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Outline

Here is an outline of the mini-course.

The first lecture will be about the general theory of derived categories.

1. The Homotopy Category

2. The Derived Category

3. Derived Functors

4. Resolutions

5. DG Algebras (new section; change of numbering below)

The second lecture will be on more specialized topics, leaning towards
noncommutative algebraic geometry.

5. Commutative Dualizing Complexes

6. Noncommutative Dualizing Complexes

7. Tilting Complexes and Derived Morita Theory

8. Rigid Dualizing Complexes

Due to the time constraint I had to leave out some important topics
(such as DG algebras).
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1. The Homotopy Category

1. The Homotopy Category

Suppose M is an abelian category.

The main examples for us are these:

◮ A is a ring, and M = ModA, the category of left A-modules.

◮ (X,A) is a ringed space, and M = ModA, the category of sheaves
of left A-modules.

A complex in M is a diagram

M =
(

· · · →M−1 d−1
M−−−→M0 d0

M−−−→M1 → · · ·
)

in M such that di+1
M ◦ diM = 0.
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1. The Homotopy Category

A homomorphism of complexes φ :M → N is a commutative diagram

· · · //M−1
d−1
M

//

φ−1

��

M0
d0
M

//

φ0

��

M1

φ1

��

// · · ·

· · · // N−1
d−1
N

// N0

d0
N

// N1 // · · ·

(1.1)

in M.

Let us denote by C(M) the category of complexes in M.

It is again an abelian category; but it is also a differential graded (DG)
category, as we now explain.
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1. The Homotopy Category

Given M,N ∈ C(M) we let

HomM(M,N)i :=
∏

j∈Z

HomM(M j , N j+i)

and
HomM(M,N) :=

⊕

i∈Z

HomM(M,N)i.

For φ ∈ HomM(M,N)i we let

d(φ) := dN ◦ φ− (−1)iφ ◦ dM .

In this way HomM(M,N) becomes a complex of abelian groups, i.e. a
DG Z-module.
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1. The Homotopy Category

Note that the abelian structure of C(M) can be recovered from the DG
structure as follows:

HomC(M)(M,N) = Z0
(

HomM(M,N)
)

,

the set of 0-cocycles.

Indeed, for φ :M → N of degree 0 the condition d(φ) = 0 is equivalent
to the commutativity of the diagram (1.1).
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1. The Homotopy Category

Next we define the homotopy category K(M).

Its objects are the complexes in M (same as C(M)), and

HomK(M)(M,N) = H0
(

HomM(M,N)
)

.

In other words, these are homotopy classes of homomorphisms
φ :M → N in C(M).

There is an additive functor C(M)→ K(M), which is the identity on
objects and surjective on morphisms.

The additive category K(M) is no longer abelian – it is a triangulated
category. Let me explain what this means.
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1. The Homotopy Category

Suppose K is an additive category, with an automorphism T called the
translation (or shift, or suspension).

A triangle in K is a diagram of morphisms of this sort:

L
α
−→M

β
−→ N

γ
−→ T (L).

The name comes from the alternative typesetting

N
γ

~~

L
α

//M

β
aa

A triangulated category structure on K is a set of triangles called
distinguished triangles, satisfying a list of axioms (that are not so
important for us).

Details can be found in the references [Ye5], [Sc], [Ha], [We], [KS1],
[Ne2] or [LH].
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1. The Homotopy Category

The translation T of the category K(M) is defined as follows.

On objects we take T (M)i :=M i+1 and dT (M) := −dM . On morphisms
it is T (φ)i := φi+1.

Given a homomorphism α : L→M in C(M), its cone is the complex

cone(α) := T (L)⊕M =

[

T (L)
M

]

with differential (in matrix notation)

d :=

[

T (dL) 0

T (α) dM

]

.

There are canonical homomorphisms M → cone(α) and
cone(α)→ T (L) in C(M).
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1. The Homotopy Category

A triangle in K(M) is distinguished if it is isomorphic, as a diagram in
K(M), to the triangle

L
α
−→M −→ cone(α) −→ T (L)

for some homomorphism α : L→M in C(M).

