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Coordinate rings of finite Ty topological spaces

Cat(finite Ty topological spaces) = Cat(finite posets)
ye{x} <+ x<y

Proposition (Ladkani)
Let X be a finite Ty topological space. Then
Sh(C-vector spaces on X) = Mod(O(X))

where O(X) := span{e,, | x < y} with multiplication

Ewx€yz = 5xy €wz-

O(X) = the incidence algebra of the poset (X, <)
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Continuous maps «— bimodules

Proposition

Let f: X — Y be a continuous map between finite Ty topological spaces.

There is an O(X)-O(Y)-bimodule By such that
F1
Sh(Y) &h(X) Sh(Y)
(oY (oY

om fo—

fx

commutes.
o (F1F)x = Frx)
o (RF)(U) = F(f~1U)

e IfX <Y £ Z, then Ber = By @o(y) By.
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O(X) embeds in upper A matrices

Lemma
If | X| = n there is an injective homomorphism

O(X) — upper A*n x n matrices C M,(C).

e.g., (9({1 <2< < n}) = upper A? n x n matrices.

Idea of proof: Let R(X) :={(x,y) | x <y} C X x X. Then
O(X) = CRX) = C-valued functions on R(X) with the convolution
product

(f8)xe = (f + g)(x,2) = foy g(y,2) =)y
y
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Points = simple modules = skyscraper sheaves

m, = {f € O(X) | f(x,x) =0}
= maximal 2-sided ideal of O(X) of codimension 1.
Bijections:
points of X «— simple O(X)-modules «— skyscraper sheaves
X O(X)/my — Ox

Proposition (Stanley & Sorkin)
The following are equivalent :

Q x#yand [x,y] ={x,y}

Q@ mm, #m,Nm,

@ Ext'(0,,04) #0

Qd5ses 00— M—-0,—-0withMZ O, 0O,.

Corollary

Can recover X as a topological space from Mod(O(X)).

v
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O(X) is a coordinate ring for X

O Mod(O(X)) = &h(X).
@ The structure map C — O(X) corresponds to
the structure map X — e = SpecC.

@ /:{x} — X corresponds to m, — O(X) — O({x}).

© Simple O(X)-modules are the skyscraper sheaves at the points of x.

Q@ O(XxY)ZO(X)®O(Y).

QO O(X°P) = O(X)°P.

Q@ X, .. — X corresponds to O(X) — O(X,__ )= O(X)/+0 where
/0 := the largest nilpotent ideal in O(X).
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In NCG points can talk to each other (come)

The essence of non-commutativity: Ext!'(O,, Ox) can be non-zero when
Ox and Oy, are non-isomorphic simples.
Contrast with the commutative case:

Proposition
If X is a scheme, M, N € coh(X), and supp(M) Nsupp(N') = &, then

Extf(M,N) =0 forall g > 0.

In particular, if M and N are non-isomorphic simples/skyscrapers, then
every short exact sequence 0 - N — F — M — 0 splits.

The smallest non-commutative ring is (l(; //:> =0({0 < 1}).

The Sierpinski topological space, {0 < 1}, is a closed subspace of “most”
non-commutative spaces.
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Philosophy: nc C*-algs <+ nc loc. comp. Hausdorff spaces

Up to Morita equivalence, the smallest non-comm. C*-algebra is

® K(H)®Cridyy

K(H) e p1

{0} @ 1o

K(H) = compact op'ors on an co-dim’'l separable Hilbert space H
K(H) is strongly Morita equivalent to C
Prim K(H) = {0 < 1}
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Philosophy of NCAG or ANCG

A non-commutative variety or scheme X is made manifest by the category
of modules or quasi-coherent sheaves that live on it,

Qcoh(X).
Qcoh(X) holds contains algebraic and geometric information about X.
Theorem (Gabriel+Rosenberg) J

A quasi-projective scheme X can be recovered from Qcoh(X).

A nc-morphism f : X — Y between nc-schemes is
an adjoint pair of functors f* H f,

o
/\
Qeoh(X) TQCOU(Y)

f* := the inverse image functor f¢ := the direct image functor
f is affine if £, is faithful.
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Affine nc-schemes |

R = aring Mod(R) := right R-modules
Define Spec,.(R) implicitly by declaring that

Qcoh(Spec,(R)) := Mod(R).
A ring homomorphism ¢ : R — S induces a nc-morphism
f : Spec,.(S) — Spec,.(R)

F* f!

