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Reminder |

Theorem (Serre, 1955, FAC, §59)

If A is a commutative k-algebra generated by a finite number of elements
of degree 1, then

qgr(S/1) = coh(Proj(A)),

the category of coherent sheaves on Proj(A).

If Ais noetherian, more generally graded-coherent, not-necessarily
commutative, we define

~gt(A)
~ foim(A)

qgt(A) :
and define Proj,.(A) implicitly by declaring
cob (Proj,.(A)) := qgr(A).
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Reminder Il. An algebraic variety can have a nc hcr

e Verevkin's Theorem = Qcoh(P! x P) = Q&t(B) where

k(x,y) k(x,y)

B := = )
[xz,y]:[y2,x]:0 (X2y_yX2aXy2_y2X)

e Qcoh(Pl) = Q&r(A) when

k(x,y) or _kxy)

A= 0T DT
(yx — xy — x2) (yx — gxy)

for some g € k*

Reason: Ais a Zhang twist of k[X, Y], i.e., A= k[X, Y] for a suitable
o € GL(KX + kY)
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Zhang twists

A = a graded ring
o : A — Ais an algebra automorphism s.t. o(A,) = A, for all n.

A7 := A with new multiplication a x b:= ac™(b) if a € An,

Theorem (Zhang, 1992)
QO Bt(A%) = Bt(A) via M — M? = M with new A-action,
mxa:= mo'(a) if me M;
Q 0&r(A7) = Q6¢(A)
© Proj, (A7) = Proj,.(A)

Serre + Zhang = Qcoh(P!) = Q& (k[X, Y]) = Q&r(k[X, Y]).

Looking ahead: (2) is a special case of a deeper result due to Artin-Zhang.

A% = B(®t(A),A,,s) for a suitable auto-equivalence s : &t(A) — Br(A).
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e.g., a nc hcr for the degree 6 del Pezzo surface

X := P2 blown up at 3 non-colinear points
= the degree 6 del Pezzo surface

k(x,y) .
If B= h (1o )
(x5 = yxy, y? = xyx) with deg(x,y) = (1,2), then

Q&t(B) = Qcoh(X)

B = B(X,L,0) is a twisted hcr of X (to be defined soon)

L = Ox(—E) where

E is a (-1)-curve, and

o € Aut(X) has order 6 and cyclicly permutes the (-1)-curves

Ais 3-dim’l AS-regular & H(A;t) = (1 —t)71(1 - ?)71(1 - £3)~L.
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The construction B(€, O, s)

¢ = k-linear abelian category

O € Ob(¢)

s: € — € is an autoequivalence/automorphism
O(n) :=s"0O

Make B(€,0,s):= @Homg((’),(’)(n)) a graded ring
n=0

with mult. By, x B, — Bpnin given by (a, b) — ab := s"(a) o b.

s"(a)

o b, 0(n) » O(m+ n)

S. Paul Smith (UW Seattle) NCAG and ANCG January 2013
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The Artin-Zhang Theorem |

Suppose € is locally noetherian and O is noetherian.
The pair (O, s) is ample if
e for every noetherian M € Ob(C) there are integers r1,...,r, and an
epimorphism @7 ; O(—r;) - M and
o for every epimorphism M — N between noetherian objects, the
induced map Hom(O(—n), M) — Hom(O(—n), N) is surjective for
n> 0.

Theorem (Artin-Zhang)
Let (O,s) be an ample pair in € and suppose dimy Homg(M, N) < oo for
all noetherian M and N'. Then

e ¢ =906¢t(B(C 0,s)) via M — Ppez Home(O, s" M)

e B(C,0,s) is right noetherian

e B(€,0,s) satisfies the x1 condition
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The Artin-Zhang Theorem Il: a converse

Theorem (Artin-Zhang)

Let B be a finitely graded, right noetherian k-algebra that satisfies x1.
Let (€,0,s) = (Q®(B),7*B,(1)). Then

e (7B, (1)) is ample

o dimy Home(M, N) < oo for all M, N € gr(B)

e there is a natural homomorphism B — B(€, O, s) with finite
dimensional kernel and cokernel

o Q6t(B) = Q6t(B(¢,0,s)).

