Potts and independent set models on *d*-regular graphs

Amir Dembo Andrea Montanari Allan Sly Nike Sun

Stanford University UC Berkeley

MSRI 4 May 2012

- 1 The Potts and independent set models
- 2 Locally tree-like graphs and the Bethe prediction
- **3** Previous work and results
- **4** Verifying the Bethe prediction: proof ideas

1 The Potts and independent set models

- 2 Locally tree-like graphs and the Bethe prediction
- **3** Previous work and results
- 4 Verifying the Bethe prediction: proof ideas

Graphical models

G = (V, E) finite undirected graph

Graphical model:

Graphical model:

Model of random spin configuration

Graphical model:

Model of random spin configuration defined by **local** interactions

Factor model on G = (V, E):

Factor model on G = (V, E):

Edge interaction $\psi(\sigma_i, \sigma_j)$,

Factor model on G = (V, E):

Edge interaction $\psi(\sigma_i, \sigma_j)$, vertex factor $\overline{\psi}(\sigma_i)$ (external field)

Factor model on G = (V, E):

Edge interaction $\psi(\sigma_i, \sigma_j)$, vertex factor $\overline{\psi}(\sigma_i)$ (external field) Taking product over all edges, vertices gives factor model Factor model on G = (V, E):

Edge interaction $\psi(\sigma_i, \sigma_j)$, vertex factor $\overline{\psi}(\sigma_i)$ (external field) Taking product over all edges, vertices gives factor model

$$\nu_G(\underline{\sigma}) = \frac{1}{Z} \prod_{(ij)\in E} \psi(\sigma_i, \sigma_j) \prod_{i\in V} \bar{\psi}(\sigma_i)$$

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

Factor model on G = (V, E):

Edge interaction $\psi(\sigma_i, \sigma_j)$, vertex factor $\overline{\psi}(\sigma_i)$ (external field) Taking product over all edges, vertices gives factor model

$$\nu_G(\underline{\sigma}) = \frac{1}{Z} \prod_{(ij)\in E} \psi(\sigma_i, \sigma_j) \prod_{i\in V} \bar{\psi}(\sigma_i)$$

Z = normalizing constant or **partition funtion**

$$\mathscr{X} = [q] \equiv \{1, \dots, q\}$$

$$\mathscr{X} = [q] \equiv \{1, \dots, q\}$$

$$\mathscr{X} = [q] \equiv \{1, \dots, q\}$$

$$\nu_{G}^{\beta,B}(\underline{\sigma}) = \frac{1}{Z_{G}(\beta,B)} \prod_{(ij)\in E} e^{\beta \mathbf{1}\{\sigma_{i}=\sigma_{j}\}} \prod_{i\in V} e^{B\mathbf{1}\{\sigma_{i}=1\}}$$

$$\mathscr{X} = [q] \equiv \{1, \dots, q\}$$

$$\nu_{G}^{\beta,B}(\underline{\sigma}) = \frac{1}{Z_{G}(\beta,B)} \prod_{(ij)\in E} e^{\beta \mathbf{1}\{\sigma_{i}=\sigma_{j}\}} \prod_{i\in V} e^{B\mathbf{1}\{\sigma_{i}=1\}}$$

• $\beta^{-1} = \text{temperature}$

$$\mathscr{X} = [q] \equiv \{1, \dots, q\}$$

$$\nu_{G}^{\beta,B}(\underline{\sigma}) = \frac{1}{Z_{G}(\beta,B)} \prod_{(ij)\in E} e^{\beta \mathbf{1}\{\sigma_{i}=\sigma_{j}\}} \prod_{i\in V} e^{B\mathbf{1}\{\sigma_{i}=1\}}$$

• $\beta^{-1} = \text{temperature}$

• B = external field, in direction of distinguished spin 1

$$\mathscr{X} = [q] \equiv \{1, \dots, q\}$$

$$\nu_{G}^{\beta,B}(\underline{\sigma}) = \frac{1}{Z_{G}(\beta,B)} \prod_{(ij)\in E} e^{\beta \mathbf{1}\{\sigma_{i}=\sigma_{j}\}} \prod_{i\in V} e^{B\mathbf{1}\{\sigma_{i}=1\}}$$

• $\beta^{-1} = \text{temperature}$

- B = external field, in direction of distinguished spin 1
- $Z_G(\beta, B) =$ partition function

Figure: David Wilson

A. Dembo, A. Montanari, A. Sly, N. Sun

Factor models on *d*-regular graphs

$$\nu_{G}^{\beta,B}(\underline{\sigma}) = \frac{1}{Z_{G}(\beta,B)} \prod_{(ij)\in E} e^{\beta \mathbf{1}\{\sigma_{i}=\sigma_{j}\}} \prod_{i\in V} e^{B\mathbf{1}\{\sigma_{i}=1\}}$$

$$\nu_{G}^{\beta,B}(\underline{\sigma}) = \frac{1}{Z_{G}(\beta,B)} \prod_{(ij)\in E} e^{\beta \mathbf{1}\{\sigma_{i}=\sigma_{j}\}} \prod_{i\in V} e^{B\mathbf{1}\{\sigma_{i}=1\}}$$

• $\beta > 0$ is ferromagnetic; $\beta < 0$ is anti-ferromagnetic (AF)

$$\nu_{G}^{\beta,B}(\underline{\sigma}) = \frac{1}{Z_{G}(\beta,B)} \prod_{(ij)\in E} e^{\beta \mathbf{1}\{\sigma_{i}=\sigma_{j}\}} \prod_{i\in V} e^{B\mathbf{1}\{\sigma_{i}=1\}}$$

β > 0 is ferromagnetic; β < 0 is anti-ferromagnetic (AF)
q = 2: Ising model

$$\nu_{G}^{\beta,B}(\underline{\sigma}) = \frac{1}{Z_{G}(\beta,B)} \prod_{(ij)\in E} e^{\beta \mathbf{1}\{\sigma_{i}=\sigma_{j}\}} \prod_{i\in V} e^{B\mathbf{1}\{\sigma_{i}=1\}}$$

- $\beta > 0$ is ferromagnetic; $\beta < 0$ is anti-ferromagnetic (AF)
- q = 2: Ising model
- $\beta = -\infty$: random proper *q*-colorings