A calculation shows that K(M) is indeed triangulated (i.e. the axioms
that I did not specify are satisfied).

For M ∈ K(M) and i ∈ Z we will write

M [i] := T i(M),

the i-th translation of M .

The relation between distinguished triangles and exact sequences will
be mentioned later.
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1. The Homotopy Category

Suppose K and K
′ are triangulated categories. A triangulated functor

F : K→ K
′ is an additive functor that commutes with the translations,

and sends distinguished triangles to distinguished triangles.

Example 1.2. Let F : M→ M
′ be an additive functor (not

necessarily exact) between abelian categories.

Extend F to a functor

C(F ) : C(M)→ C(M′)

in the obvious way, namely

C(F )(M)i := F (M i)

for a complex M = {M i}i∈Z.

The functor C(F ) respects homotopies, so we get an additive functor

K(F ) : K(M)→ K(M′).

This is a triangulated functor.
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2. The Derived Category

2. The Derived Category

As before M is an abelian category.

Given a complex M ∈ C(M), we can consider its cohomologies

Hi(M) := ker(diM )/ im(di−1M ) ∈ M .

Since the cohomologies are homotopy-invariant, we get additive functors

Hi : K(M)→ M .

A morphism ψ :M → N in K(M) is called a quasi-isomorphism if
Hi(ψ) are isomorphisms for all i.

Let us denote by S(M) the set of all quasi-isomorphisms in K(M).
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2. The Derived Category

Clearly S(M) is a multiplicatively closed set, i.e. the composition of two
quasi-isomorphisms is a quasi-isomorphism.

A calculation shows that S(M) is a left and right denominator set (as in
ring theory).

It follows that the Ore localization K(M)S(M) exists. This is an additive
category, with object set

Ob(K(M)S(M)) = Ob(K(M)).

There is a functor
Q : K(M)→ K(M)S(M)

called the localization functor, which is the identity on objects.
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2. The Derived Category

Every morphism χ :M → N in K(M)S(M) can be written as

χ = Q(φ1) ◦Q(ψ−11 ) = Q(ψ−12 ) ◦Q(φ2)

for some φi ∈ K(M) and ψi ∈ S(M).

The category K(M)S(M) inherits a triangulated structure from K(M),
and the localization functor Q is triangulated.

There is a universal property: given a triangulated functor

F : K(M)→ E

to a triangulated category E, such that F (ψ) is an isomorphism for
every ψ ∈ S(M), there exists a unique triangulated functor

FS(M) : K(M)S(M) → E

such that
FS(M) ◦Q = F.
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2. The Derived Category

Definition 2.1. The derived category of the abelian category M is the
triangulated category

D(M) := K(M)S(M).

The derived category was introduced by Grothendieck and Verdier
around 1960. The first published material is the book “Residues and
Duality” [Ha] from 1966, written by Hartshorne following notes by
Grothendieck.

Let D(M)0 be the full subcategory of D(M) consisting of the complexes
whose cohomology is concentrated in degree 0.

Proposition 2.2. The obvious functor M→ D(M)0 is an equivalence.

This allows us to view M as an additive subcategory of D(M).
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2. The Derived Category

It turns out that the abelian structure of M can be recovered from this
embedding.

Proposition 2.3. Consider a sequence

0→ L
α
−→M

β
−→ N → 0

in M.

This sequence is exact iff there is a morphism γ : N → L[1] in D(M)
such that

L
α
−→M

β
−→ N

γ
−→ L[1]

is a distinguished triangle.
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3. Derived Functors

3. Derived Functors

As before M is an abelian category. Recall the localization functor

Q : K(M)→ D(M).

It is a triangulated functor, which is the indentity on objects, and
inverts quasi-isomorphisms.

Suppose E is some triangulated category, and F : K(M)→ E a
triangulated functor.