Theorem (Polishchuk)

Vague statement: there is a generalization of the Artin-Zhang theorems
for coherent graded algebras where the ample pair (O, s) is replaced by
ample sequence {E, | n € Z}.

S. Paul Smith (UW Seattle) NCAG and ANCG January 2013
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Homogeneous coordinate rings (hcrs) in algebraic geometry

X = quasi-projective variety /scheme

L = an invertible Ox-module

o € Aut(X)

L is ample if the natural map Ox ® HO (X, F ® L®") — F ® L®" is an
epimorphism for all n > 0.

Theorem (Serre)
If L is ample, then
Q@ B=B(X,L,id)=D,> HO(X, £L®") is a fin. gend. k-algebra, so
noetherian;
Q@ Q6t(B) = Qcoh(X);
© X = Proj(B).
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Twisted hcrs in nc algebraic geometry

LT=LRcLR @ (%)L
L is o-ample if the natural map Ox ® HO(X, F ® LE") — F @ LE" is an
epimorphism for all n > 0.

B(X,L,0) @Hox,c"

with mult. f.g = f-(c™)*(g) when f € By, is a twisted hcr

Theorem (Artin-Van den Bergh)

If L is o-ample, then
@ B =B(X,L,0) is a fin. gend. noetherian k-algebra;
Q@ 0&(B) = Qcoh(X);
© X integral = Fracty, (B(X,L,0)) = k(X)[t,t71;0].
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The point scheme

Let A be a locally finite connected graded k-algebra.

R a commutative k-algebra
An R—point module for A is a cyclic graded right A ®, R-module

M:MO@Ml@"'

s.t. My = R and M, is a locally free R-module of rank 1 for all n > 1.
Define F : Cat(commutative k-algebras) — Gets by

F(R) := {isoclasses of R—point modules for A}

A quasi-projective scheme X representing F, if it exists, is called the point
scheme for A.

Theorem (Artin-Zhang)

The point scheme for A exists if A is strongly noetherian.
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Ubiquity of B(X, L, o)

Theorem (Rogalski-Zhang)

Suppose k is algebraically closed and A a strongly noetherian connected
graded k-algebra s.t. A= k[A1]. Let X = the point scheme for A.

Q There exists o € Aut(X) and an invertible c-ample Ox-module L and
a canonical graded ring homomorphism ¢ : A — B(X, L, o).

@ & is surjective in large degree.

© In large degree, ker(P) =
{a€ A| Ma=0 VY comm. k-algs R and all R-point modules M}.

Q {R-point modules for A} = {R-point modules for B}

@ ifS is a commutative ring, T € Aut(A), then every graded k-algebra
homom. ¢ : A — S|t; 1] factors through ® (up to finite dimension).
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The strongly noetherian property

A is strongly left noetherian if A ®g R is left noetherian for all noetherian
commutative k-algebras R.

Resco-Small: 3 a noetherian finitely generated k-algebra that is not
strongly noetherian; their example is not graded and k # k

Theorem (Rogalski)

Let S be a generic Zhang twist of a polynomial ring in > 3 variables over
k= k. Let V C S1 be a generic codimension-one subspace. Then
k[V] C S is not strongly noetherian.
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The generic point of Proj,.(A) when A is a domain

Let A be a graded k-algebra that is a domain. If A does not contain a
graded subalgebra isomorphic to the free algebra on two variables (e.g., if
A is right noetherian) it has a graded ring of fractions,

Fracty(A) := {ab™' | a,b € A and b is non-zero and homogeneous}.

Its degree-zero subalgebra,
D :={ab'| 3 nsuch that a,b € A, and b # 0},

is a division ring and, if t € A; — {0}, Fracte(A) = D[t, t~%; o] where
o € Aut(D).

D is determined by Q®t(A) and if D is commutative o depends only on
the degree shift (1).

