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Singularities with respect to Mather-Jacobian discrepancies 
 

Shihoko Ishii 
University of Tokyo 

 
 
The Usual discrepancy of canonical divisors is defined for a normal Q-Gorenstein variety and used for 
classification of singularities from the view point of birational geometry. In the talk I will use Mather-
Jacobian discrepancy instead of usual discrepancy and discuss ``canonical" and ``log-canonical" 
singularities with respect to this discrepancy. Our interest is also for non-Q-Gorenstein or even non-
normal varieties. 
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Characterization of MJ-singularities of low dimension

Throughout this talk, X is always connected equidimensional
reduced scheme of finite type over an algebraically closed field
of characteristic 0. d = dim X .
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Outline

1 Motivation

2 Definitions

3 Deformations

4 Characterization of MJ-singularities of low dimension
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1. Motivation
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Characterization of MJ-singularities of low dimension

X : normal and Q-Gorenstein
f : X → X : an appropriate resolution of the singularities of
X
⇒ “usual discrepancy divisor" KX/X is defined
⇒ canonical singularities, log canonical singularities
⇒ multiplier ideal
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X : not necessarily normal or Q-Gorenstein (⇒ usual
discrepancy is not defined.)

f : X → X : an appropriate resolution of the singularities of
X
⇒ Mather-Jacobian discrepancy divisor K̂X/X − JX/X is
defined
⇒ “canonical singularities", “log canonical singularities"
⇒ “multiplier ideal"
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Problem
What kind of singularities are these?
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2. Definitions

Shihoko Ishii MJ discrepancy



Motivation
Definitions

Deformations
Characterization of MJ-singularities of low dimension

f : X → X a resolution of the singularities of X factoring
through the Nash blow up

f ∗ ∧d ΩX
df−→ ∧dΩX = ωX

∪

Im(df ) (invertible)

‖

IωX
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f through the Nash blow up ⇒ Im(df ) is invertible.
I is an invertible ideal sheaf !!!
Define the divisor K̂X/X as

OX (−K̂X/X ) = I

K̂X/X is an effective integral divisor on X .
“Mather discrepancy divisor"
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Jacobian ideal
X ⊂ AN

IX = (f1, f2, . . . , fr ) the defining ideal of X in AN

(
∂fj
∂xi

)
Jacobian matrix

JX :=

(
(N − d)−minors of

(
∂fj
∂xi

))
|X

JX is independent of the choice of embeddings X ⊂ AN .

JX is the “Jacobian ideal of X "
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Note

If f : X → X is a log resolution of (X ,JX ), then f factors through
the Nash blow up.

Shihoko Ishii MJ discrepancy



Motivation
Definitions

Deformations
Characterization of MJ-singularities of low dimension

Definition

Let f : X → X be a log resolution of (X ,JX ). Define a divisor
JX/X as

OX (−JX/X ) = JXOX .

JX/X is called the “Jacobian discrepancy divisor".
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Definition

f : X → X log resolution of (X ,JX ), OX (−JX/X ) = JXOX .
For a prime divisor E over X

â(E ; X ,JX ) := ordE

(
K̂X/X − JX/X

)
+ 1

“Mather-Jacobian log discrepancy at E"
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â(E ; X ,JX ) := ordE

(
K̂X/X − JX/X

)
+ 1 (M-J)

for a reduced equidimensional scheme X .

a(E ; X ) := ordE

(
KX/X

)
+ 1 (“usual")

for a normal Q-Gorenstein variety X .

Shihoko Ishii MJ discrepancy



Motivation
Definitions

Deformations
Characterization of MJ-singularities of low dimension

Definition
X has MJ-canonical singularities
⇔ â(E , X ,JX ) ≥ 1 for every exceptional prime divisor E over X

Definition
X has log MJ-canonical singularities
⇔ â(E , X ,JX ) ≥ 0 for every exceptional prime divisor E over X

In [De Fernex, Docampo] these are called J-canonical and log
J-canonical.
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Remember the “usual" canonical / log canonical singularities.