/’—\

Mod(S) — Mod(R)

£ f A f!
f*=—-—QgrS f. = Homg(S, —) f' = Homg(S, —)
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Affine nc-schemes |l: coordinate rings

A nc-scheme X is affine if there is a ring R such that
Qcoh(X) = Mod(R).
Call such R a coordinate ring of X.

Equivalently, X is affine <= Qcoh(X) has a progenerator.

progenerator := a finitely generated projective generator

P a progen’or =—> Homx (P, —) : Qcoh(X) — Mod( Endx(P))

Theorem (Serre, FAC)

A noetherian scheme X is affine <= HI(X,F) = 0 for all F € Qcoh(X)
and all ¢ > 0 <= Ox is a progenerator in Qcoh(X).

Proof: H9(X,—) = RIF(X, —) = Ext%(Ox, ).
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Affine nc-schemes |ll: nc-morphisms = bimodules

Theorem (Eilenberg-Watts)

If £*: 9Mod(S) — Mod(R) is a right-exact functor commuting with direct
sums, then 3 an R-S-bimodule B such that f* =2 — ®r B and
f* 4 f. := Homg(B, —).

Cat(affine nc-schemes) := 2 — Cat(rings & morphisms = bimodules).

/‘B®SA\
R B S A T

Specnc(R) NI
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Some affine curves |

Let R be a fin. gend. comm. algebra over k = k
Tautology:

e Spec (R[t]) = A} x Spec(R) LR Spec(R)
o {1(p) = A} for all closed points p € Spec R
o Spec R[t] = the disjoint union of the fibers £71(p)

A non-commutative analogue:

Replace R[t] by an Ore extension A = R|[t;0,0] where o € Autk(R) and
0 : R — Ris a k-linear map s.t. 6(rs) = d(r)s+ o(r)d(s) forall r,s € R.

R[t;0,0] =R® Rt O Rt> @ - - - where tr = o (r)t + d(r)
R — A induces an affine nc-morphism & : X = Spec,.(A) — Spec(R).

What do the fibers X, = £~1(p) look like?
The fibers should be considered as non-commutative curves
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The fibers of £

Theorem (S-Zhang)

The fibers X, have the following structure:
@ p=o(p) and f(8)(R) C m, for some f € k[t] — {0} = X, = A}
@ p = 0o(p) and case (1) does not occur = X, = Spec(k)

Q [0%(p)| = n < co = Qcoh(X,) = Mod(kQ) where Q = A, with
cyclic orientation
Q |o%(p)| = 0o = Qcoh(X,) = Gr(k[u]) = Moo (O(Z, <)) with
deg(u) =1
k uncountable =—> X is the disjoint union of the fibers.

How is X, defined?
The definition of Qcoh(X,) involves the injective envelope
E(§*Op) = E(A/mpA).
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Exceptional locus for blowing up a point on a nc-surface

@ X = noetherian nc surface
@ Y C X is a comm. curve that is a divisor & y € Y is a closed point
o inj.dimgepx)F < oo ¥V F € Qeoh(Y) (X smooth in a nghd of Y)

Theorem (Van den Bergh)

E X
There is a comm. diagram J J’T in which
y X

{y}—
O X—E~X—{y}
@ Y = “strict transform” of Y is commutative curve & a divisor on X
Q o(y) =y =— E=P! ie, Qcoh(E) = Qcoh(P?)
Q [0%(y)|=n=— E = Pln] =~ [P/, e,
Qcoh(E) = Q&r(k[u, v]) with deg(u, v) = (1, n)
Q |o%(y)| = co = Qcoh(E) = &r(k[v]) with deg(v) =1
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Comparison between possible 771(y) and £~ 1(p)

oly)=y = l(y) =P
a(p) = p =& (p) = Al = P* — {point}

|o%(y)| = n < 00 <= 1} (y) = [Pl/un]
lo%(p)| = n < 00 <= £ 1(p) = [AY/pin] = [P*/p1n] — {point}