Vague: the dynamical properties of o have a strong influence on the
properties of A and Proj,.(A).
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Projective nc curves |

If X is an irreducible curve, £ is o-ample <= it is ample.

Theorem (Artin-Stafford)

Let A be a graded domain s.t. A= k[A1] and GKdimk(A,) = 2, then
there is an irreducible curve Y, an invertible Oy-module L, and
o € Aut(Y), s.t.

Q ¢: A— B(Y,L,0) and dimy(coker(®P)) < oo
@ Fracty, (A) 2 k(Y)[t, t71; 0]

© A is noetherian

Q A is finite over its center < |o| < o0

Q@ Q&r(A) = Qcoh(Y)

Roughly: if X,c is a nc curve, there is a commutative curve Y and a
birational isomorphism X, — Y
cf. DM stack X — X = the coarse moduli space of X

S. Paul Smith (UW Seattle) NCAG and ANCG January 2013
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An abstract definition of projective nc curves

If X is a smooth, proper and connected k-scheme of dimension n, then
@ coh(X) is noetherian

@ coh(X) is Ext-finite, i.e., dimy ExtY(M, N) < oo for all
M, N € Ob(coh(X) and all g;

© nis minimal such that Ext9(M, ) = 0 for all M, N &€ Ob(coh(X))
and all g > n;

Q coh(X) satisfies Serre duality, i.e, there is an autoequivalence
S : D?(coh(X)) — DP(coh(X)) s.t. there are isomorphisms
Hom(M, N) = Hom(N,SM)*, natural in M, N € D?(coh(X));

@ coh(X) is saturated, i.e., every cohomological functor
H : D?(coh(X)) — mod(k) of finite type is of the form Hom(M, —).

H has finite type if {n € Z | H(F[n]) # 0} is finite for all F € D?(coh(X))

An abelian category € is connected if € # €; @ €5 in a non-trivial way
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nc projective curves up to derived equivalence

Theorem (Reiten-Van den Bergh)

If € is a saturated, connected, noetherian, Ext-finite, hereditary category
satisfying Serre duality over k, then & is either

(1) mod(A) where N is an indecomposable finite dim’l hereditary algebra
or

(2) cob(A) where A is a sheaf of hereditary Ox orders over a smooth
connected projective curve X.

Furthermore, the categories in (1) and (2)

(3) have the abstract properties in the hypothesis of the previous
sentence and

(4) are = qgt(A) for some graded k-algebra A s.t. GKdim(A) < 2.

We can interpret this result as a description of all smooth connected
projective curves up to derived equivalence.

The nc curves in (2) are stacks.
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NCG and stacks |

Stacks turn up often in nc (algebraic) geometry, e.g., the exceptional fiber
of Van den Bergh's blowup of a suitable point on a suitable nc surface is a
stack (previous talk) and the nc curves in part (2) of Reiten and Van den
Bergh's classification are stacks.

Operator algebras: Given a groupoid s,t: Y ——< X in Top, there is an
associated (typically non-commutative) C*-algebra that behaves as if it is
the ring of functions on the associated quotient. Many important
examples can be interpreted as arising in this way, e.g., graph
C*-algebras—Cuntz-Krieger algebras are graph C*-algebras.

Algebraic geometry: Given a groupoid s,t: Y ——2 X in Gchemes, the
associated quotient object [X/Y] is called an algebraic stack. Stacks are

indispensable in the study of moduli problem, cf. the problem of
non-closed orbits X — [X/G] - X/G.
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NCG and stacks Il

Theorem (D.Chan-Ingalls)

Let s,t: Y XX be a finite flat groupoid scheme with X a
quaSI—prOJect/ve variety and coarse moduli space S. There is an associated
sheaf, Ox y, of (typically non-commutative) Os-algebras. When X is a
smooth curve and the groupoid action is generically free Ox y is a
hereditary order on X. Up to Morita equivalence all hereditary orders on
smooth curves arise in this way.