We now introduce the right and left derived functors of F . These are
triangulated functors

RF,LF : D(M)→ E

satisfying suitable universal properties.
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3. Derived Functors

Definition 3.1. A right derived functor of F is a triangulated functor

RF : D(M)→ E,

together with a morphism

η : F → RF ◦Q

of triangulated functors K(M)→ E,

satisfying this condition:

(∗) The pair (RF, η) is initial among all such pairs.

Being initial means that if (G, η′) is another such pair, then there is a
unique morphism of triangulated functors θ : RF → G s.t. η′ = θ ◦ η.
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3. Derived Functors

The universal condition implies that if a right derived functor (RF, η)
exists, then it is unique, up to a unique isomorphism of triangulated
functors.

Definition 3.2. A left derived functor of F is a triangulated functor

LF : D(M)→ E,

together with a morphism

η : LF ◦Q→ F

of triangulated functors K(M)→ E, satisfying this condition:

(∗) The pair (LF, η) is terminal among all such pairs.

Again, if (LF, η) exists, then it is unique up to a unique isomorphism.
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3. Derived Functors

There are various modifications. One of them is a contravariant
triangulated functor F : K(M)→ E.

This can be handled using the fact that K(M)op is triangulated, and
F : K(M)op → E is covariant.

We will also want to derive bifunctors. Namely to a bitriangulated
bifunctor

F : K(M)×K(M′)→ E

we will want to associate bitriangulated bifunctors

RF,LF : D(M)×D(M′)→ E .

This is done similarly, and I won’t give details.
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4. Resolutions

4. Resolutions

Consider an additive functor F : M→ M
′ between abelian categories,

and the corresponding triangulated functor K(F ) : K(M)→ K(M′), as
in Example 1.2.

By slight abuse we write F instead of K(F ). We want to construct (or
prove existence) of the derived functors

RF,LF : D(M)→ D(M′).

If F is exact, then RF = LF = F . (This is an easy exercise.)

Otherwise we need resolutions.
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4. Resolutions

The DG structure of C(M) gives, for every M,N ∈ C(M), a complex of
abelian groups HomM(M,N).

Recall that a complex N is called acyclic if Hi(N) = 0 for all i.

Definition 4.1.

1. A complex I ∈ K(M) is called K-injective if for every acyclic
N ∈ K(M), the complex HomM(N, I) is also acyclic.

2. Let M ∈ K(M). A K-injective resolution of M is a
quasi-isomorphism M → I in K(M), where I is K-injective.

3. We say that K(M) has enough K-injectives if every M ∈ K(M) has
some K-injective resolution.
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4. Resolutions

Theorem 4.2. If K(M) has enough K-injectives, then every
triangulated functor F : K(M)→ E has a right derived functor (RF, η).

Moreover, for every K-injective complex I ∈ K(M), the morphism
ηI : F (I)→ RF (I) in E is an isomorphism.

The proof / construction goes like this: for every M ∈ K(M) we choose
a K-injective resolution ζM :M → IM , and we define

RF (M) := F (IM )

and
ηM := F (ζM ) : F (M)→ F (IM )

in E.
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4. Resolutions

Regarding existence of K-injective resolutions:

Proposition 4.3. A bounded below complex of injective objects of M
is a K-injective complex.

This is the type of injective resolution used in [Ha].

The most general statement I know is this (see [KS2, Theorem 14.3.1]):

Theorem 4.4. If M is a Grothendieck abelian category, then K(M) has
enough K-injectives.

This includes M = ModA for a ring A, and M = ModA for a sheaf of
rings A.

Actually in these cases the construction of K-injective resolutions is not
so difficult.
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4. Resolutions

Example 4.5. Let f : (X,AX)→ (Y,AY ) be a map of ringed spaces.

(For instance a map of schemes f : (X,OX)→ (Y,OY ).)

The map f induces an additive functor

f∗ : ModAX → ModAY

called push-forward, which is usually not exact (it is left exact though).

Since K(ModAX) has enough K-injectives, the right derived functor

Rf∗ : D(ModAX)→ D(ModAY )

exists.

For M∈ ModAX we can use a injective resolution M→ I (in the
“classical” sense), and therefore

Hq(Rf∗(M)) = Hq(f∗(I)) = Rqf∗(M),

where the latter is the “classical” right derived functor.
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4. Resolutions

Analogously we have:

Definition 4.6.