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

Independent set (hard-core) model

$$\mathscr{X} = \{0 = \text{unoccupied}, 1 = \text{occupied}\}\$$

 $\mathscr{X} = \{\mathbf{0} = \mathsf{unoccupied}, \mathbf{1} = \mathsf{occupied}\}\$

The independent set (IS) or hard-core model on G = (V, E):

$$\mathscr{X} = \{\mathbf{0} = \mathsf{unoccupied}, \mathbf{1} = \mathsf{occupied}\}\$$

The independent set (IS) or hard-core model on G = (V, E):

$$\nu_{G}^{\lambda}(\underline{\sigma}) = \frac{1}{Z_{G}(\lambda)} \prod_{(ij)\in E} \mathbf{1}\{\sigma_{i}\sigma_{j}\neq 1\} \prod_{i\in V} \lambda^{\sigma_{i}}$$

$$\mathscr{X} = \{\mathbf{0} = \mathsf{unoccupied}, \mathbf{1} = \mathsf{occupied}\}\$$

The independent set (IS) or hard-core model on G = (V, E):

$$\nu_{G}^{\lambda}(\underline{\sigma}) = \frac{1}{Z_{G}(\lambda)} \prod_{(ij) \in E} \mathbf{1}\{\sigma_{i}\sigma_{j} \neq 1\} \prod_{i \in V} \lambda^{\sigma_{i}}$$

1{ $\sigma_i \sigma_j \neq 1$ }: hard constraints; repulsive interactions

$$\mathscr{X} = \{\mathbf{0} = \mathsf{unoccupied}, \mathbf{1} = \mathsf{occupied}\}\$$

-1

The independent set (IS) or hard-core model on G = (V, E):

$$\nu_{G}^{\lambda}(\underline{\sigma}) = \frac{1}{Z_{G}(\lambda)} \prod_{(ij)\in E} \mathbf{1}\{\sigma_{i}\sigma_{j}\neq 1\} \prod_{i\in V} \lambda^{\sigma_{i}}$$

1{σ_iσ_j ≠ 1}: hard constraints; repulsive interactions
 λ = fugacity or activity

$$\mathscr{X} = \{\mathbf{0} = \mathsf{unoccupied}, \mathbf{1} = \mathsf{occupied}\}$$

The independent set (IS) or hard-core model on G = (V, E):

$$\nu_{G}^{\lambda}(\underline{\sigma}) = \frac{1}{Z_{G}(\lambda)} \prod_{(ij)\in E} \mathbf{1}\{\sigma_{i}\sigma_{j} \neq 1\} \prod_{i\in V} \lambda^{\sigma_{i}}$$

- **1**{ $\sigma_i \sigma_j \neq 1$ }: hard constraints; repulsive interactions
- $\lambda =$ fugacity or activity
- $Z_G(\lambda)$ = partition function, with $Z_G(1)$ = number of independent sets

Independent set (hard-core) model

Figure: David Wilson
Free energy density

Free energy density

Consider a sequence of (random) graphs G_n (*n* vertices) in the thermodynamic limit $n \to \infty$

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n[\log Z_n]$

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n[\log Z_n]$

Free energy density $\phi \equiv \lim_{n \to \infty} \phi_n$

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n[\log Z_n]$

Free energy density $\phi \equiv \lim_{n \to \infty} \phi_n$ (\approx exponential growth rate of Z_n)

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n[\log Z_n]$

Free energy density $\phi \equiv \lim_{n \to \infty} \phi_n$ (\approx exponential growth rate of Z_n)

Does ϕ exist?

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n[\log Z_n]$

Free energy density $\phi \equiv \lim_{n \to \infty} \phi_n$ (\approx exponential growth rate of Z_n)

Does ϕ exist? Can its value be computed?

Asymptotics of partition function $Z_n \equiv Z_{G_n}$?

Free energy $\phi_n \equiv n^{-1} \mathbb{E}_n[\log Z_n]$

Free energy density
$$\phi \equiv \lim_{n \to \infty} \phi_n$$

(\approx exponential growth rate of Z_n)

Does ϕ exist? Can its value be computed?

The purpose of this work is to give an answer in the setting of locally tree-like graphs

- 1 The Potts and independent set models
- 2 Locally tree-like graphs and the Bethe prediction
- **3** Previous work and results
- **4** Verifying the Bethe prediction: proof ideas

1 The Potts and independent set models

2 Locally tree-like graphs and the Bethe prediction

3 Previous work and results

4 Verifying the Bethe prediction: proof ideas

In what sense is the random 3-regular graph

random 3-regular graph

In what sense is the random 3-regular graph locally like T_3 ?

random 3-regular graph

first few levels of T_3

 $G_n = (V_n, E_n)$ random graph sequence

Definition.

Definition.

 G_n converges locally to T_d if for all $t \ge 0$,

Definition.

 G_n converges locally to T_d if for all $t \ge 0$, $B_t(I_n)$ converges in probability to T_d^t

Definition.

 G_n converges locally to T_d if for all $t \ge 0$, $B_t(I_n)$ converges in probability to T_d^t

Notation: $G_n \rightarrow_{loc} T_d$

Definition.

 G_n converges locally to T_d if for all $t \ge 0$, $B_t(I_n)$ converges in probability to T_d^t

Notation: $G_n \rightarrow_{loc} T_d$

[Can also make definition with general (random) limiting tree]

The random d-regular graph converges locally to T_d

The random *d*-regular graph converges locally to T_d More generally, so does the random *k*-partite *d*-regular graph

The random *d*-regular graph converges locally to T_d More generally, so does the random *k*-partite *d*-regular graph The Erdős-Rényi graph $G(n, \gamma/n)$ converges locally to the $\operatorname{Pois}(\gamma)$ Galton–Watson tree

The random *d*-regular graph converges locally to T_d More generally, so does the random *k*-partite *d*-regular graph The Erdős-Rényi graph $G(n, \gamma/n)$ converges locally to the Pois(γ) Galton–Watson tree T_d^t does not converge locally to T_d ,

The random *d*-regular graph converges locally to T_d More generally, so does the random *k*-partite *d*-regular graph The Erdős-Rényi graph $G(n, \gamma/n)$ converges locally to the $\text{Pois}(\gamma)$ Galton–Watson tree T_d^t does not converge locally to T_d , but rather to the random *d*-canopy tree

The random *d*-regular graph converges locally to T_d More generally, so does the random *k*-partite *d*-regular graph The Erdős-Rényi graph $G(n, \gamma/n)$ converges locally to the $\operatorname{Pois}(\gamma)$ Galton–Watson tree T_d^t does not converge locally to T_d , but rather to the random *d*-canopy tree

Local weak limits are unimodular measures on the space of rooted graphs.

