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Motivation

Example
Fix a field k.

Consider the associative k-algebra, S, on generators z, ..

defining relations:
zizj = pjjzizj, forall i, j,

where 0 # pjj € k for 1 <i,j < n, pjj =1 for all i & pjjpji = 1 for all i, ;.

If all the p1j; = 1, then this algebra is the commutative polynomial ring.

With some p;; # 1, this algebra feels close to commutative, so there
should be a way to do algebraic geometry with this algebra (& there is).

., Zp With

ATV's idea: use certain modules (representations) in place of

points/lines/planes etc....
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ATV's Geometry
Henceforth, k = algebraically closed field.

Definition ([ Artin, Tate, Van den Bergh ])
Let A= ®i>0 A;, with Ag =k, be an associative graded k-algebra
generated by_Al where dim(A;) = n < co. A graded right A-module
M = D;>o M; is called a point module ( resp. line module ) if:

(1) M is cyclic with M = MpA

& (2) dimg(M;)=1forall i ( resp. dimg(M;) =i+ 1 for all i ).

Where's the geometry??
(1)=A-—>M, sogdd=A; — M;. Kernel K C Ay,

2) = dimg(K) =n—1 (resp. n—2), K- C A%, dimg(K') =1 (resp. 2).
1

P(Kt) CP(AY), P(KL) = point in P(A}) (resp. line in P(A})).

Similarly, for other d-linear modules & truncated d-linear modules.
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ATV 1989:
point modules are parametrized by a scheme, the point scheme.

Shelton & Vancliff 2000:
under certain hypotheses, line mods parametrized by a scheme, the line
scheme. (For any d € N, d-linear modules are parametrized by a scheme.)

ATV used their geometry to classify certain types of algebras, where n < 3.

Definition ([ Artin, Schelter ] non-comm analogue of poly ring)
An assoc graded k-algebra A = @,., A, with Ay =k, generated by A; is
AS-regular of global dimension m if
o gldm(A)=m< oo &
@ A has polynomial growth &
@ (Gorenstein condition) a minimal projective resolution R of the trivial
right module k4 consists of finitely generated mods & dualizing R
yields a minimal projective resolution of the trivial left module pk.

Last condition is a symmetry property & replaces commutativity.
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Examples

o Algebra S from above ( zjzj = pjjzizj ) is AS-regular, so, poly ring is
AS-regular.

e If k = C, then many algebras from physics are AS-regular.

@ For gldim(A) = 1, there is only k[x] = poly ring on 1 variable

e For gldim(A) = 2, there are only 2 types: generators x, y, 1 def
relation f, where either
f =xy+ Ayx, 0 # X € k (quantum affine plane), or
f = xy — yx — x? (Jordan plane).

@ For gldim(A) = 3, have 9 generic quadratic types & some with cubic
relations. Generic types classified by ATV based on the point
scheme X. 3 o € Aut(X) such that the algebra = finite module
over center iff |o| < oo; false, in general, for higher gldim.

For gldim(A) = 4, there are many examples, but no classification yet, not
even for quadratic AS-regular algebras ~» motivating open problem.
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Global Dimension 4

Van den Bergh, mid-90s:

any quadratic algebra on 4 generators with 6 generic defining relations has 20
nonisom truncated point mods of length 3 (counted with multiplicity).

(Point scheme C scheme of trunc pt mods of length 3.)

Van den Bergh, mid-90s:

any quadratic AS-regular algebra on 4 generators with 6 generic defining relations
has a 1-parameter family of line mods.

Vancliff, Van Rompay & Willaert, mid-90s:
found quadratic AS-regular algebras on 4 generators with 6 defining relations with
exactly 1 point mod (up to isom) & a 1-parameter family of line mods.

Shelton & Vancliff, 2000:

any quad alg on 4 gens with 6 def relns & a finite scheme of trunc point mods of
length 3 = can recover the def relns from that scheme. (False, in general, for
infinite scheme; no hypothesis of AS-regular nor of other homological data.)
Shelton & Vancliff, 2000:

any quad AS-reg algebra ( + a few other hypotheses ) on 4 gens with 6 def relns
& a 1-dimensional line scheme = can recover the def relns from the line scheme.
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Last result suggests line scheme is important tool in gldim-4 case.