The result of Chan and Ingalls complements the Reiten-Van den Bergh
classification: it establishes a natural correspondence between smooth
proper 1-dimensional Deligne-Mumford stacks of finite type over k that
are generically schemes and smooth non-commutative curves that do not
have a progenerator. The correspondence is given by taking the category
of quasi-coherent sheaves on the stack.
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Weighted projective spaces, Q®&t(—), and stacks

Serre's Theorem (previous talk) assumed A = k[A1] so does not apply to
the polynomial ring A := k[xo, . .., x,] with deg(x;) = g; > 1.

Weighted projective space is Py, := Proj(A) = P"/G where

G = f1gy X -+ X [g, is a product of roots of unity with action

(507 e 75!7) : (‘907 ceey an) = (5030) e aénan)‘

is often singular e.g., Pil,?
Usually, Q&t(A) # Qcoh(Pg, ).
But Q&t(A) is better than Qcoh(Py ),
e.g., Extdg.a)(— —) =0 and Q&r(A) satisfies Serre duality.
The quotient morphism factors as P" — [P"/G] — P"/G where [P"/G] is
the stack-theoretic quotient and

Qeoh([P"/G]) = Q& (A).

n
Pq07"~7Qn

General Principle: good homological properties of A = good homological
properties of Q&t(A).
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The graded Weyl algebra (Sierra)

Another example of a nice nc hcr for a stack.

eg.,

if D= m >~ D(A) with deg(x,y) = (1,—1), then
_ _ _ Spec C
Q&(D) = &r(D) = &¢(C, Zg,) = Qcoh [ C ] )

the stack-theoretic quotient, where

C:=C[z][\/z—n| n € Z] is commutative

Ln = {finite subsets of Z} with group operation exclusive or

&t(C, Zay) := Zan-graded C-modules

deg(y/z —n) :={n}, and G := affine gp scheme Spec C[Zg,] where
C|Zgy] := the group algebra with its standard Hopf algebra structure.

{isoclasses of simple graded D-modules} are parametrized by

Aé with the stack BZ; at each point in Z C A(lc.
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AS-regular algebras

Artin and Schelter’s philosophy: noncommutative analogues of P? should
be of the form Proj,.(A) where A = k[A;1] is a graded k-algebra that is
“like" the polynomial ring in three variables.

Definition [Artin-Schelter, 1987] A connected graded k-algebra,
A=k® A1 @ -, is Artin-Schelter regular of dimension d if
o gldim(A) = d < o0,
e GKdim(A) < oo, and

k ifi=d,

* Bxtalka,A) = {0 if i £ d

General Principle: good homological properties of A = good homological
properties of Q®&t(A) even if A is not commutative.
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Classification of 3-dim'l AS-regular algebras s.t. A = k[A]

If Ais 3-dim’'l AS-regular algebra s.t. A = k[A;], then either
e A= k(x,y)/(2 cubic relations) and
the min'l proj. res. of k = A/A>1 is
0— A(—4) — A(-3)? - A(-1)> = A—k—0
e A= k(x,y,z)/(3 quadratic relations) and
the min'l proj. res. of k = A/A>1 is
0—A(-3) = A(-2)3 - A(-1) > A—k—0
dimg(A1) =2 = H(A;t) = (1 —t)2(1 - t?)!
dimi (A1) =3 = H(At)=(1—1t)3
.. H(A; t) = H(polyn. rings on gen’ors of weights (1,1,2) or (1,1,1))

Theorem (Artin-Schelter)

If k =k and A = k[A1] there are 13 irreducible families of of 3-dim’l
AS-regular algebras. Very explicit classification.

BUT are these rings noetherian?
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Properties of 3-dim'l AS-regular algebras s.t. A = k[A]

Theorem (Artin-Tate-Van den Bergh, Stephenson)

Every 3-dim’l AS-regular algebra is a noetherian domain.