0% (y)| = 00 <= 7 Hy) = (%, <)
0% (p)| = 00 <= £ H(p) = (Z,<) = (Z,<) — {point}

Use a quotient category to formalize X, — {a closed point} <— X,
Conclusion: the above examples are typical affine and projective nc curves

BUT there is one strange feature: the fiber £~1(p) = Spec(k)

BUT some points on non-comm. surfaces behave like curves with negative
self-intersection
OR some curves on non-comm. surfaces behave like points
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Some nc affine quadrics

deermfo= (0 ). 1=(0 0= (2 2))

V,, := irreducible representation of dimension n+ 1.

Q :=2(ef + fe) + h?, the Casimir central element
U(sl(2,C))
Q-2

Q) := Spec,,.(Uy) C Spec,. (U(sl(2,C))
A pencil of nc-quadric surfaces in an A3_.
Analogous to the conjugacy classes det = A in s((2,C).

Uy =

S. Paul Smith (UW Seattle) NCAG and ANCG
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The pencil @) has the “same” singularity behavior as the

commutative pencil of quadrics x> + y? + z> = \

Proposition (Stafford)

oo ifA=-1
gldim(Uy) =<2 if\=n(n+2) for some n € N
1 otherwise

Proposition (Van den Bergh)
oo ifA=-1

2  otherwise

pdimye (Ux) = {

(Twisted) Hochschild cohomology dimension is a “better” measure of
dimension that global dimension (when it is finite).
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Strange points on Qp(p42)

m, = Ann(V,) D (2 — n(n+2))
U(sl(2,C))

mp

The zero-locus of m, is Z(m,) := Spec,c (Up(nt2)/mn) = Spec(C)

~ My41(C) ME. ~

D-modules = quasi-coh. sheaves of modules over the sheaf of diff'l ops.

o U™ F(Pl,ppl) and WOD(U()) = QCUh(Dpl)
@ Under this equivalence, V «— Op1, an object of “geom. dim. 1".

e Although Z(m,) has “dimension zero” for several reasons, from the
perspective of D-modules it has dimension 1.
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Strange points on Qp(n42), continued

If pis a closed point on a smooth commutative quadric, then

dimy Ext®(0,, 0,)—dimy Ext}(Op, O,)+dimy Ext?(0p, 0p) = 1-241 =0
however, on Q,,(,,+2),

dimy Ext®(V,, V,,) —dimy Ext!(V,, V,,) +dimy Ext?>(V,,, V) = 1—0+1 =2

There are other ways the point Z(m,) behaves like a curve.
@ There is a pencil of nc projective quadrics @y C P3_, and
@ an intersection theory on Q) for \ # —1

@ The “point” on Q42 corresponding to Z(m,) has self-intersection
number 2

@ Q, is ruled by two pencils of lines.

e Each pencil is naturally parametrized by {Borel subalgebras}.

@ The lines in each pencil correspond to the Verma modules
Cr2s2n ®y(p) U(s1(2,C)) as b ranges over all Borel subalgebras.

@ The point Z(m,) lies on all the lines in one of the rulings.
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HENCEFORTH A=K& A1 A &® - is
e a finitely generated k-algebra (k=field) &
e locally finite, i.e., dimg(A,) < oo for all n.

e.g. A= kQ/I, a quotient of the path algebra of a finite quiver Q.
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Enter the hero: Q®t(A)

Theorem (Serre, 1955, FAC, §59)

If S = k[xo, ..., xn] is the polynomial ring on n+ 1 variables with
deg(x;) =1 and | is an ideal generated by homogeneous elements, then

Q&(S/1) = Qeoh(Proj(S/1)),

the cat. of quasi-coherent sheaves on the projective scheme Proj(S/1).

e.g. Q6t(S) = Qcoh(P")

Q&t(A) can be defined for any graded ring A
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Projective nc-schemes | — Definition of Proj,.(A)

k = a field & A = a Z-graded k-algebra.
Abelian categories:
®t(A) := Z-graded right A-modules with degree-preserving

A-module homomorphisms
§oim(A) := the full subcategory of &t(A) consisting of the M that

are the sum of their finite dim'l submodules
Because Foim(A) is closed under submodules, quotients, and extensions,
there is a quotient category
®r(A)