1. A complex P ∈ K(M) is called K-projective if for every acyclic
N ∈ K(M), the complex HomM(P,N) is also acyclic.

2. Let M ∈ K(M). A K-projective resolution of M is a
quasi-isomorphism P →M in K(M), where P is K-projective.

3. We say that K(M) has enough K-projectives if every M ∈ K(M)
has some K-projective resolution.

Theorem 4.7. If K(M) has enough K-projectives, then every
triangulated functor F : K(M)→ E has a left derived functor (LF, η).

Moreover, for every K-projective complex P ∈ K(M), the morphism
ηP : LF (P )→ F (P ) in E is an isomorphism.

The construction of LF is by K-projective resolutions.
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4. Resolutions

Proposition 4.8. A bounded above complex of projective objects of M
is a K-projective complex.

Proposition 4.9. Let A be a ring. Then K(ModA) has enough
K-projectives.

The concepts of K-injective and K-projective complexes were
introduced by Spaltenstein [Sp] in 1988. At about the same time other
authors (Keller [Ke], Bockstedt-Neeman [BN], . . . ) discovered these
concepts independently, with other names (such as homotopically
injective complex).
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4. Resolutions

Example 4.10. Suppose K is a commutative ring and A is a
K-algebra (i.e. A is a ring and there is a homomorphism K→ Z(A)).

Consider the bi-additive bifunctor

HomA(−,−) : (ModA)op ×ModA→ ModK.

We have seen how to extend this functor to complexes (this is
sometimes called “product totalization”), giving rise to a bitriangulated
bifunctor

HomA(−,−) : K(ModA)op ×K(ModA)→ K(ModK).

The right derived functor

RHomA(−,−) : D(ModA)op ×D(ModA)→ D(ModK)

can be constructed / calculated by a K-injective resolution in either the
first or the second argument.

Amnon Yekutieli (BGU) Derived Categories 28 / 65



4. Resolutions

(cont.) Namely given M,N ∈ K(ModA) we can choose a K-injective
resolution N → I, and let

RHomA(M,N) := HomA(M, I) ∈ D(ModK). (4.11)

Or we can choose a K-injective resolution M → P in K(ModA)op,
which is really a K-projective resolution P →M in K(ModA), and let

RHomA(M,N) := HomA(P,N) ∈ D(ModK). (4.12)

The two complexes (4.11) and (4.12) are canonically related by the
quasi-isomorphisms

HomA(P,N)→ HomA(P, I)← HomA(M, I).

If M,N ∈ ModA then of course

Hq
(

RHomA(M,N)
)

= ExtqA(M,N),

where the latter is “classical” Ext.
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4. Resolutions

K-projective and K-injective complexes are good also for understanding
the structure of D(M).

Proposition 4.13. Suppose P ∈ K(M) is K-projective and I ∈ K(M)
is K-injective.

Then for any M ∈ K(M) the homomorphisms

Q : HomK(M)(P,M)→ HomD(M)(P,M)

and
Q : HomK(M)(M, I)→ HomD(M)(M, I)

are bijective.
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4. Resolutions

Let us denote by K(M)K-prj and K(M)K-inj the full subcategories of
K(M) on the K-projective and the K-injective complexes respectively.

Corollary 4.14. The triangulated functors

Q : K(M)K-prj → D(M)

and
Q : K(M)K-inj → D(M)

are fully faithful.

Exercise 4.15. Let K be a nonzero commutative ring and A := K[t]
the polynomial ring. We view K as an A-module via t 7→ 0. Find a
nonzero morphism χ : K→ K[1] in D(ModA). Show that Hq(χ) = 0 for
all q ∈ Z.
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5. DG Algebras

5. DG Algebras

(This is a new section)

A DG algebra (or DG ring) is a graded ring A =
⊕

i∈ZA
i, with

differential d of degree 1, satisfying the graded Leibniz rule

d(a · b) = d(a) · b+ (−1)ia · d(b)

for a ∈ Ai and b ∈ Aj .