But are there any gldim-4 reg algs with exactly 20 nonisom point mods &
a 1-diml line scheme?

Shelton & Tingey, 2001:

1st example of a quadratic AS-regular algebra on 4 generators with

6 defining relations with exactly 20 nonisom point mods & a 1-dimensional
line scheme.

They used trial & error on a computer, not systematic. They & others
could not reproduce the “trial & error” to find more such algebras.

In contrast, it is relatively easy to produce quadratic AS-regular algebras
on 4 generators with 6 defining relations with exactly 20 nonisom point

mods but with a 2-dimensional line scheme.

Can such algebras be generalized?
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Graded Clifford Algebras

Definition ([ Van den Bergh, Le Bruyn ] char(k) 75 2 )

Let My, ..., M, € M(n, k) denote symmetric matrices. The graded
Clifford algebra C = C(My, ..., M,), associated to My, ..., M,, is defined
to be the k-algebra on degree-1 generators xi, ..., x, and on degree-2

generators yi, ..., ¥, with defining relations given by

n
(i) x4 X5 = Z(Mk),-j yk foralli,j=1,...,n, and
k=1

(ii) yx is central for all k =1,...,n.

Example (n = 2)

2 1 00 22 =2y1, 2x3 =2y,
My = , My = , .
10 0 2 X1X2 + XoX1 = Y1 = X{, SO
k(x1, x2)
2 —» C. My < 2 1.'2+1.'1t2 , MQ(—)th.
(x1x2 + xox1 — X2) (8 ) 2
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Quadrics & Graded Clifford Algebras

GCAs are noetherian & are particularly nice due to the following result.

Theorem ([ Aubry & Lemaire; Le Bruyn ])

The GCA C is quadratic, regular of global dimension n and satisfies the
Cohen-Macaulay property with Hilbert series 1/(1 — t)" if and only if the
quadric system in P"~1 associated to My, ..., M, is base-point free; in this
case, C is a domain.

Example (n = 2)

2 1 00
M1:|:1 O:|(—>q1:2(t12+t1t2), M2:|:0 2]<—>q2:2t22.

k(x1, x2)
(x1x2 + xox1 — Xx2)

V(q1) N V(q2) =0 c PL. Thus, C =
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However, dim(line scheme of C) > 2.

In order to generalize GCAs & the theorem, we needed to generalize the
notions of

@ symmetric matrix
o graded Clifford algebra

@ quadratic form and quadric.
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p-symmetric Matrices
Definition ([ Cassidy, Vancliff ] k = arbitrary field )

Let 1 = (pjj) € M(n, k) be such that p;juji = 1 for all i,/ such that i # j.
A matrix M € M(n, k) is called ji-symmetric if My = p;iMj; for all
ij=1,....n

Clearly,

pjj =1 for all i,j = p-symmetric = symmetric

pij = —1 for all i, j = p-symmetric = skew-symmetric (char(k) # 2).
Example

[ a b c-|
n=3: puorb d e is p-symmetric.
|_,U31C H32€ fJ

Assumption

For the rest of the talk, assume p; =1 Vi (& k still alg closed).
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Graded Skew Clifford Algebras

Definition ( char(k) 74 2 [ Cassidy, Vancliff ])
With 1. as above, let My, ..., M, € M(n, k) denote ji-symmetric

matrices. A graded skew Clifford algebra, associated to p, My, ..., M, is
a graded k-algebra A on degree-1 generators xi, ..., X, and on degree-2
generators yi, ..., y, with defining relations given by:

n
) 203 =F e = Z(Mk),-jyk foralli,j=1,...,n, and

k=1
(ii) the existence of a normalizing sequence {yj,...,yn} C Az that spans
kyr + -+ kyp.
Example
Skew polynomial rings on generators xi,...,x, with relations

xixj = —pjxjx;, for all i # j, are GSCAs.
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Example (n = 2: quantum affine plane)

2x2 =2yy, 2x2 =2y,
Let M, — [2 0] M, — [0 0} 1 Y1 2 Y2
0 0 0 2 x1x2 + pi2xoxy = 0,
k
© (x1,x2) LA