Definition
X has canonical singularities
⇔ a(E , X ) ≥ 1 for every exceptional prime divisor E over X

Definition
X has log canonical singularities
⇔ a(E , X ) ≥ 0 for every exceptional prime divisor E over X
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Why do we think of these singularities?

Shihoko Ishii MJ discrepancy



Motivation
Definitions

Deformations
Characterization of MJ-singularities of low dimension

Because of good properties of Mather-Jacobian discrepancy.

Shihoko Ishii MJ discrepancy



Motivation
Definitions

Deformations
Characterization of MJ-singularities of low dimension

First good property
Inversion of Adjunction of minimal MJ-discrepancy

([DD], [ I- ])
⇒ upper bound of minimal MJ-discrepancy

⇒ lower semi continuity of minimal MJ-discrepancy
⇒ ACC for MJ-log canonical threshold

(Better properties than usual discrepancy)
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Second good property

We can define Mather-Jacobian multiplier ideal. This ideal has
good properties (local vanishing, subadditivity,

restriction theorem, Skoda type theorem..[EIM])
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It is natural to think of MJ-canonical / log MJ-canonical
singularities.
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3. Deformations

How MJ-canonical and log MJ-canonical singularities behave
under deformations?
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Definition
Let D be a variety,
0 ∈ D a closed point
and π : X → D a surjective morphism with equidimensional
reduced fibers Xt = π−1(t) of common dimension for all t ∈ D.
Then π : X → D is called a deformation of X0.
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Theorem
Let x ∈ X be a closed point and π : X → D a deformation of X0
with π(x) = 0 .
Assume that (X0, x) is MJ-canonical (resp. log MJ-canonical)
singularity.
Then, by replacing D and X by small neighborhoods of 0 and x
respectively,
Xt has MJ-canonical (resp. log MJ-canonical) singularities for
every t ∈ D.
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Corollary

Let 0 ∈ X ⊂ Ad+1 be an hypersurface defined by a polynomial f
and Γ(f ) ⊂ Rd+1 its Newton polygon.
If (1, 1, . . . , 1) +∈ Γ(f ) (resp. (1, 1, . . . , 1) +∈ Γ(f )0),
then (X , 0) is not log MJ-canonical (resp. not MJ-canonical ).
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4. Characterization of MJ-singularities of low
dimension
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Theorem
dim X = 1

1 X is MJ-canonical ⇔ X is nonsingular.
2 X is log MJ-canonical ⇔ X has at most ordinary double

point.
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Note
(X , 0) is log MJ-canonical ⇒ emb(X , 0) ≤ 2d
(X , 0) is MJ-canonical ⇒ emb(X , 0) ≤ 2d − 1
Therefore
(X , 0) is 2-dimensional log MJ-canonical ⇒ emb(X , 0) ≤ 4
(X , 0) is 2-dimensional MJ-canonical ⇒ emb(X , 0) ≤ 3
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Theorem
dim X = 2
X is MJ-canonical ⇔ X has at worst rational double point
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Theorem
dim X = 2 and emb(X , 0) = 3
(X , 0) is log MJ-canonical singularity if and only if X is defined
by f (x , y , z) = 0 ∈ k [[x , y , z]] as follows:

1 mult0f = 3 and V (in(f )) ⊂ P2 is reduced curve with at
worst ordinary double point.

2 mult0f = 2
1 f = x2 + y2 + g(z), deg g ≥ 2.
2 f = x2 + g3(y , z) + g4(y , z), deg gi ≥ i , g3 is homogeneous

of degree 3 and g3 += l3 (l linear)
3 f = x2 + y3 + yg(z) + h(z), mult0g ≤ 4 or mult0 ≤ 6.
4 f = x2 + g(y , z) + h(y , z), g is homogeneous of degree 4

and it does not have a linear factor with multiplicity more
than 2.
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Theorem
dim X = 2, emb(X , 0) = 4

1 If (X , 0) is a complete intersection at 0, then
(X , 0) is log MJ-canonical
⇔ X is defined by f1, f2 with mult0fi = 2 and
V (in(f1), in(f2)) ⊂ P3 is a reduced curve with ordinary
double points.