Theorem (Artin-Tate-Van den Bergh)

Suppose A = k[A1] is 3-dim’l AS-regular with point scheme E. If
dim(E) = 2, then

Qcoh(P?) if dim(A;) =3

2Ee(4) = {Qcob(]P’l x PY) if dim(A;) =2

S. Paul Smith (UW Seattle) NCAG and ANCG January 2013
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Theorem (Artin-Tate-Van den Bergh)
Suppose A = k[A1] is 3-dim’l AS-regular with point scheme E. If
dim(E) # 2, then

© dimi(A1) =2 = E <& P(A}) x P(A}) = P! x Pl

@ dimi(A) =3 — E <& P(A}) = P2

© i(E) is an anti-canonical divisor

Q the function M ~~ M(1)>q on point modules induces o € Aut(E)

There is a surjective homom & : A — B(E, L, o) where L = i*O(1,1) or
L = i*O(1), and ¢ induces a closed immersion E < Proj,.(A) embedding
E as an effective divisor.

v
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Non-commutative analogues of P? and P! x P!

Let A= k[A;] be a 3-dim’l AS-regular algebra. Philosophy:
o If dimy (A1) = 2, Proj,.(A) is a nc analogue of P! x P!,
o If dimy(A1) = 3, Proj,.(A) is a nc analogue of P2
Van den Bergh replaced the vague phrase “nc analogue” by a precise
notion of deformation:
Theorem (Van den Bergh)

If A= k[A1] is 3-dim’l AS-regular and dimy (A1) = 3, then Q&t(A) is a
deformation of Qcoh(IP?) and every deformation of Qcoh(P?) is of this
form provided char(k) # 3.

This theorem vindicates Artin-Schelter’s philosophy that nc analogues of
IP? should have hcrs that are nc analogues of the polyn. ring on 3 variables.

Van den Bergh has classified nc deformations of P! x P!. The 3 dim'l
AS-regular algebras with dim(A;) = 2 give some of them (a 2-dim’l
family) one needs 3-dim’'l AS-regular Z-algebras as “homogeneous
coordinate rings” to get all the deformations (a 3'diml family).
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Geometry: points and lines on P2,

Let A = k[A;] be a 3-dim’l AS-regular algebra such that dim,(A;) =3. A
line module for A is an A-module L such that L = LA and

H(L; t) = (1—t)~2.

If L is a line module for A we call 7*L a line on Proj,.(A).

A line £ passes through a point p € E if there is an epimorphism £ — O,.

Theorem (Artin-Tate-Van den Bergh)
Let A = k[A1] be a 3-dim’l AS-regular algebra such that dim(A;) = 3.
Let E C Proj,.(A) be the point scheme.

© The lines in Proj,.(A) are naturally parametrized by P(A1).

@ Ifp € E, there is a pencil of lines in Proj,.(A) passing through p.

© If p,q € E are distinct, there is a unique line in Proj,.(A) passing
through p and q.

Up to isomorphism, {line modules for A} = {A/aA | ac A; — {0}}
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Geometry: points and lines on (P! x P1),,

Let A = k[A1] be a 3-dim’l AS-regular algebra such that dim,(A;) =2. A
line module for A is either

(1) an A-module L s.t. L= LoAand H(L;t) = (1—t)"}(1—t>)"Lor
(2) L(—1) where L satisfies (1).

Lines coming from (1) (resp., (2)) are said to belong to the first (resp.,
second) ruling.

Theorem (Artin-Tate-Van den Bergh)

Let A = k[A1] be a 3-dim’l AS-regular algebra such that dimy (A1) = 2.
Let E C Proj,.(A) be the point scheme.

@ The lines in Proj,.(A) belonging to each ruling are naturally
parametrized by P(A7).

@ If p € E, there is a unique line in each ruling passing through p.
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Intersection theory on nc projective surfaces |

Theorem (Mori)

Let A be a connected graded noetherian k-algebra with gldim(A) < oc.

Then ) ]
KO(PrOjnc(A)) = q(t)

where q(t) = H(A; t)7L, 0(m*M) = H(M; t)H(A; t)~ for M € gt(A). For
example, if O = 7*A, then 0[O(n)] = t~".