(x1x0 + p12X0Xx1)

Example (n = 2: “Jordan” algebra/plane)

2 1} [0 0} 2x2 =2y1, 2x3 =2y,
, M = ,

Let M; =
! [le 0 0 2 X1X0 + fl12XoX1 = y1 = X2,

k{x1, x2)

—» A.
(x10 + proxox1 — x37)

SO

Example

The quadratic AS-reg algebra found by Shelton & Tingey in 2001 that has gldim 4
& exactly 20 nonisom point mods and a 1-dimensional line scheme is a GSCA.
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Remarks

© Xpxi + pjixixj = uji(Xixj + piXjxi) =

n n
= > wiM)syk =D (Md)jiyk forallij=1,..n.
k=1 k=1

e Clearly, { GCAs } C { GSCAs }.
@ GSCAs are noetherian.
It remains to generalize notions of quadatic form and quadric to try to

relate properties of GSCA to some geometry.
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To pu & My, ..., M, , associate

1. the skew polynomial ring S on generators zi, ..., z, with defining
relations: zjz; = pjjzizj, forall i # j, and
2. the elements gy = z" Myz € Sp where z = [z1 ... z,,]T.

Definition ([ Cassidy, Vancliff ])

We call any (nonzero) element of Sy a quadratic form, and define the
quadric, V(q), determined by any quadratic form g to be the set of
points in P(S5;) x P(S5) on which g and the defining relations of S vanish.

E.g., (ZJ'Z,' — /L,:,'Z,'Zj)( (al, ceey a,,), (bl, ceey b,—,) ) = ajb,- — ,u,-ja,-bj € {0, 1}.
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Definition ([ Cassidy, Vancliff ])
If Qi,...,Qm € Sy, we call their span a quadric system. A quadric
system Q is said to be base-point free (BPF) if (,cqV(q) is empty;

Q is said to be normalizing if it is given by a normalizing sequence of S.

Theorem ([ Cassidy, Vancliff ])
A GSCA A= A(u,My,...,M,) is a quadratic, regular algebra of global
dimension n that satisfies the Cohen-Macaulay property with Hilbert series

1/(1—t)" if and only if the (non-commutative) quadric system associated
y

to My,...,M, is & ; in this case, A is a domain.

This result allowed the production in [CV] of multi-parameter families of
quadratic AS-regular algebras of gldim 4 with exactly 20 nonisom point
mods and a 1-dimensional line scheme ~+ open problem: study line
scheme of these algebras.
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Example (n = 2: quantum affine plane)

2 O]Hq1:2212, M2:|:0 0:|<—>q2:2222.

Ml:[oo 0 2

{q1, g2} = normalizing sequence in S.
k(x1, x2)

)% ny =0 = A= .
(1) (q2) (x1x2 + p12X2X1)

Example (n = 2: “Jordan” algebra/plane)

2

My — [
H21

L 0:| < g2 :2222,

1
0] g1 =222 + z120), M, = [0 2

{q2, g1} = normalizing sequence in S.
k(x1, x2)

(q1) (a2) (x1x0 + pi2xox1 — X12>

If p12 = —1, this is the usual Jordan algebra/plane.
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Quadratic Quantum Planes

Previous slide == all regular algebras of gldim 2 are GSCAs (char(k) # 2).
Do GSCAs help in the classification of all reg algs? gldim 4?7 gldim 37
Let D denote a quadratic AS-regular algebra of gldim 3.

The classification of such D depends on the point scheme X of D:

X C P? & either X contains a line or it does not.

The latter case, splits into 3 subcases, so in total we have 4 cases:

e X contains a line
@ X is a nodal cubic curve in P?
e X is a cuspidal cubic curve in P?

@ X is an elliptic curve in P?.

Note: the classification of such D using GSCAs is work of myself with
Manizheh Nafari & Jun Zhang. Our work attempts to classify all quadratic
AS-regular algebras D of gldim 3 using GSCAs; not only the generic ones.
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Theorem ([NVZ] char(k) # 2 )

If X contains a line, then either D is a twist, by an automorphism, of a
GSCA, or D is a twist, by a twisting system, of an Ore extension of a
regular GSCA of gldim 2.