A left DG A-module is a left graded A-module M =
⊕

i∈ZM
i, with

differential d of degree 1, satisfying the graded Leibniz rule.
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5. DG Algebras

Denote by DGModA the category of left DG A-modules.

As in the ring case, for any M,N ∈ DGModA there is a complex of
Z-modules HomA(M,N), and

HomDGModA(M,N) = Z0
(

HomA(M,N)
)

.

The homotopy category is K(DGModA), with

HomK(DGModA)(M,N) = H0
(

HomA(M,N)
)

.

After inverting the quasi-isomorphisms in K(DGModA) we obtain the
derived category D(DGModA). These are triangulated categories.

Example 5.1. Suppose A is a ring (i.e. Ai = 0 for i 6= 0). Then
DGModA = C(ModA) and D(DGModA) = D(ModA).
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5. DG Algebras

Derived functors are defined as in the ring case, and there are enough
K-injectives, K-projective and K-flats in K(DGModA).

Let A→ B be a homomorphism of DG algebra. There are additive
functors

B ⊗A − : DGModA⇄ DGModB : restB/A,

where restB/A is the forgetful functor. These are adjoint.

We get induced derived functors

B ⊗L
A − : D(DGModA) ⇄ D(DGModB) : restB/A, (5.1)

where restB/A is the forgetful functor. These are adjoint.

Proposition 5.2. If A→ B is a quasi-isomorphism, then the functors
(5.1) are equivalences.
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5. DG Algebras

Let f : A→ B be a DG algebra homomorphism. A K-flat DG algebra

resolution of B relative to A is a factorization of f into A
g
−→ Ã

h
−→ B,

where h is a quasi-isomorphism, and Ã is a K-flat DG A-module (on
both sides).

Example 5.3. Take A = Z and B := Z/(6). We can take Ã to be the
Koszul complex

Ã := (· · · 0→ Z
6
−→ Z→ 0 · · · )

concentrated in degrees −1 and 0.

Example 5.4. The derived Hochschild cohomology of B relative to A
is the cohomology of the complex

RHomB̃⊗AB̃(B,B),

where B̃ is a resolution as above.
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6. Commutative Dualizing Complexes

6. Commutative Dualizing Complexes

I will talk about dualizing complexes over commutative rings.

There is a richer theory for schemes, but there is not enough time for it.
See [Ha], [Ye2], [Ne1], [Ye4], [AJL], [LH] and their references.

Let A be a noetherian commutative ring. We denote by D
b
f (ModA) the

subcategory of D(ModA) consisting of bounded complexes whose
cohomologies are finitely generated A-modules. This is a full
triangulated subcategory.

A complex M ∈ D(ModA) is said to have finite injective dimension if it
has a bounded injective resolution. Namely there is a
quasi-isomorphism M → I for some bounded complex of injective
A-modules I.

Note that such I is a K-injective complex.
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6. Commutative Dualizing Complexes

Take any M ∈ D(ModA). Because A is commutative we have a
triangulated functor

RHomA(−,M) : D(ModA)op → D(ModA).

Cf. Example 4.10.

Definition 6.1. A dualizing complex over A is a complex
R ∈ D

b
f (ModA) with finite injective dimension, such that the canonical

morphism
A→ RHomA(R,R)

in D(ModA) is an isomorphism.

If we choose a bounded injective resolution R→ I, then there is an
isomorphism of triangulated functors

RHomA(−, R) ∼= HomA(−, I).

Amnon Yekutieli (BGU) Derived Categories 37 / 65

6. Commutative Dualizing Complexes

Example 6.2. Assume A is a Gorenstein ring, namely the free module
R := A has finite injective dimension.

There are plenty of Gorenstein rings; for instance any regular ring is
Gorenstein.

Then R ∈ D
b
f (ModA), and the reflexivity condition holds:

RHomA(R,R) ∼= HomA(R,R) ∼= A.

We see that the module R = A is a dualizing complex over the ring A.