For factor models on graph sequence $G_n \rightarrow_{\mathit{loc}} T$,

For factor models on graph sequence $G_n \rightarrow_{\mathit{loc}} T$,

non-rigorous methods of statistical physics give an explicit prediction for free energy density $\phi \equiv \lim_{n \to \infty} n^{-1} \mathbb{E}_n[\log Z_n]$:

For factor models on graph sequence $G_n \rightarrow_{\textit{loc}} T$,

non-rigorous methods of statistical physics give an explicit prediction for free energy density $\phi \equiv \lim_{n \to \infty} n^{-1} \mathbb{E}_n[\log Z_n]$:

the Bethe prediction (or replica symmetric solution)
For factor models on graph sequence $G_n \rightarrow_{\mathit{loc}} T$,

non-rigorous methods of statistical physics give an explicit prediction for free energy density $\phi \equiv \lim_{n \to \infty} n^{-1} \mathbb{E}_n[\log Z_n]$:

the Bethe prediction (or replica symmetric solution)

Be he prediction is defined only in terms of limiting tree — not the finite graphs G_n

The Bethe prediction: definition

The Bethe prediction: definition

Bethe prediction for factor models on $G_n \rightarrow_{loc} T_d$:

The Bethe prediction: definition

Be the prediction for factor models on $G_n \rightarrow_{loc} T_d$: $\phi \equiv \lim_n n^{-1} \mathbb{E}_n[\log Z_n]$ exists Be the prediction for factor models on $G_n \rightarrow_{loc} T_d$: $\phi \equiv \lim_n n^{-1} \mathbb{E}_n[\log Z_n]$ exists and equals the Bethe free energy Be he prediction for factor models on $G_n \rightarrow_{loc} T_d$: $\phi \equiv \lim_n n^{-1} \mathbb{E}_n[\log Z_n]$ exists and equals the Bethe free energy

 $\Phi \equiv \Phi(h)$

Be the prediction for factor models on $G_n \rightarrow_{loc} T_d$: $\phi \equiv \lim_n n^{-1} \mathbb{E}_n[\log Z_n]$ exists and equals the Bethe free energy

$$\Phi \equiv \Phi(\mathbf{h})$$

for $h \in \Delta$ (*X*-simplex) a distinguished fixed point of the **Bethe** or **belief propagation** (BP) recursion:

Be the prediction for factor models on $G_n \rightarrow_{loc} T_d$: $\phi \equiv \lim_n n^{-1} \mathbb{E}_n[\log Z_n]$ exists and equals the Bethe free energy

$$\Phi \equiv \Phi(\mathbf{h})$$

for $h \in \Delta$ (\mathscr{X} -simplex) a distinguished fixed point of the **Bethe** or **belief propagation** (BP) recursion:

$$\boldsymbol{h}(\sigma) \cong \bar{\psi}(\sigma) \left(\sum_{\sigma'} \psi(\sigma, \sigma') \boldsymbol{h}(\sigma')\right)^{d-1}$$

Functional form:

Functional form: $\Phi \equiv \Phi^{vx} - \Phi^{e}$ where

Functional form: $\Phi \equiv \Phi^{vx} - \Phi^{e}$ where

$$\Phi^{\mathsf{vx}} \equiv \log \left\{ \sum_{\sigma} \bar{\psi}(\sigma) \left(\sum_{\sigma'} \psi(\sigma, \sigma') h(\sigma') \right)^d \right\}$$

Functional form: $\Phi \equiv \Phi^{vx} - \Phi^{e}$ where

$$\begin{split} \Phi^{\mathsf{vx}} &\equiv \log \left\{ \sum_{\sigma} \bar{\psi}(\sigma) \left(\sum_{\sigma'} \psi(\sigma, \sigma') h(\sigma') \right)^d \right\} \\ \Phi^{\mathsf{e}} &\equiv \frac{d}{2} \log \left\{ \sum_{\sigma, \sigma'} \psi(\sigma, \sigma') h(\sigma) h(\sigma') \right\} \end{split}$$

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

Interpretation of the BP fixed point:

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν —

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles

Boundary data \approx i.i.d.

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles Boundary data \approx i.i.d. Marginal of ν on $U \approx \nu(\sigma_{II} | \sigma_{\partial II})$

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles

Boundary data \approx i.i.d.

 $\begin{array}{l} \text{Marginal of } \nu \text{ on } U \approx \\ \nu(\underline{\sigma}_U | \underline{\sigma}_{\partial U}) \times \prod_{v \in \partial U} h(\sigma) \end{array}$

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles Boundary data \approx i.i.d. Marginal of ν on $U \approx$ $\nu(\underline{\sigma}_U | \underline{\sigma}_{\partial U}) \times \prod_{v \in \partial U} h(\sigma)$

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles Boundary data \approx i.i.d. Marginal of ν on $U \approx$ $\nu(\underline{\sigma}_U | \underline{\sigma}_{\partial U}) \times \prod_{v \in \partial U} h(\sigma)$

Consistent family of marginals

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles

Boundary data \approx i.i.d.

 $\begin{array}{l} \text{Marginal of } \nu \text{ on } U \approx \\ \nu(\underline{\sigma}_U | \underline{\sigma}_{\partial U}) \times \prod_{v \in \partial U} h(\sigma) \end{array}$

Consistent family of marginals precisely when h is a BP fixed point

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles Boundary data \approx i.i.d. Marginal of ν on $U \approx$ $\nu(\underline{\sigma}_U | \underline{\sigma}_{\partial U}) \times \prod_{n \in \partial U} h(\sigma)$

Consistent family of marginals precisely when h is a BP fixed point BP fixed point h

Interpretation of the BP fixed point:

Suppose factor model ν_n on G_n has local weak limit ν — trans.-inv. Gibbs measure for factor model on T_d

Ignore long cycles Boundary data \approx i.i.d. Marginal of ν on $U \approx$ $\nu(\underline{\sigma}_U | \underline{\sigma}_{\partial U}) \times \prod_{v \in \partial U} h(\sigma)$

Consistent family of marginals precisely when h is a BP fixed point BP fixed point h $\leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