2 if (X , 0) is not a complete intersection at 0, then
(X , 0) is log MJ-canonical
⇔ X is a union of irreducible components of log
MJ-canonical complete intersection scheme.
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2-dimensional MJ-canonical singularities/log MJ-canonical
singularities are determined.
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Proposition
Assume X is S2 and Q-Gorenstein.
X is log MJ-canonical ⇒ X is semi log canonical.

Note : There are log MJ-canonical singularities with non S2 or
non Q-Gorenstein.
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X = V (xy , zw) ⊂ A4, X = cone over

⇒ X is complete intersection log MJ-canonical
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X= cone over

⇒ X is non Q-Gorenstein log MJ canonical
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X= cone over

⇒ X is non S2 non Q-Gorenstein log MJ canonical singularities.
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Ambitious Question

Is the class of log MJ-canonical singularities closed under
every step in MMP?
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If this holds true, it would be very nice.
Because MJ-discrepancy has good properties (Inversion of
Adjunction, lower semi-continuity of the minimal
MJ-discrepancy, ACC of log MJ-canonical thresholds...) and
therefore proofs of MMP would be simpler.
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Too Ambitious Question
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There are examples of divisorial contractions such that
the source varieties have only log MJ-canonical singularities
and the target varieties have non log MJ-canonical singularities.
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3-dimensional terminal cyclic quotient singularities

1
r
(s,−s, 1), s < r , gcd(s, r) = 1

Proposition ([Kawamata])

A divisorial contraction Y → Z to a point
1
r
(s,−s, 1) in Z is

unique. It is a weighted blow up and Y has two singularities
1
s
(−r , r , 1) and

1
r − s

(−r , r , 1).

By the successive weighted blow ups one can resolve the
singularities.
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Example

If s += 1 or s += r − 1, then
1
r
(s,−s, 1) is not log MJ-canonical.

Starting with non singular variety, one can obtain such a
singularity by successive divisorial contractions.
⇒ counterexamples for the question.
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T. De Fernex and R. Docampo [DD]
Jacobian discrepancies and rational singularities
arXiv: 1106.2172

L. Ein, S. Ishii and M. Mustaţă [EIM]
Multiplier ideals via Mather discrepancy
to appear Publ. RIMS, Proceeding of S. Mori’s 60th
birthday conference.

S. Ishii [I-]
Mather discrepancy and the arc spaces.
Annales de l’Institute Fourier, 63(1):89–111, 2013.
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X : normal and Q-Gorenstein
f : X → X : an appropriate resolution of the singularities of
X
⇒ “usual discrepancy divisor" KX/X is defined
⇒ canonical singularities, log canonical singularities
⇒ multiplier ideal
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X : not necessarily normal or Q-Gorenstein (⇒ usual
discrepancy is not defined.)

f : X → X : an appropriate resolution of the singularities of
X
⇒ Mather-Jacobian discrepancy divisor K̂X/X − JX/X is
defined
⇒ “canonical singularities", “log canonical singularities"
⇒ “multiplier ideal"
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What kind of singularities are these?
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f : X → X a resolution of the singularities of X factoring
through the Nash blow up

f ∗ ∧d ΩX
df−→ ∧dΩX = ωX

∪

Im(df ) (invertible)

‖

IωX
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f through the Nash blow up ⇒ Im(df ) is invertible.
I is an invertible ideal sheaf !!!
Define the divisor K̂X/X as

OX (−K̂X/X ) = I

K̂X/X is an effective integral divisor on X .
“Mather discrepancy divisor"
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Jacobian ideal
X ⊂ AN

IX = (f1, f2, . . . , fr ) the defining ideal of X in AN

(
∂fj
∂xi

)
Jacobian matrix

JX :=

(
(N − d)−minors of

(
∂fj
∂xi

))
|X

JX is independent of the choice of embeddings X ⊂ AN .