Theorem (Mori, Bézout's Theorem for P2))

Vague: Let A be a 3-dim’l AS-regular algebra s.t. dimy(A1) = 3 and write
P2 for Proj,.(A).

@ Define [M] - [N] := — 325 _o dimy Extdy 4y (M, N) on Ko(P2)

@ If M and N are curve-modules in Pic(P2.) := F'Ky/F?Ko = 7Z and

Homqge(a)(M, N) = 0 (no common component), then
[M] - [N] = deg(M) deg(N).
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Intersection theory on nc projective surfaces |l

Results of Jorgensen that specialize to the classical commutative results.

@ Let Y be an effective divisor, in the sense of Van den Bergh, on a
“suitable” nc-surface (X, Ox).

@ The first Chern class of Y is the operator c(Y') : Ko(X) — Ko(X),
[M] — [M] — [M(—=Y)]. Roughly, c(Y) = "intersect with Y.

o If Cis a curve-module on X, define the intersection multiplicity
(Y, [C]) == x(c(Y)([C])), where x =Euler characteristic.

@ Riemann-Roch:
X(Ox(Y)) = x(Ox) + 3 ((Y,[Ov]) = (Y, [w] = [Ox])).

e Genus formula: 2g(Y) —2 = (Y, [Oy]) + (Y, [w] — [Ox]) where
g(Y) is the genus of the nc-curve Y.

e Self-intersection formula: (Y, [Oy]) = deg(N') where N is the
normal bundle of Y in X.

o If a: X — X is Van den Bergh's blowup at a point p € X s.t.
E :=a71(p) =2 P! then (E,[Of]) = —1 on X.
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Sklyanin algebras

3-dim’l Sklyanin algebras: A family of algebras A, j . parametrized by
(a,b,c) € P> — D, namely A, . = k{x,y,z) modulo the relations

ax®+ byz +czy =0
ay? + bzx + cxz =0
az’ 4+ bxy 4+ cyx =0
where D = {12 explicit points}.
Theorem (Artin-Tate-Van den Bergh)

If (a,b,c) € P2 — D, then A, is 3-dim'l AS-regular. Its point scheme is
an elliptic curve E naturally embedded in P(A}) x P(A}) as the graph T,
of a canonically determined o € Aut(E). Furthermore, there is a surjective
map ® : A— B(E,L,c) where L = i*pr;O(1) where

[, 5 P2 x P2 P2 P2 Furthermore, ker & = (g) where g € As is central.

Picture: Proj,.(Aap,c) is a nc analogue of P? containing an elliptic curve
E as a divisor. E is the zero locus of g.
S. Paul Smith (UW Seattle) NCAG and ANCG January 2013 31 /45



4-dimensional Sklyanin algebras |

Let E be an elliptic curve and 7 a translation automorphism that is not of
order 1, 2, or 4.

Sklyanin defined a family of nc algebras A(E, 7) = k(xp, x1, X2, x3) modulo
6 quadratic relations with structure constants depending on (E, 7).

Theorem (Stafford)

A(E, ) is a 4-dim’l AS-regular algebra, a Koszul algebra, a noetherian
domain, H(A; t) = (1 — t)~*, and there is a surjective homomorphism

o : A(E,7) - B(E, L, T) where L is an invertible Og-module of degree 4.
Moreover, ker(®) = (Q1,Q2) where Q1,Q, € Ay are central.

Picture: Proj,.(A(E, 7)) is a nc analogue of P* containing a pencil of
nc-quadrics, Qx\(E,7) := Proj,.(A/(A1Q1 + A2Q2)), A = (A1, \2) € P,
with base locus isomorphic to E. E is the zero locus of (Q1,22).
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4-dimensional Sklyanin algebras Il

The homogenization of the quantized enveloping algebra Ug(sl(2,C)) is a
degenerate 4-dimensional Sklyanin algebra. The 2-torsion subgroup of E
behaves somewhat like a Weyl group. In some sense, A(E,T) is an
“elliptic homogenized version of U(sl(2,C))".