$\Phi^{\mathsf{vx}}(h) = \mathsf{log-partition}$ of marginal of ν_h on star graph T_d^1

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

 $\Phi^{\mathsf{vx}}(h) = \mathsf{log-partition}$ of marginal of ν_h on star graph T_d^1

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

 $\Phi^{\mathsf{vx}}(h) = \mathsf{log-partition}$ of marginal of ν_h on star graph T_d^1

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

 $\Phi^{vx}(h) = \text{log-partition of marginal of } \nu_h$ on star graph $T_d^1 \Phi^e(h) = 1/2$ log-partition on d disjoint edges

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

 $\Phi^{vx}(h) = \text{log-partition of marginal of } \nu_h$ on star graph T_d^1 $\Phi^{e}(h) = 1/2$ log-partition on d disjoint edges

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

 $\Phi^{vx}(h) = \text{log-partition of marginal of } \nu_h$ on star graph $T_d^1 \Phi^e(h) = 1/2$ log-partition on d disjoint edges

If G_n is finite tree, can compute $\log Z_n$ by cutting edges recursively

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

 $\Phi^{vx}(h) = log-partition of marginal of <math>\nu_h$ on star graph $T_d^1 \Phi^e(h) = 1/2$ log-partition on d disjoint edges

If G_n is finite tree, can compute $\log Z_n$ by cutting edges recursively n stars, contribution $\approx n \cdot \Phi^{vx}$

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

 $\Phi^{vx}(h) = log-partition of marginal of <math>\nu_h$ on star graph $T_d^1 \Phi^e(h) = 1/2$ log-partition on d disjoint edges

If G_n is finite tree, can compute $\log Z_n$ by cutting edges recursively n stars, contribution $\approx n \cdot \Phi^{vx}$ nd/2 edges, each participating in two stars: to correct for overcounting, subtract $n \cdot \Phi^{e}$
The Bethe prediction: interpretation of function $\boldsymbol{\Phi}$

BP fixed point $h \leftrightarrow \nu \equiv \nu_h$ candidate local weak limit of ν_n Heuristic for $\Phi \equiv \Phi^{vx} - \Phi^e$:

 $\Phi^{vx}(h) = log-partition of marginal of <math>\nu_h$ on star graph $T_d^1 \Phi^e(h) = 1/2$ log-partition on d disjoint edges

If G_n is finite tree, can compute $\log Z_n$ by cutting edges recursively n stars, contribution $\approx n \cdot \Phi^{vx}$ nd/2 edges, each participating in two stars: to correct for overcounting, subtract $n \cdot \Phi^{e}$

Only a heuristic: G_n are typically not trees!

The Bethe prediction: multiple fixed points

The Bethe prediction: multiple fixed points

 $\Phi(h) \equiv \Phi(\nu_h)$ is (heuristic) formula for ϕ assuming $\nu_n \rightarrow_{loc} \nu_h$

 $\Phi(h) \equiv \Phi(\nu_h)$ is (heuristic) formula for ϕ assuming $\nu_n \rightarrow_{loc} \nu_h$ If BP fixed point h is non-unique, assume $\nu_n \rightarrow_{loc} \text{mixture}(\nu_h)$ $\Phi(h) \equiv \Phi(\nu_h)$ is (heuristic) formula for ϕ assuming $\nu_n \rightarrow_{loc} \nu_h$ If BP fixed point h is non-unique, assume $\nu_n \rightarrow_{loc} \text{mixture}(\nu_h)$

Bethe prediction becomes supremum of $\Phi(h)$ over fixed points h

Be he prediction computation **only** involves infinite tree T_d , **not** specific graph sequence G_n

Be he prediction computation **only** involves infinite tree T_d , **not** specific graph sequence G_n Can make prediction for general (random) limiting trees

Bethe prediction computation **only** involves infinite tree T_d , **not** specific graph sequence G_n Can make prediction for general (random) limiting trees

Be he prediction is "replica symmetric" in the sense that there is a fixed Gibbs measure ν in definition of $\Phi(\nu)$

Bethe prediction computation **only** involves infinite tree T_d , **not** specific graph sequence G_n Can make prediction for general (random) limiting trees

Bethe prediction is "replica symmetric" in the sense that there is a fixed Gibbs measure ν in definition of $\Phi(\nu)$

— equivalently, take same h at each boundary vertex

Translation-invariant Gibbs measures

Translation-invariant Gibbs measures $\nu^{\rm f}$ (free) and $\nu^{\rm 1}$ (maximally 1-biased)

Translation-invariant Gibbs measures $\nu^{\rm f}$ (free) and $\nu^{\rm 1}$ (maximally 1-biased)

Bethe prediction is

Translation-invariant Gibbs measures $\nu^{\rm f}$ (free) and $\nu^{\rm 1}$ (maximally 1-biased)

Bethe prediction is $\Phi(\nu^{f}) \vee \Phi(\nu^{1})$

For G_n bipartite, local weak limits of ν_n need only be semi-trans.-inv.

For G_n bipartite, local weak limits of ν_n need only be semi-trans.-inv. Extremal semi-trans.-inv. Gibbs measures

For G_n bipartite, local weak limits of ν_n need only be semi-trans.-inv. Extremal semi-trans.-inv. Gibbs measures ν^0, ν^1 which disagree in **non-uniqueness regimes**

For G_n bipartite, local weak limits of ν_n need only be semi-trans.-inv. Extremal semi-trans.-inv. Gibbs measures ν^0, ν^1 which disagree in **non-uniqueness regimes** Bethe prediction is $\Phi = \Phi(\nu^0) = \Phi(\nu^1)$

For G_n bipartite, local weak limits of ν_n need only be semi-trans.-inv. Extremal semi-trans.-inv. Gibbs measures ν^0, ν^1 which disagree in **non-uniqueness regimes** Bethe prediction is $\Phi = \Phi(\nu^0) = \Phi(\nu^1)$

For G_n non-bipartite, same prediction believed to hold in uniqueness regimes only

- 1 The Potts and independent set models
- 2 Locally tree-like graphs and the Bethe prediction
- **3** Previous work and results
- **4** Verifying the Bethe prediction: proof ideas

1 The Potts and independent set models

2 Locally tree-like graphs and the Bethe prediction

3 Previous work and results

4 Verifying the Bethe prediction: proof ideas

[Dembo-Montanari AAP '10] verified Bethe prediction for all $\beta \geq 0$, $B \in \mathbb{R}$, for graphs converging locally to Galton-Watson trees

[Dembo-Montanari AAP '10] verified Bethe prediction for all $\beta \ge 0$, $B \in \mathbb{R}$, for graphs converging locally to Galton-Watson trees Moment condition on root vertex degree later removed [Dommers-Giardinà-van der Hofstad JSP '10]

Proofs use an interpolation scheme, comparing $\partial_{\beta}\phi_n$ with $\partial_{\beta}\Phi$

Results: Ferro. Potts on general limiting tree

Theorem (Dembo, Montanari, S. '11).