Here are several important results from [Ha].
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6. Commutative Dualizing Complexes

Theorem 6.3. (Duality) Suppose R is a dualizing complex over A.
Then the triangulated functor

RHomA(−, R) : D
b
f (ModA)op → D

b
f (ModA)

is an equivalence.

Theorem 6.4. (Uniqueness) Suppose R and R′ are dualizing
complexes over A, and SpecA is connected. Then there is an invertible
module P and an integer n such that R′ ∼= R⊗A P [n] in D

b
f (ModA).

Theorem 6.5. (Existence) If A has a dualizing complex, and B is a
finite type A-algebra, then B has a dualizing complex.
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7. Noncommutative Dualizing Complexes

7. Noncommutative Dualizing Complexes

In this section A is a noncommutative noetherian ring. (This is short
for: A is not-necessarily-commutative, and left-and-right noetherian.)

For technical reasons we assume that A is an algebra over a field K.

We denote by Aop the opposite algebra (the same addition, but
multiplication is reversed), and by Ae := A⊗K A

op the enveloping
algebra.

Thus ModAop is the category of right A-modules, and ModAe is the
category of K-central A-bimodules.

Any M ∈ ModAe gives rise to K-linear functors

HomA(−,M) : (ModA)op → ModAop

and
HomAop(−,M) : (ModAop)op → ModA.
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7. Noncommutative Dualizing Complexes

These functors can be derived, yielding K-linear triangulated functors

RHomA(−,M) : D(ModA)op → D(ModAop)

and
RHomAop(−,M) : D(ModAop)op → D(ModA).

One way to construct these derived functors is to choose a
quasi-isomorphism M → I in K(ModAe), with I a complex that is
K-injective on both sides, i.e. over A and over Aop.

Then
RHomA(−,M) ∼= HomA(−, I)

and
RHomAop(−,M) ∼= HomAop(−, I).

The reason that we need K to be a field is to insure that such
“bi-K-injective” resolutions M → I exist.
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7. Noncommutative Dualizing Complexes

Note that even if A is commutative, this setup is still meaningful – not
all A-bimodules are A-central!

Definition 7.1. ([Ye1]) A noncommutative dualizing complex over A
is a complex R ∈ D

b(ModAe) satisfying these three conditions:

(i) The cohomology modules Hq(R) are finitely generated over A and
over Aop.

(ii) The complex R has finite injective dimension over A and over Aop.

(iii) The canonical morphisms

A→ RHomA(R,R)

and
A→ RHomAop(R,R)

in D(ModAe) are isomorphisms.
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7. Noncommutative Dualizing Complexes

Condition (ii) implies that R has a “bounded bi-injective resolution”,
namely there is a quasi-isomorphism R→ I in K(ModAe), with I a
bounded complex of bimodules that are injective on both sides.

Theorem 7.2. (Duality, [Ye1]) Suppose R is a noncommutative
dualizing complex over A. Then the triangulated functor

RHomA(−, R) : D
b
f (ModA)op → D

b
f (ModAop)

is an equivalence, with quasi-inverse RHomAop(−, R).

Existence and uniqueness are much more complicated than in the
noncommutative case. I will talk about them later.
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Example 7.3. The noncommutative ring A is called Gorenstein if the
bimodule A has finite injective dimension on both sides.

It is not hard to see that A is Gorenstein iff it has a noncommutative
dualizing complex of the form P [n], for some integer n and invertible
bimodule P .

Here invertible bimodule is in the sense of Morita theory, namely there
is another bimodule P∨ such that

P ⊗A P
∨ ∼= P∨ ⊗A P ∼= A

in ModAe.

Any regular ring is Gorenstein.

For more results about noncommutative Gorenstein rings see [Jo] and
[JZ].
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8. Tilting Complexes and Derived Morita Theory

Let A and B be noncommutative K-algebras.

Suppose M ∈ D(ModA⊗K B
op) and N ∈ D(ModB ⊗K A

op).

The left derived tensor product

M ⊗L
B N ∈ D(ModA⊗K A

op)

exists.