Theorem (Van den Bergh)

Vague: there is a translation principle for Qx\(E, T) analogous to that for
the primitive quotients U(s((2,C))/(2 — \) (see first talk).

Another analogy: the secant lines for E C P(A}) = P2 play the same role
for A(E, ) as the Verma modules for U(sl((2,C) as the Borel subalgebra
varies: the Verma modules provide rulings on the affine quadrics

Spec,(U(s1(2,C)) /(22— X)).
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The pencil Q\(E, 7) vs. a generic pencil of quadrics in P

The commutative pencil:

A generic pencil of quadrics in P3 has exactly 4 singular members. Their
common intersection is an elliptic curve, E say. The smooth quadrics have
two rulings on them, and the singular ones have one. The lines on the
quadrics are the secant lines to E.
The pencil of quadrics containing E may be labelled as Y,
ze E/+ = P!, in such a way that

Y, = U the secant lines pg such that p+ g = z.
The singular quadrics are Y,,, w € E,, the 2-torsion subgroup of E. When
z ¢ E;, the two rulings on Y, are {pq | p+ g = z} and
{pg|p+qg=—z} ie, Yo =Y_,.
The non-commutative pencil:
There are exactly 4 singular Q)\(E, 7) meaning Ext’(’\)x(—, —) # 0 for all
n>0.
The common intersection of the Q)\(E, T)s is E because
A/(1,) =2 B(E, L, 7).
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The pencil Q\(E, 7)

There is a bijection {line modules for A(E, )} «— {secant lines to E}: if

p,q € E and W C A is the subspace vanishing on pg C P(A7), then
L(pq) := A/WA is a line module & there are no others.
If z € E, there is 0 # Q(z) € CQ; + CQy such that

L(pg)QAz) =0<«=p+qe{z,—z—27}.

Relabel the Q\(E, T)s:

. . A(E,T)
Q; = PrOJ,,C<(Q(Z))>, zc E.

Thus Q, = Q—, 2.
Theorem (Van den Bergh-S)

The singular quadrics are Q,—,, w € Ey. Equivalently, Q, is singular <

it has two rulings.
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Exponential growth

Example [Rogalski] The ring

_ k(x,y,z)
xy —yx =22 [x,z] =[y,z] =0

is 3-dim’l AS-regular.
QO GKdim(A) =3
@ Fracty (A) = D[t, t7!] where D = Fract(Weyl algebra)
© D D a free subalgebra k(f, g) (Makar-Limanov)
Q k[fz, gz, z] has exponential growth
O Fractg(k[fz, gz, z]) C Fracty(A) but GKdim (k[fz, gz, z]) = oo
O k|[fz, gz, z] is not strongly noetherian

Proposition (Rogalski-Zhang)

Let o be a non-quasi-unipotent automorphism of X. Let L be an
invertible O x-module such that L] is very ample for some n > 1. Then
B(X, L,0) has exponential growth and is not noetherian.
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nc tori and nc elliptic curves (Polishchuk & Schwarz)

T02 := the nc 2-torus defined implicitly by declaring that the C*-algebra of
continuous C-valued functions on it is the universal C*-algebra Ay

generated by two unitary elements v and v such that
vu = e yy.

T7 .= TZ with complex structure (Ag, d;) where

Ag = {Zamnu’"v" € Ay

m,n

(m, n) — amy is rapidly decreasing at oo}

and 0, : Ay — Ay is the derivation ,(u) = u & §-(v) = 7v (cf. 0z).
¢ = cof)(Te%T) is defined via “holomorphic bundles” (E,V) on T;T
P's generalization of AZ Theorem —> B(¢, 0, s) is a her for T7 .
B(¢,0,s) = C[By], dim(By) < oo, B is not noetherian but is |

graded-coherent.
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“Degenerate” Sklyanin algebras

Suppose k = k has a primitive cube root of unity w.

Assume (a,b,c) € ©

Theorem (C. Walton)

The Sklyanin algebra A, p, . has infinite global dimension, is not
noetherian, has exponential growth, and has zero divisors.

