
c (B, d)

Interpolation & methods from [Montanari–Mossel–Sly PTRF ’12]

allow us to completely avoid difficult second moment calculations of

previous works on this subject

In independent work, Galanis–Štefankovič–Vigoda ’12
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Proof ideas: interpolation scheme for factor models

(Dembo, Montanari, S. ’11)
Generalized interpolation scheme for abstract factor models

Basic idea: if lim supn ∂Bφn ≤ ∂BΦ F
then lim supn [φn(B1)− φn(B0)] ≤ Φ(B1)− Φ(B0).

Recall φn = n−1 logZn:
⇒ ∂Bφn = avg. of local observable w.r.t. νn
Can show ∂BΦ(ν) = avg. of same observable at root of Td

w.r.t. Gibbs measure ν

If Gibbs measure unique, observable averages on Gn
converge to averages on Td by general theory ⇒ F

Can sometimes obtain F beyond uniqueness from
(model-specific) (anti-)monotonicity properties
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Proof ideas: BP recursion on Td

BP recursion on general limiting trees is complicated, but
BP recursion on Td is simply a map ∆→ ∆:

h(σ) ∼= ψ̄(σ)

(∑
σ′

ψ(σ, σ′)h(σ′)

)d−1

By explicitly analyzing this mapping,
can obtain more exact results for Td than are implied by
interpolation scheme for general trees
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Proof ideas: AF two-spin systems on bipartite graphs

For AF two-spin systems on bipartite graphs,
complete Bethe prediction can be verified by interpolation
with a good choice of the local observable

∂Bφn = En[σIn ] (with B ≡ log λ for IS)
With obvious observable i 7→ σi, can show φ = Φ for λ ≤ λc
But by taking observable i 7→ (σi + d−1

∑
j∈∂i σj)/2

can show φ = Φ for all λ > 0
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IS BP recursion

IS BP recursion (in terms of h(0))
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IS free energy density
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semi-trans.-inv. fixed point from λ =∞
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Proof ideas: interpolation for Potts

In Potts model, ∂Bφn = EnEνn [δσIn ,1],

so local observable is simply v 7→ δσv ,1

Similarly ∂βφn = EnEνn [
∑

j∈∂In δσIn ,σj ]

In non-uniqueness regimes, can take advantage of
random-cluster (FK) representation for Potts model
to get monotonicity properties, thereby restricting range of
admissible Gibbs measures
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Ising vs. Potts

Ising BP (in terms of log[h(+)/h(−)])
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BP solutions as function of β

Adding small field B > 0 resolves non-uniqueness
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Ising vs. Potts

Potts BP (in terms of log[h(1)/h(2)])
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Potts: φ ≥ Φ by interpolation
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Potts: φ ≥ Φ by interpolation

Interpolation gives φ ≥ Φ,

with equality for (β,B) /∈ R6= (shaded)
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Potts: φ ≤ Φ by graph deconstruction

Delete a vertex

Match up half edges

Show decrease in logZ
at each step is ≤ Φ F

Matching not done u.a.r.
but to guarantee F

Argue graphs remain
uniformly locally tree-like

This procedure reduces the upper bound to showing F,
which is a difficult (but tractable) calculus problem
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Two questions

We make crucial use of the fact that the limiting tree is Td.
Can these methods be extended to more general graph
ensembles, e.g. Erdős-Rényi?

The Bethe prediction is believed to be false for IS at high
fugacity on typical non-bipartite graphs converging to Td. Can
one describe what happens in this case?
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Thank you!
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