JX is the “Jacobian ideal of X "
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Note

If f : X → X is a log resolution of (X ,JX ), then f factors through
the Nash blow up.
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Definition

Let f : X → X be a log resolution of (X ,JX ). Define a divisor
JX/X as

OX (−JX/X ) = JXOX .

JX/X is called the “Jacobian discrepancy divisor".
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Definition

f : X → X log resolution of (X ,JX ), OX (−JX/X ) = JXOX .
For a prime divisor E over X

â(E ; X ,JX ) := ordE

(
K̂X/X − JX/X

)
+ 1

“Mather-Jacobian log discrepancy at E"

Shihoko Ishii MJ discrepancy



Motivation
Definitions

Deformations
Characterization of MJ-singularities of low dimension

â(E ; X ,JX ) := ordE

(
K̂X/X − JX/X

)
+ 1 (M-J)

for a reduced equidimensional scheme X .

a(E ; X ) := ordE

(
KX/X

)
+ 1 (“usual")

for a normal Q-Gorenstein variety X .
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Definition
X has MJ-canonical singularities
⇔ â(E , X ,JX ) ≥ 1 for every exceptional prime divisor E over X

Definition
X has log MJ-canonical singularities
⇔ â(E , X ,JX ) ≥ 0 for every exceptional prime divisor E over X

In [De Fernex, Docampo] these are called J-canonical and log
J-canonical.
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Remember the “usual" canonical / log canonical singularities.

Definition
X has canonical singularities
⇔ a(E , X ) ≥ 1 for every exceptional prime divisor E over X

Definition
X has log canonical singularities
⇔ a(E , X ) ≥ 0 for every exceptional prime divisor E over X
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Why do we think of these singularities?
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Because of good properties of Mather-Jacobian discrepancy.
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First good property
Inversion of Adjunction of minimal MJ-discrepancy

([DD], [ I- ])
⇒ upper bound of minimal MJ-discrepancy

⇒ lower semi continuity of minimal MJ-discrepancy
⇒ ACC for MJ-log canonical threshold

(Better properties than usual discrepancy)
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Second good property

We can define Mather-Jacobian multiplier ideal. This ideal has
good properties (local vanishing, subadditivity,

restriction theorem, Skoda type theorem..[EIM])

Shihoko Ishii MJ discrepancy



Motivation
Definitions

Deformations
Characterization of MJ-singularities of low dimension

It is natural to think of MJ-canonical / log MJ-canonical
singularities.
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3. Deformations

How MJ-canonical and log MJ-canonical singularities behave
under deformations?
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Definition
Let D be a variety,
0 ∈ D a closed point
and π : X → D a surjective morphism with equidimensional
reduced fibers Xt = π−1(t) of common dimension for all t ∈ D.
Then π : X → D is called a deformation of X0.
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Theorem
Let x ∈ X be a closed point and π : X → D a deformation of X0
with π(x) = 0 .
Assume that (X0, x) is MJ-canonical (resp. log MJ-canonical)
singularity.
Then, by replacing D and X by small neighborhoods of 0 and x
respectively,
Xt has MJ-canonical (resp. log MJ-canonical) singularities for
every t ∈ D.
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Corollary

Let 0 ∈ X ⊂ Ad+1 be an hypersurface defined by a polynomial f
and Γ(f ) ⊂ Rd+1 its Newton polygon.
If (1, 1, . . . , 1) +∈ Γ(f ) (resp. (1, 1, . . . , 1) +∈ Γ(f )0),
then (X , 0) is not log MJ-canonical (resp. not MJ-canonical ).