Theorem (Dembo, Montanari, S. '11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs with general limiting tree for:

Theorem (Dembo, Montanari, S. '11).

The Bethe prediction $\phi=\Phi$ holds on locally tree-like graphs with general limiting tree for: Ferro. Ising at any $B\in\mathbb{R}$

Theorem (Dembo, Montanari, S. '11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs with general limiting tree for: Ferro. Ising at any $B \in \mathbb{R}$ Ferro. Potts at $B \ge 0$ with β sufficiently low (high)

Theorem (Dembo, Montanari, S. '11).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs with general limiting tree for: Ferro. Ising at any $B \in \mathbb{R}$ Ferro. Potts at $B \ge 0$ with β sufficiently low (high)

 $(\nu^{\rm f} = \nu^1)$

Results: Potts on T_d

Can obtain sharper results when $G_n \rightarrow_{loc} T_d$:
Theorem (Dembo, Montanari, S. '11).

Theorem (Dembo, Montanari, S. '11). For Potts model on $G_n \rightarrow_{loc} T_d$,

Theorem (Dembo, Montanari, S. '11). For Potts model on $G_n \rightarrow_{loc} T_d$, $\liminf_n \phi_n \ge \Phi$ for all $\beta, B \ge 0$.

```
Theorem (Dembo, Montanari, S. '11).
For Potts model on G_n \rightarrow_{loc} T_d,
\liminf_n \phi_n \ge \Phi for all \beta, B \ge 0.
```

Theorem (Dembo, Montanari, Sly, S. '12).

```
Theorem (Dembo, Montanari, S. '11).
For Potts model on G_n \rightarrow_{loc} T_d,
\liminf_n \phi_n \ge \Phi for all \beta, B \ge 0.
```

Theorem (Dembo, Montanari, Sly, S. '12). For Potts model on $G_n \rightarrow_{loc} T_d$ with d even,

```
Theorem (Dembo, Montanari, S. '11).
For Potts model on G_n \rightarrow_{loc} T_d,
\liminf_n \phi_n \ge \Phi for all \beta, B \ge 0.
```

Theorem (Dembo, Montanari, Sly, S. '12). For Potts model on $G_n \rightarrow_{loc} T_d$ with d even, $\phi = \Phi$ for all $\beta, B \ge 0$.

Previous work: AF two-spin free energy density

IS, AF Ising:

IS, AF Ising:

Be the prediction $\phi = \Phi$ holds for random regular graphs below uniqueness threshold [Bandyopadhyay–Gamarnik SODA '06]

IS, AF Ising:

Be the prediction $\phi = \Phi$ holds for random regular graphs below uniqueness threshold [Bandyopadhyay–Gamarnik SODA '06]

Existence of ϕ for random regular graphs and Erdős-Rényi graphs [Bayati–Gamarnik–Tetali STOC '10]

Results: AF two-spin free energy density

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs for the IS model at sufficiently low λ .

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs for the IS model at sufficiently low λ .

 $(\nu^0 = \nu^1 \& \text{ reg. conds})$

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs for the IS model at sufficiently low λ .

 $(\nu^0 = \nu^1 \& \text{ reg. conds})$

Theorem (Sly, S. '12).

The Bethe prediction $\phi = \Phi$ holds on locally tree-like graphs for the IS model at sufficiently low λ .

 $(\nu^0 = \nu^1 \& \text{ reg. conds})$

Theorem (Sly, S. '12).

For the Ising and IS models on $G_n \rightarrow_{loc} T_d$ with G_n bipartite, $\phi = \Phi$ for all parameter values.

Previous work: complexity of two-spin systems

Two-spin systems — algorithmic results:

Ferromagnetic:

Ferromagnetic:

FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field [Jerrum–Sinclair ALP '90]

Ferromagnetic:

FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field [Jerrum–Sinclair ALP '90]

Anti-ferromagnetic:

Ferromagnetic:

FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field [Jerrum–Sinclair ALP '90]

Anti-ferromagnetic:

AF two-spin systems have uniqueness thresholds on T_d :

Ferromagnetic:

FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field [Jerrum–Sinclair ALP '90]

Anti-ferromagnetic:

AF two-spin systems have uniqueness thresholds on T_d : $\lambda_c(d)$ for IS, $\beta_c^{af}(B, d) < 0$ for AF Ising

Ferromagnetic:

FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field [Jerrum–Sinclair ALP '90]

Anti-ferromagnetic:

AF two-spin systems have uniqueness thresholds on T_d : $\lambda_c(d)$ for IS, $\beta_c^{af}(B, d) < 0$ for AF Ising

• FPTAS for IS partition function $Z_G(\lambda)$ on bdd. deg. graphs, $\lambda < \lambda_c(d)$ [Weitz STOC '06]

Ferromagnetic:

FPRAS for ferro. Ising at all temperatures, arbitrary magnetic field [Jerrum–Sinclair ALP '90]

Anti-ferromagnetic:

AF two-spin systems have uniqueness thresholds on T_d : $\lambda_c(d)$ for IS, $\beta_c^{af}(B,d) < 0$ for AF Ising

- FPTAS for IS partition function $Z_G(\lambda)$ on bdd. deg. graphs, $\lambda<\lambda_c(d)$ [Weitz STOC '06]
- FPTAS for AF Ising partition function $Z_G(\beta, B)$ on bdd. deg. graphs, $\beta_c^{\mathrm{af}}(B, d) < \beta < 0$ [Sinclair–Srivastava–Thurley '11]