It can be constructed by choosing a resolution P →M in
K(ModA⊗K B

op), where P is a complex that’s K-projective over Bop;

or by choosing a resolution Q→ N in K(ModB ⊗K A
op), where Q is a

complex that’s K-projective over B.
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Here is a definition generalizing the notion of invertible bimodule. It is
due to Rickard [Ri1], [Ri2].

Definition 8.1. A complex

T ∈ D(ModA⊗K B
op)

is called a two-sided tilting complex over A-B

if there exists a complex

T∨ ∈ D(ModB ⊗K A
op)

such that
T ⊗L

B T
∨ ∼= A

in D(ModAe), and
T∨ ⊗L

A T
∼= B

in D(ModBe).

When B = A we say that T is a two-sided tilting complex over A.

Amnon Yekutieli (BGU) Derived Categories 46 / 65

8. Tilting Complexes and Derived Morita Theory

The complex T∨ is called the inverse of T . It is unique up to
isomorphism in D(ModB ⊗K A

op). Indeed we have this result:

Proposition 8.2. Let T be a two-sided tilting complex.

1. The inverse T∨ is isomorphic to RHomA(T,A).

2. T has a bounded bi-projective resolution P → T .

Definition 8.3. The algebras A and B are said to be derived Morita
equivalent if there is a K-linear triangulated equivalence

D(ModA) ≈ D(ModB).

Theorem 8.4. ([Ri2]) The K-algebras A and B are derived Morita
equivalent iff there exists a two-sided tilting complex over A-B.
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Here is a result relating dualizing complexes and tilting complexes.

Theorem 8.5. (Uniqueness, [Ye3]) Suppose R and R′ are
noncommutative dualizing complexes over A.

Then the complex
T := RHomA(R,R

′)

is a two-sided tilting complex over A, and

R′ ∼= R⊗L
A T

in D(ModAe).
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It is easy to see that if T1 and T2 are two-sided tilting complexes over
A, then so is T1 ⊗

L
A T2.

This leads to the next definition.

Definition 8.6. ([Ye3]) Let A be a noncommutative K-algebra.

The derived Picard group of A is the group DPic(A) whose elements are
the isomorphism classes (in D(ModAe)) of two-sided tilting complexes.

The multiplication is

[T1] · [T2] := [T1 ⊗
L
A T2],

and the inverse is
[T ]−1 := RHomA(T,A).
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8. Tilting Complexes and Derived Morita Theory

Here is a consequence of Theorem 8.5.

Corollary 8.7. Suppose the noncommutative K-algebra A has at least
one dualizing complex.

Then the right action

[R] · [T ] := [R⊗L
A T ]

of the group DPic(A) on the set of isomorphism classes of dualizing
complexes is simply transitive.

It is natural to ask about the structure of the group DPic(A).
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Theorem 8.8. ([RZ], [Ye3]) If the ring A is either commutative (with
connected spectrum) or local, then

DPic(A) ∼= Pic(A)× Z.

Here Pic(A) is the noncommutative Picard group of A, made up of
invertible bimodules.

For nonlocal noncommutative rings the group DPic(A) is bigger. See
the paper [MY] for some calculations. These calculations are related to
CY-dimensions of some rings; cf. Example 9.7.
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9. Rigid Dualizing Complexes

The material in this final section is largely due to Van den Bergh
[VdB1]. His results were extended by J. Zhang and myself.

Again A is a noetherian noncommutative algebra over a field K, and
Ae = A⊗K A

op.

Take M ∈ ModAe. Then the K-module M ⊗K M has four commuting
actions by A, which we arrange as follows.

The algebra Ae; in := Ae acts on M ⊗K M by

(a1 ⊗ a2) ·in (m1 ⊗m2) := (m1 · a2)⊗ (a1 ·m2),

and the algebra Ae; out := Ae acts by

(a1 ⊗ a2) ·out (m1 ⊗m2) := (a1 ·m1)⊗ (m2 · a2).
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The bimodule A is viewed as an object of D(ModAe) in the obvious
way.