QOt(A) = Som(A)

Define Proj,.(A) implicitly by declaring that
Qcoh (Proj,.(A)) := Q&r(A).
Call A a homogeneous coordinate ring (her) for Proj,.(A)
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Concerning Q®t(A)

e Ob(Q&r(A)) = Ob(&r(A)) but Q&r(A) has more morphisms

e There is an exact localization functor 7* : &t(A) — QGt(A).

e 7% has an exact right adjoint, 7.

o M e Foim(A) <= 7m*M = 0.

e Twisting: if M € &t(A) and n € Z, define M(n) € &t(A) by
M(n)a = Ma but M(n); := M,;.

e M — M(n) is an automorphism of &t(A) and Foim(A) so
induces an automorphism (n) : Q&t(A) — Q&r(A)

e Write X = Proj,.(A).
e Often write Ox for 7 A and consider the pair (X, Ox).

e Call Ox a structure sheaf for X.
The above facts are compatible with Serre's Theorem:

o If M € &t(S/I), then 7*(M) = M 3 la Hartshorne pp. 116-117.

o m(S/1) = Oproj(syi)
@ (n) = the usual Serre twist/degree shift.
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Finiteness conditions

If Ais a right noetherian graded algebra define
e gr(A) := finitely generated graded A-modules C &t(A)
o foim(A) := finite dim'l graded A-modules = gr(A) N Foim(A)

qgr(A) := fbg;t(l?/i) C Q6t(A) (1)

In Serre’s theorem, qge(S/1) = coh(Proj(S/1))

If Ais a graded algebra that is right graded-coherent define
e gt(A) := finitely presented graded right A-modules C &t(A)
o foim(A) := finitely presented finite dim'l graded right A-modules
= gt(A) N Foim(A)
@ Define qgt(A) by (1) above

A ring R is right coherent if every finitely generated submodule of a
finitely presented module is finitely presented. Equivalently, the category
mod(R) of finitely presented right R-modules is abelian.
The path algebra, kQ, of every finite quiver is coherent
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A nc hcr for P!

k K
FAae KXY op 4o ki) for some g € k*, then

(yx = xy — x2) (yx — gxy)

Q&(A) = Qeoh(PL).
Reason: A is a Zhang twist of the polynomial ring so
&r(A) = &r(k[X, Y]).
How is P! obtained from A?
Answer: P! = the moduli space for the point modules for A
A point module for a conn. gr. k-alg. A= k[A1] is a graded right
A-module

M = QB M, st. M,=MA, & dim(M,) =1 Y n>0.
n=0

The point modules for the above A are
A

m, parametrized by p = (a, b) € ]P)l.

M, =
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A nc her for P! x P!

k(x,y} o k<X7y>

B .= =
[X27y]:[y2,X]:0 (X2y_yX27Xy2_y2X)

Q&(B) = Qeoh(P x PY)

Reason: Verevkin's Theorem OR Artin-Van den Bergh Theorem for
twisted hcrs.

@ B is 3-dim'l AS-regular & H(B;t) = (1 — t?)"}(1 — t)2
o B = k[By] = k[x?, xy, yx, y?]

o B® is commutative & 2 k[xo, x1, x2, x3]/(x0x3 — X1X2)
e Proj (B(?)) = (a smooth quadric in P3) = P! x P!
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Veronese subalgebras & Verevkin's Theorem

Def'n. Let A be an N-graded k-algebra. Call

Al — éAm
i=0

with deg(Aj,) = i, the n-Veronese subagebra of A.

Theorem (Verevkin)

If A= Ao[A1] is coherent, then Q&t(A) = Q&t(AM) via
M o~ (I\/I(”)).

On the previous slide, Proj,.(B) = Proj,. (B?) = P! x P!
ie., Q6r(B) = Q6t(B?) = Qcoh(P! x P?)

V's Thm. fails if A # Ag[A1]. E.g., if deg(x) = r, then
Q&r(k[x]) = Mod (k®") but QGr(k[x]()) = Mod(k).

S. Paul Smith (UW Seattle) NCAG and ANCG January 2013

28 / 28



