

17 Gauss Way Berkeley, CA 94720-5070 p: 510.642.0143 f: 510.642.8609 www.msri.org

NOTETAKER CHECKLIST FORM

(Complete one for each talk.)

Naı	me: Neil Epstein Email/Phone: nepstei2@ gmu.edu	
Spe	eaker's Name: Shunsuke Takagi	
Talk Title: Globally F-regular and Frobenius split surfaces		
Date: 05/69/2013 Time: 9:00 mm/pm (circle one)		
List 6-12 key words for the talk:		
Ple	ase summarize the lecture in 5 or fewer sentances: (See abstract)	
	CHECK LIST	
	(This is NOT optional, we will not pay for incomplete forms)	
	Introduce yourself to the speaker prior to the talk. Tell them that you will be the note taker, and that you will need to make copies of their notes and materials, if any.	
	Obtain ALL presentation materials from speaker. This can be done before the talk is to begin or after the talk; please make arrangements with the speaker as to when you can do this. You may scan and send materials as a .pdf to yourself using the scanner on the 3 rd floor. • Computer Presentations: Obtain a copy of their presentation	
	 Overhead: Obtain a copy or use the originals and scan them Blackboard: Take blackboard notes in black or blue PEN. We will NOT accept notes in pencil or in colored ink other than black or blue. Handouts: Obtain copies of and scan all handouts 	
	For each talk, all materials must be saved in a single .pdf and named according to the naming convention on the "Materials Received" check list. To do this, compile all materials for a specific talk into one stack with this completed sheet on top and insert face up into the tray on the top of the scanner. Proceed to scan and email the file to yourself. Do this for the materials from each talk.	
	When you have emailed all files to yourself, please save and re-name each file according to the naming convention listed below the talk title on the "Materials Received" check list. (YYYY.MM.DD.TIME.SpeakerLastName)	
	Email the re-named files to notes@msri.org with the workshop name and your name in the subject line.	

Globally F-regular and Frobenius split surfaces.

Shunsuke Takagi

University of Tokyo

Frobenius split and Globally F-regular varieties are classes of projective varieties over a field of positive characteristic, defined in terms of Frobenius splitting. I will explain some properties of Frobenius split and globally F-regular surfaces.

This is joint work with Yoshinori Gongyo.

Globally F-regular and Frobenius Split Surfaces
10 ht w 7, Gonggo
Def: lot X be a normal proj. varety/2=R, charp. let F:X-) X be in als. Fob. (1) We say X is globally F-split if Ox-> Fx Ox splits. (2) We say X is globally Engular if \$1020 Cartier divisoron X, I e 70 set. the comparition Ox -> Fx Ox -> Fx Oy Ox splits.
(1) We say X is globally F-regular if 4020 Cartier divisor on X = 20 s.t. the comparition
Note: St. F-10 => St. F-5p1.7.
EX: (e+ C be a smooth projective curve in chorp >0. Cit gl. F-rey = C=P!
Cis gl F-split = C=TP or ordings elliptic curve
The (schuede-Smith): If X is globally Fregular, X:5 log Fano. (1.e. 7170 s.t. (4) is left and - (K+D) is angle)
· If X is globally F-split, then X is leg CY (Gladi Yaw). (to 3 230 s. E (XD) is LC and Kxto ~ O.)
Note: The converse fails for both statements.
(1) X, s of globally F-regular type it its modulo preduction Xp is gl. F-reg. 4p70.
Def: X normal pay, variety R=Z, that k=O. (1) X is of globally F-regular type if its modulo p reduction Xp is gl. F-reg. 4p70. (2) X is of dense globally F-split type if its modulo p reduction Xp is gl. F-split for Minikly many P.
tlence, E is of densed F-split type.
Conj. (Schwedo-Smith):
Con: (Schwide-Smith): (1) X:5 of gl. F-reular type => X is log F-ano. (2) X:5 of dense gl. F-split type => Xis log CY.
Rmts: (=) does not follow from the previous thm. (E) in (V is true (schnede-Smith) (E) in (2) is true if the weak ordinarity conjecture holds.
We focus on (=).
(=) is true if X is a MDS (Gongyo - Okawa - Sannai-T.)
(MDS nears: let U1, -le 20 a 108.19 to COW (m, n) ET if (ox(x) 15 f.g.)
(3) in (1) is true if dim/=2 (Okana)
Than (Gongyo-T.): If X & a globally F-regular surface, then X:, leg Fano. If X: a dense globally F-regular type surface, then X is log CY.
It XIS a dense growally + -1794/a type SWFACE, Man XIS log (4.

pf of gl. F-split case:
Taking minimal resolution, WMP Vis smooth. Xp is globally F-splt for infinitely many p. So - Kxp is pseudo-effective for a many p, when a - Kx is pseudo-effective.
= 2 ariski decomposition - Kx = P+N.
lemma: Then -Kx = Po+Np is a Zariski leams for 00 many p.
(K, N) is globally F-split Def: A pair (4, M) is globally F-split if De >0, sl. the composition by -> F. O, c-> F.
Sp/175.
Then by Hara-Witanabe, (X,N) is lay canonical.
ETS: P is seniample. (BEInPl zeroral (1>0) => (X, +B+N) is lc. So Kx+nB+N vo Kx+P+N~0)
We can reduce to the following situation: X smooth rational surface, -Kx is nef but not semicomple 0 = HO(x, -Kx) - i.e. JO30 s.t. D~-Kx.
Op~-Ky is semiample. T: Yp - P'ellipti fibration, minimal.
Ren IXEPs. E. D = IT X where m=multiplicity of TX
ETS: (X,D) is lc Use classification of singular fibers of elliptic fibrations. (Deligne-Mumford?)
$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$
Suppose (X,D) is not le Then Dp is not normal crossing (i.e. D = I, I, o- I, 123). Then Ho(Xp, (1-1) /x,) = Ho(Xp, (1-p)Qp) = 1 But Ho(Xp, (1-p) /x,) = Hom(Fr. Oxp, Oxp)
(// 6cth A). //
Then (xp, Pp) is gl. F-split Das (Xp) is lc, condadiction.