Shihoko Ishii MJ discrepancy



Motivation
Definitions

Deformations
Characterization of MJ-singularities of low dimension

4. Characterization of MJ-singularities of low
dimension
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Theorem
dim X = 1

1 X is MJ-canonical ⇔ X is nonsingular.
2 X is log MJ-canonical ⇔ X has at most ordinary double

point.
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Note
(X , 0) is log MJ-canonical ⇒ emb(X , 0) ≤ 2d
(X , 0) is MJ-canonical ⇒ emb(X , 0) ≤ 2d − 1
Therefore
(X , 0) is 2-dimensional log MJ-canonical ⇒ emb(X , 0) ≤ 4
(X , 0) is 2-dimensional MJ-canonical ⇒ emb(X , 0) ≤ 3
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Theorem
dim X = 2
X is MJ-canonical ⇔ X has at worst rational double point
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Theorem
dim X = 2 and emb(X , 0) = 3
(X , 0) is log MJ-canonical singularity if and only if X is defined
by f (x , y , z) = 0 ∈ k [[x , y , z]] as follows:

1 mult0f = 3 and V (in(f )) ⊂ P2 is reduced curve with at
worst ordinary double point.

2 mult0f = 2
1 f = x2 + y2 + g(z), deg g ≥ 2.
2 f = x2 + g3(y , z) + g4(y , z), deg gi ≥ i , g3 is homogeneous

of degree 3 and g3 += l3 (l linear)
3 f = x2 + y3 + yg(z) + h(z), mult0g ≤ 4 or mult0 ≤ 6.
4 f = x2 + g(y , z) + h(y , z), g is homogeneous of degree 4

and it does not have a linear factor with multiplicity more
than 2.
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Theorem
dim X = 2, emb(X , 0) = 4

1 If (X , 0) is a complete intersection at 0, then
(X , 0) is log MJ-canonical
⇔ X is defined by f1, f2 with mult0fi = 2 and
V (in(f1), in(f2)) ⊂ P3 is a reduced curve with ordinary
double points.

2 if (X , 0) is not a complete intersection at 0, then
(X , 0) is log MJ-canonical
⇔ X is a union of irreducible components of log
MJ-canonical complete intersection scheme.
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2-dimensional MJ-canonical singularities/log MJ-canonical
singularities are determined.
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Proposition
Assume X is S2 and Q-Gorenstein.
X is log MJ-canonical ⇒ X is semi log canonical.

Note : There are log MJ-canonical singularities with non S2 or
non Q-Gorenstein.
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X = V (xy , zw) ⊂ A4, X = cone over

⇒ X is complete intersection log MJ-canonical
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X= cone over

⇒ X is non Q-Gorenstein log MJ canonical
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X= cone over

⇒ X is non S2 non Q-Gorenstein log MJ canonical singularities.
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Ambitious Question

Is the class of log MJ-canonical singularities closed under
every step in MMP?
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If this holds true, it would be very nice.
Because MJ-discrepancy has good properties (Inversion of
Adjunction, lower semi-continuity of the minimal
MJ-discrepancy, ACC of log MJ-canonical thresholds...) and
therefore proofs of MMP would be simpler.
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Too Ambitious Question
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There are examples of divisorial contractions such that
the source varieties have only log MJ-canonical singularities
and the target varieties have non log MJ-canonical singularities.
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3-dimensional terminal cyclic quotient singularities

1
r
(s,−s, 1), s < r , gcd(s, r) = 1

Proposition ([Kawamata])

A divisorial contraction Y → Z to a point
1
r
(s,−s, 1) in Z is

unique. It is a weighted blow up and Y has two singularities
1
s
(−r , r , 1) and

1
r − s

(−r , r , 1).

By the successive weighted blow ups one can resolve the
singularities.
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Example

If s += 1 or s += r − 1, then
1
r
(s,−s, 1) is not log MJ-canonical.

Starting with non singular variety, one can obtain such a
singularity by successive divisorial contractions.
⇒ counterexamples for the question.
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