Now take M ∈ D(ModAe). We define the square of M to be the
complex

Sq(M) := RHomAe; out(A,M ⊗K M) ∈ D(ModAe; in).

We get a functor

Sq : D(ModAe)→ D(ModAe).

This is not an additive functor. Indeed, it is a quadratic functor: given
an element a ∈ Z(A) and a morphism φ :M → N in D(ModAe), one
has

Sq(aφ) = Sq(φa) = a2 Sq(φ).

Amnon Yekutieli (BGU) Derived Categories 53 / 65
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Note that the cohomologies of Sq(M) are

Hq(Sq(M)) = ExtqAe(A,M ⊗K M),

so they are precisly the Hochschild cohomologies of M ⊗K M .

A rigid complex over A (relative to K) is a pair (M,ρ) consisting of a
complex M ∈ D(ModAe), and an isomorphism

ρ :M
≃
−→ Sq(M)

in D(ModAe).

Definition 9.1. ([VdB1]) A rigid dualizing complex over A (relative to
K) is a rigid complex (R, ρ) such that R is a dualizing complex.
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Let (M,ρ) and (N, σ) be rigid complexes over A.

A rigid morphism
φ : (M,ρ)→ (N, σ)

is a morphism φ :M → N in D(ModAe), such that the diagram

M
ρ

//

φ

��

Sq(M)

Sq(φ)
��

N
σ

// Sq(N)

is commutative.

Theorem 9.2. (Uniqueness, [VdB1], [Ye3]) Suppose (R, ρ) and
(R′, ρ′) are both rigid dualizing complexes over A. Then there is a
unique rigid isomorphism

φ : (R, ρ)
≃
−→ (R′, ρ′).
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As for existence, let me first give an easy case.

Proposition 9.3. If A is finite over its center, and is finitely generated
as K-algebra, then A has a rigid dualizing complex.

Actually, in this case it is quite easy to write down a formula for the
rigid dualizing complex.

In the next existence result, by a filtration F = {Fi(A)}i∈Z of the
algebra A we mean an ascending exhaustive nonnegative filtration.

Such a filtration gives rise to a graded K-algebra

grF (A) =
⊕

i≥0

grFi (A).
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Theorem 9.4. (Existence, [VdB1], [YZ3]) Suppose A admits a
filtration F such that grF (A) is finite over its center and finitely
generated as K-algebra. Then A has a rigid dualizing complex.

This theorem applies to the ring of differential operators D(C), where
C is a smooth commutative K-algebra (and charK = 0).

It also applies to any quotient of the universal enveloping algebra U(g)
of a finite dimensional Lie algebra g.

I will finish with some examples.
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Example 9.5. Let A be a noetherian K-algebra satisfying these two
conditions:

◮ A is smooth, namely the Ae-module A has finite projective
dimension.

◮ There is an integer n such that

ExtqAe(A,A
e) ∼=

{

A if q = n

0 otherwise.

Then A is a regular ring, and the complex R := A[n] is a rigid dualizing
complex over A.

Such an algebra A is called an n-dimensional Artin-Schelter regular
algebra, or an n-dimensional Calabi-Yau algebra.
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Example 9.6. Let g be an n-dimensional Lie algeba, and A := U(g),
the universal enveloping algebra.

Then the rigid dualizing complex of A is R := Aσ[n], where Aσ is the
trivial bimodule A, twisted on the right by an automorphism σ.

Using the Hopf structure of A we can express Aσ like this:

Aσ ∼= U(g)⊗K

∧n
g,

the twist by the 1-dimensional representation
∧n

g.

So A is a twisted Calabi-Yau algebra.

If g is semi-simple then there is no twist, so A is Calabi-Yau. This was
used by Ven den Bergh in his duality for Hochschild (co)homology
[VdB2].
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Example 9.7. Let

A :=

[

K K

0 K

]

the 2× 2 matrix algebra.

The rigid dualizing complex here is

R := HomK(A,K).

It is known that
R⊗L

A R⊗
L
A R

∼= A[1]

in D(ModAe).

So A is a Calabi-Yau algebra of dimension 1
3 .

- END -
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