 $Z_G(\lambda)$ hard to approximate on d-regular graphs when $\lambda>c/d$ [Luby–Vigoda STOC '97];

$$\begin{split} Z_G(\lambda) \mbox{ hard to approximate on d-regular graphs when $\lambda > c/d$ [Luby–Vigoda STOC '97]; $$\lambda = 1$ and $d > 25$ [Dyer–Frieze–Jerrum FOCS '99]} \end{split}$$

$$\begin{split} Z_G(\lambda) \mbox{ hard to approximate on d-regular graphs when $\lambda > c/d$ [Luby-Vigoda STOC '97]; $$\lambda = 1$ and $d > 25$ [Dyer-Frieze-Jerrum FOCS '99]} \end{split}$$

Phase transition at $\lambda_c(d)$:

$$\begin{split} Z_G(\lambda) \mbox{ hard to approximate on d-regular graphs when $\lambda > c/d$ [Luby-Vigoda STOC '97]; $$\lambda = 1$ and $d > 25$ [Dyer-Frieze-Jerrum FOCS '99]} \end{split}$$

Phase transition at $\lambda_c(d)$:

■ [Mossel–Weitz–Wormald PTRF '09] Local MCMC mixes slowly on random bipartite *d*-reg. graphs, $\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)$

$$\begin{split} Z_G(\lambda) \mbox{ hard to approximate on d-regular graphs when $\lambda > c/d$ [Luby-Vigoda STOC '97]; $$\lambda = 1$ and $d > 25$ [Dyer-Frieze-Jerrum FOCS '99]} \end{split}$$

Phase transition at $\lambda_c(d)$:

- [Mossel–Weitz–Wormald PTRF '09] Local MCMC mixes slowly on random bipartite *d*-reg. graphs, $\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)$
- [Sly FOCS '10] $Z_G(\lambda)$ hard to approximate on d-regular graphs for $\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)$

$$\begin{split} Z_G(\lambda) \mbox{ hard to approximate on d-regular graphs when $\lambda > c/d$ [Luby–Vigoda STOC '97]; $$\lambda = 1$ and $d > 25$ [Dyer–Frieze–Jerrum FOCS '99]} \end{split}$$

Phase transition at $\lambda_c(d)$:

- [Mossel–Weitz–Wormald PTRF '09] Local MCMC mixes slowly on random bipartite *d*-reg. graphs, $\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)$
- [SIy FOCS '10] $Z_G(\lambda)$ hard to approximate on d-regular graphs for $\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)$

— first rigorous indication that computational transition for finite *d*-regular graphs

$$\begin{split} Z_G(\lambda) \mbox{ hard to approximate on d-regular graphs when $\lambda > c/d$ [Luby–Vigoda STOC '97]; $$\lambda = 1$ and $d > 25$ [Dyer–Frieze–Jerrum FOCS '99]} \end{split}$$

Phase transition at $\lambda_c(d)$:

- [Mossel–Weitz–Wormald PTRF '09] Local MCMC mixes slowly on random bipartite *d*-reg. graphs, $\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)$
- [SIy FOCS '10] $Z_G(\lambda)$ hard to approximate on d-regular graphs for $\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)$

— first rigorous indication that computational transition for finite *d*-regular graphs \longleftrightarrow statistical physics phase transition for the model on T_d

$$\begin{split} Z_G(\lambda) \mbox{ hard to approximate on d-regular graphs when $\lambda > c/d$ [Luby–Vigoda STOC '97]; $$\lambda = 1$ and $d > 25$ [Dyer–Frieze–Jerrum FOCS '99]} \end{split}$$

Phase transition at $\lambda_c(d)$:

- [Mossel–Weitz–Wormald PTRF '09] Local MCMC mixes slowly on random bipartite *d*-reg. graphs, $\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)$
- [SIy FOCS '10] $Z_G(\lambda)$ hard to approximate on d-regular graphs for $\lambda_c(d) < \lambda < \lambda_c(d) + \epsilon(d)$

— first rigorous indication that computational transition for finite *d*-regular graphs \longleftrightarrow statistical physics phase transition for the model on T_d

Subsequently improved to $\lambda > \lambda_c(d)$ for $d \neq 4,5$ [Galanis–Ge–Štefankovič–Vigoda–Yang '11]

Results: complexity of AF two-spin systems

Results: complexity of AF two-spin systems

Theorem (Sly, S. '12).

Results: complexity of AF two-spin systems

Theorem (Sly, S. '12).

(a) For $d \ge 3$, $\lambda > \lambda_c(d)$ the IS partition function $Z_G(\lambda)$ is hard to approx. on the class of *d*-regular graphs.
Theorem (Sly, S. '12).

- (a) For d≥ 3, λ > λ_c(d) the IS partition function Z_G(λ) is hard to approx. on the class of d-regular graphs.
 (b) For d≥ 3, β < β_c^{af}(B,d), the Ising partition function Z_G(β, B) is hard to approx. on the class of d-regular graphs.

Theorem (Sly, S. '12).

(a) For d≥ 3, λ > λ_c(d) the IS partition function Z_G(λ) is hard to approx. on the class of d-regular graphs.
(b) For d≥ 3, β < β_c^{af}(B, d), the Ising partition function Z_G(β, B) is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on *d*-regular graphs reduce to IS/Ising

Theorem (Sly, S. '12).

(a) For d≥ 3, λ > λ_c(d) the IS partition function Z_G(λ) is hard to approx. on the class of d-regular graphs.
(b) For d≥ 3, β < β_c^{af}(B, d), the Ising partition function Z_G(β, B) is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising

(a) & [Weitz STOC '06]

complete classification of hard-core complexity except at $\lambda_c(d)$

Theorem (Sly, S. '12).

- For $d \geq 3, \lambda > \lambda_c(d)$ the IS partition function $Z_G(\lambda)$ (a) (b) For d ≥ 3, β < β_c^{af}(B, d), the Ising partition function Z_G(β, B) is hard to approx. on the class of d-regular graphs.

Non-trivial two-spin systems on *d*-regular graphs reduce to IS/Ising

(a) & [Weitz STOC '06]

complete classification of hard-core complexity except at $\lambda_c(d)$

(b) & [Jerrum–Sinclair ALP '90] & [Sinclair–Srivastava–Thurley '11] complete classification of Ising complexity except at $\beta_c^{af}(B, d)$

Theorem (Sly, S. '12).

- For $d \geq 3, \lambda > \lambda_c(d)$ the IS partition function $Z_G(\lambda)$ (a) is hard to approx. on the class of *u*-regular graphs. (b) For $d \ge 3, \beta < \beta_c^{af}(B, d)$, the Ising partition function $Z_G(\beta, B)$ is hard to approx. on the class of *d*-regular graphs.