Theorem

© There is a quiver Q, independent of (a, b, c) € ®, such that
Q&t(Asp,c) = QBt(kQ) = ModS(Q) where S(Q) = lim S, and
each S, is a product of three matrix algebras.

@ There is an action of u3 = Y1 C kX as automorphisms of the free
algebra F = k(X,Y) s.t. Q&t(A,pc) = QOr(F x p3).
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Entropy of non-noetherian hcrs

Newman-Schneider-Shalev:
the entropy of a locally finite N-graded k-algebra A is

1
radius of conv. of H(A;t)

e(A) :=limsup,_, o vdimg(A,) =

GKdim(A) <oco = e(A)=0orl

Theorem (Stephenson-Zhang)
e(A) >1 == A is not noetherian.

We say A has exponential growth if e(A) > 1

e.g.
e(k(xl, . ,xd>) =d
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e(monomial alg.) = exp(entropy in symbolic dynamics)

A tautology:

_ kQ
~ (finite # forbidden words)

A = a monomial algebra

— log (e(A)) = the entropy of the dynamical system (X, o) where
X = {bi-infinite legal words/paths} C {arrow}?
discrete topology + product topology + subspace topology and
oc: X —=X

U(...a_lao-alag...) = ...dpdiea2...

Proof: {legal words of length n} = basis for A,
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e.g., the Golden Mean Shift and C(x, y)/(y?)

X = {sequences in {0, l}Z} s.t. 1 must be followed by 0

entropy(X, o) = log (%)

A= C(x,y)/(y?) e(A) = 1+2\/§

A—CQ aCO@l Via{;:ier

C

QBt(A) = QBH(CQ) = Br(S) = Mod(So)

o __dense Cuntz-Krieger algebra for Q =
subalg the graph C*-algebra for Q
So % Connes's C*-algebra for the space of Penrose tilings

Remark: the Cuntz-Krieger algebra for a finite directed graph is a
groupoid C*-algebra.
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Zhang's 2-dim’l regular algebras with exponential growth

Theorem (Zhang)

Let A = k[A1] with dim(A1) = n > 2. Then A is AS-regular (without the

GKdim < oo condition) of global dimension 2 <=

k(x1,...,Xn)

A =
(X1®)/1+"'+Xn®)/n)

where span{yl, . ,y,,} = A;. Furthermore, H(A; t) = (1 — nt + t2)71

e(A) = 3(n+V/n?2 — 4). Also, A is graded-coherent.

Theorem (Van den Bergh, Minamoto, Piontkovski)

Let A = k[A1] be a connected graded AS-regular algebra of global
dimension 2. If dim(A;) = n, then

DP(Rep( @ —21" 0 )) = OBt(A)
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. ’ —1
Kontsevich-Rosenberg's P/~

[KR] define the non-commutative projective space P71 as the space
representing the functor AffSch,. — Gets

A — Maps(Spec(A), Pi;t) =

quotients M of A®" s.t. M = A locally in the flat topology.

Theorem (Kontsevich-Rosenberg)

The category Qcob(P7-1) has cohomological dimension 1 and

D® (Qcoh(P5; 1)) = Db (Rep( @ —22 o))
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A final remark

k<X1>"'7Xn>

A= k[A{] =
[ 1] (Xl®)/1+"‘+xn®)/n)

where span{yi,...,y,} = A1.

Let X = Proj,.(A) and Ox = 7*A,. Define Ky(X) := Ko(qgr(A)).
Theorem (Sisodia)

(Ko(X), Ko(X)T, [Ox]) = (Z[0], RZ°NZ[0],1) where @ = n=Y’=4

If n =3, Z[0] :Z[#]

Theorem (Pimsner-Voicelescu & Rieffel)

Let § € R — Q and Ay the C'-algebra of functions on the nc torus Tg.
Then

(Ko(Ag), Ko(Ae)™, [Ag]) = (Z + Z6,R=° N (Z + Z6),1).
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THE END
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