Theorem ([NVZ])

If X is a nodal cubic curve, then D = Kk[x1, x2,x3] with defining relations:
AX1Xo = XpX1, AXoX3 = X3Xp — x12, AX3X] = X1X3 — x22,

where X € k and A3 ¢ {0,1}. Moreover, for any such \, any quadratic
algebra with these defining relations is regular & its point scheme X is a
nodal cubic curve in P?.
Suppose char(k) # 2.

o If A3 ¢ {0,1}, then D is an Ore extn of a regular GSCA of gldim 2;

e if\3=—1, then D is a GSCA.
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Theorem ([NVZ])

X = cuspidal cubic curve in P? if and only if

char(k) # 3 and D = k[xi, x2, x3] with def rels:

X1Xp = Xpx1 + x12, X3X1 = X1x3 + X12 + 3x22, X3Xp = XpX3 — 3x22 — 2x1X3 — 2Xx1Xp.

(Moreover, any such algebra is regular, even if char(k) = 3.)
If char(k) # 2 & X = cuspidal cubic curve, then D is an Ore extn of a
regular GSCA of gldim 2.

It remains to consider X = elliptic curve in P2
In [AS, ATV1], such algebras are classified into types A, B, E, H,

where some members of each type might not have an elliptic curve as their

point scheme, but a generic member does.
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Theorem ([NVZ] char(k) # 2 )

Suppose X is an elliptic curve.
(i) Regular algebras of type H are GSCAs.
(i) Regular algebras of type B are GSCAs.

(iii) As in [AS, ATVI], regular algebras D of type A are given by
D =K[x, y, z| with def rels:
axy+byx+cz’> =0, ayz+bzy+cx®> =0, azx+bxz+cy’>=0,
where a, b,c € k, abc # 0, (3abc)3 # (a® + b3 + ¢3)3, char(k) # 3
& either a3 # b3, or a®# 3, or b3 #£ 3.
o Ifa® =053 = c3, then D is a GSCA.

o Ifa®#£b3=c3 orifa®=c3+# b3 then D is a twist, by an
automorphism, of a GSCA.

In (i), a3 # b3 # 3 # a3 is still open.
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Open Problems
As stated on previous slide, it is still open whether or not type A with

a® # b3 # 3 # a3 is directly related to a GSCA.

Up to isomorphism & anti-isomorphism, type E consists of at most 1
algebra; it is still open whether or not this type is directly related to a
GSCA.

If D is of type A or E, then its Koszul dual is the quotient of a regular
GSCA,; so, in this sense, such algebras are weakly related to GSCAs.

Open Problems (cont'd)
Can “cubic” regular algebras of gldim 3 be classified using GSCAs?

Can quadratic regular algebras of gldim 4 be classified using GSCAs?

This is expected to need both the point scheme and the line scheme.
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Open Problems (cont'd)

Can standard results on commutative quadratic forms and quadrics be
extended to non-commutative quadratic forms and quadrics?
E.g., Padmini Veerapen and | extended the notion of rank of a
(commutative) quadratic form to non-commutative quadratic forms on
n generators, where n = 2, 3; can this be done for n > 47
We used our notion of rank to extend results in [VVW] about point modules
over GCAs to results about point modules over GSCAs.

[@ Can standard results on symmetric matrices be extended or generalized to
J-symmetric matrices?

3 examples in [Stephenson, V] & in [CV] of AS-reg GSCAs of gldim 4 with
N nonisom point modules, where N < 20 & N ¢ {2, 19}; the excluded
values do not arise for reg GCAs, but what about reg GSCAs?

B [Stephenson, V] = 3 quad AS-reg algs of gldim 4 with 2 nonisom point
mods; what about 197
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Open Problems (cont'd)
Bl As mentioned earlier, what is the line scheme of known quadratic
regular algebras of gldim 4?7 Such as those in [CV]? Double Ore

extensions? Generalized Laurent polynomial rings? etc

T What is the line scheme of a generic quadratic AS-regular algebra of

gldim 47

Conclusion

There are many open problems in this rich subject, and some of them are
very accessible to junior researchers.
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