Non-trivial two-spin systems on *d*-regular graphs reduce to IS/Ising

(a) & [Weitz STOC '06]

complete classification of hard-core complexity except at $\lambda_c(d)$ (b) & [Jerrum–Sinclair ALP '90] & [Sinclair–Srivastava–Thurley '11] complete classification of Ising complexity except at $\beta_c^{af}(B, d)$ Interpolation & methods from [Montanari-Mossel-Sly PTRF '12]

Theorem (Sly, S. '12).

- (a) For d≥ 3, λ > λ_c(d) the IS partition function Z_G(λ) is hard to approx. on the class of d-regular graphs.
 (b) For d≥ 3, β < β_c^{af}(B, d), the Ising partition function Z_G(β, B)
 - b) For $d \ge 3, \beta < \beta_c^{ar}(B, d)$, the Ising partition function $Z_G(\beta, B)$ is hard to approx. on the class of *d*-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising

(a) & [Weitz STOC '06]

complete classification of hard-core complexity except at $\lambda_c(d)$ (b) & [Jerrum–Sinclair ALP '90] & [Sinclair–Srivastava–Thurley '11] complete classification of Ising complexity except at $\beta_c^{af}(B,d)$ Interpolation & methods from [Montanari–Mossel–Sly PTRF '12] allow us to completely avoid difficult second moment calculations of

previous works on this subject

Theorem (Sly, S. '12).

- (a) For d≥ 3, λ > λ_c(d) the IS partition function Z_G(λ) is hard to approx. on the class of d-regular graphs.
 (b) For d≥ 3, β < β_c^{af}(B, d), the Ising partition function Z_G(β, B)
 - (b) For $d \ge 3$, $\beta < \beta_c^{\text{af}}(B, d)$, the lsing partition function $Z_G(\beta, B)$ is hard to approx. on the class of *d*-regular graphs.

Non-trivial two-spin systems on d-regular graphs reduce to IS/Ising

(a) & [Weitz STOC '06]

 $\begin{array}{l} \mbox{complete classification of hard-core complexity except at $\lambda_c(d)$ (b) & [Jerrum-Sinclair ALP '90] & [Sinclair-Srivastava-Thurley '11] $$ complete classification of Ising complexity except at $$ $\beta_c^{af}(B,d)$ $$ Interpolation & methods from [Montanari-Mossel-Sly PTRF '12] $$ \end{array}$

allow us to completely avoid difficult second moment calculations of previous works on this subject

In independent work, Galanis–Štefankovič–Vigoda '12 established (a), and (b) with B = 0

- 1 The Potts and independent set models
- 2 Locally tree-like graphs and the Bethe prediction
- **3** Previous work and results
- **4** Verifying the Bethe prediction: proof ideas

- 1 The Potts and independent set models
- 2 Locally tree-like graphs and the Bethe prediction
- 3 Previous work and results
- **4** Verifying the Bethe prediction: proof ideas

(Dembo, Montanari, S. '11)

(Dembo, Montanari, S. '11)

Generalized interpolation scheme for abstract factor models

(Dembo, Montanari, S. '11)

Generalized interpolation scheme for abstract factor models

Basic idea: if $\limsup_n \partial_B \phi_n \leq \partial_B \Phi \bigstar$

(Dembo, Montanari, S. '11)

Generalized interpolation scheme for abstract factor models

Basic idea: if $\limsup_n \partial_B \phi_n \leq \partial_B \Phi \bigstar$ then $\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0).$

(Dembo, Montanari, S. '11)

Generalized interpolation scheme for abstract factor models

Basic idea: if $\limsup_n \partial_B \phi_n \leq \partial_B \Phi \bigstar$ then $\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0).$

Recall $\phi_n = n^{-1} \log Z_n$:

(Dembo, Montanari, S. '11)

Generalized interpolation scheme for abstract factor models

Basic idea: if $\limsup_n \partial_B \phi_n \leq \partial_B \Phi \bigstar$ then $\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0).$

Recall $\phi_n = n^{-1} \log Z_n$: $\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n$

(Dembo, Montanari, S. '11)

Generalized interpolation scheme for abstract factor models

Basic idea: if $\limsup_n \partial_B \phi_n \leq \partial_B \Phi \bigstar$ then $\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0).$

Recall $\phi_n = n^{-1} \log Z_n$: $\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n$ Can show $\partial_B \Phi(\nu) = \text{avg. of same observable at root of } T_d$ w.r.t. Gibbs measure ν

(Dembo, Montanari, S. '11)

Generalized interpolation scheme for abstract factor models

Basic idea: if $\limsup_n \partial_B \phi_n \leq \partial_B \Phi \bigstar$ then $\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0).$

Recall $\phi_n = n^{-1} \log Z_n$: $\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n$ Can show $\partial_B \Phi(\nu) = \text{avg. of same observable at root of } T_d$ w.r.t. Gibbs measure ν

If Gibbs measure unique,

(Dembo, Montanari, S. '11)

Generalized interpolation scheme for abstract factor models

Basic idea: if $\limsup_n \partial_B \phi_n \leq \partial_B \Phi \bigstar$ then $\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0).$

Recall $\phi_n = n^{-1} \log Z_n$: $\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n$ Can show $\partial_B \Phi(\nu) = \text{avg. of same observable at root of } T_d$ w.r.t. Gibbs measure ν

If Gibbs measure unique, observable averages on ${\cal G}_n$ converge to averages on ${\cal T}_d$ by general theory

(Dembo, Montanari, S. '11)

Generalized interpolation scheme for abstract factor models

Basic idea: if $\limsup_n \partial_B \phi_n \leq \partial_B \Phi \bigstar$ then $\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0).$

Recall $\phi_n = n^{-1} \log Z_n$: $\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n$ Can show $\partial_B \Phi(\nu) = \text{avg. of same observable at root of } T_d$ w.r.t. Gibbs measure ν

If Gibbs measure unique, observable averages on G_n converge to averages on T_d by general theory $\Rightarrow \bigstar$

(Dembo, Montanari, S. '11)

Generalized interpolation scheme for abstract factor models

Basic idea: if $\limsup_n \partial_B \phi_n \leq \partial_B \Phi \bigstar$ then $\limsup_n [\phi_n(B_1) - \phi_n(B_0)] \leq \Phi(B_1) - \Phi(B_0).$

Recall $\phi_n = n^{-1} \log Z_n$: $\Rightarrow \partial_B \phi_n = \text{avg. of local observable w.r.t. } \nu_n$ Can show $\partial_B \Phi(\nu) = \text{avg. of same observable at root of } T_d$ w.r.t. Gibbs measure ν

If Gibbs measure unique, observable averages on G_n converge to averages on T_d by general theory $\Rightarrow \bigstar$

Can sometimes obtain \star beyond uniqueness from (model-specific) (anti-)monotonicity properties

Proof ideas: BP recursion on T_d

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

BP recursion on general limiting trees is complicated, but

BP recursion on general limiting trees is complicated, but BP recursion on T_d is simply a map $\Delta \rightarrow \Delta$: BP recursion on general limiting trees is complicated, but BP recursion on T_d is simply a map $\Delta \rightarrow \Delta$:

$$\boldsymbol{h}(\sigma) \cong \bar{\psi}(\sigma) \left(\sum_{\sigma'} \psi(\sigma, \sigma') \boldsymbol{h}(\sigma') \right)^{d-1}$$

BP recursion on general limiting trees is complicated, but BP recursion on T_d is simply a map $\Delta \rightarrow \Delta$:

$$\boldsymbol{h}(\sigma) \cong \bar{\psi}(\sigma) \left(\sum_{\sigma'} \psi(\sigma, \sigma') \boldsymbol{h}(\sigma') \right)^{d-1}$$

By explicitly analyzing this mapping, can obtain more exact results for T_d than are implied by interpolation scheme for general trees

 $\partial_B \phi_n = \mathbb{E}_n[\sigma_{I_n}] \text{ (with } B \equiv \log \lambda \text{ for IS)}$

 $\partial_B \phi_n = \mathbb{E}_n[\sigma_{I_n}]$ (with $B \equiv \log \lambda$ for IS) With obvious observable $i \mapsto \sigma_i$, can show $\phi = \Phi$ for $\lambda \leq \lambda_c$

 $\begin{array}{l} \partial_B \phi_n = \mathbb{E}_n[\sigma_{I_n}] \text{ (with } B \equiv \log \lambda \text{ for IS)} \\ \text{With obvious observable } i \mapsto \sigma_i \text{, can show } \phi = \Phi \text{ for } \lambda \leq \lambda_c \\ \text{But by taking observable } i \mapsto (\sigma_i + d^{-1} \sum_{j \in \partial i} \sigma_j)/2 \\ \text{can show } \phi = \Phi \text{ for all } \lambda > 0 \end{array}$

IS BP recursion (in terms of h(0))

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

Semi-translation-invariant solutions arise above λ_c

Semi-translation-invariant solutions arise above λ_c

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

IS BP recursion (in terms of h(0))

Semi-translation-invariant solutions arise above λ_c

A. Dembo, A. Montanari, A. Sly, N. Sun Fa

Factor models on *d*-regular graphs

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

Use bipartite property to interpolate semi-trans.-inv. fixed point from $\lambda=\infty$

In Potts model, $\partial_B \phi_n = \mathbb{E}_n \mathbb{E}_{\nu_n} [\delta_{\sigma_{I_n}, 1}]$,

Similarly $\partial_{\beta}\phi_n = \mathbb{E}_n \mathbb{E}_{\nu_n} [\sum_{j \in \partial I_n} \delta_{\sigma_{I_n}, \sigma_j}]$

Similarly $\partial_{\beta}\phi_n = \mathbb{E}_n \mathbb{E}_{\nu_n} [\sum_{j \in \partial I_n} \delta_{\sigma_{I_n}, \sigma_j}]$

In non-uniqueness regimes, can take advantage of

Similarly $\partial_{\beta}\phi_n = \mathbb{E}_n \mathbb{E}_{\nu_n} [\sum_{j \in \partial I_n} \delta_{\sigma_{I_n}, \sigma_j}]$

In non-uniqueness regimes, can take advantage of random-cluster (FK) representation for Potts model

Similarly $\partial_{\beta}\phi_n = \mathbb{E}_n \mathbb{E}_{\nu_n} [\sum_{j \in \partial I_n} \delta_{\sigma_{I_n}, \sigma_j}]$

In non-uniqueness regimes, can take advantage of **random-cluster** (FK) **representation** for Potts model to get monotonicity properties, thereby restricting range of admissible Gibbs measures

Adding small field B > 0 resolves non-uniqueness

Potts BP (in terms of $\log[h(1)/h(2)]$)

Adding B > 0 not enough to resolve non-uniqueness

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

Potts: $\phi \ge \Phi$ by interpolation

Interpolation gives $\phi \geq \Phi$,

Interpolation gives $\phi \geq \Phi$, with equality for $(\beta, B) \notin \mathcal{R}_{\neq}$ (shaded)

Interpolation gives $\phi \geq \Phi$, with equality for $(\beta, B) \notin \mathcal{R}_{\neq}$ (shaded)

Different approach needed to obtain equality inside \mathcal{R}_{\neq}

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

Delete a vertex

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

Delete a vertex Match up half edges

A. Dembo, A. Montanari, A. Sly, N. Sun Factor models on *d*-regular graphs

Delete a vertex Match up half edges Show decrease in $\log Z$ at each step is $\leq \Phi$ \bigstar

Delete a vertex Match up half edges Show decrease in $\log Z$ at each step is $\leq \Phi \bigstar$ Matching **not** done u.a.r.

but to guarantee ★

Delete a vertex Match up half edges Show decrease in $\log Z$ at each step is $\leq \Phi \bigstar$ Matching **not** done u.a.r. but to guarantee \bigstar

Argue graphs remain uniformly locally tree-like

Delete a vertex Match up half edges Show decrease in $\log Z$ at each step is $\leq \Phi \bigstar$ Matching **not** done u.a.r. but to guarantee \bigstar

Argue graphs remain uniformly locally tree-like

This procedure reduces the upper bound to showing \bigstar , which is a difficult (but tractable) calculus problem

Two questions

We make crucial use of the fact that the limiting tree is T_d. Can these methods be extended to more general graph ensembles, e.g. Erdős-Rényi?

- We make crucial use of the fact that the limiting tree is T_d. Can these methods be extended to more general graph ensembles, e.g. Erdős-Rényi?
- The Bethe prediction is believed to be false for IS at high fugacity on typical non-bipartite graphs converging to T_d. Can one describe what happens in this case?

Thank you!