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The classical theory of pure motives (Grothendieck)
e ¥} category of smooth projective varieties over a field k;
morphisms of varieties

e (Pure) Motives over k: linearization and idempotent completion
(+ inverting the Lefschetz motive)

e Correspondences: Corr~, £(X, Y): F-linear combinations of
algebraic cycles Z C X x Y of codimension = dim X

e composition of correspondences:
Corr(X, Y) x Corr(Y,Z) — Corr(X, Z)

(mx.z)«(mx v (@) @ Ty 7(/5))

intersection productin X x Y x Z
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e Equivalence relations on cycles: rational, homological, numerical
- o~ 0if 3 3 correspondence in X x P! with a = 3(0) — 3(o0)
(moving lemma; Chow groups; Chow motives)

-« ~pom 0: vanishing under a chosen Weil cohomology functor H*
- a ~pym 0: trivial intersection number with every other cycle

The category of motives has different properties depending on the
choice of the equivalence relation on correspondences
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Effective motives ~ Category Mot® . (k):

e Objects: (X, p) smooth projective variety X and idempotent p? = p
in Corr £(X, X)

e Morphisms:

HomMot‘i’iF(k)((X’ p),(Y,q) = qCOHN,F(Xv Y)p
e tensor structure (X,p) ® (Y,q) = (X x Y,p x Qq)
e notation h(X) for motive (X, id)

Tate motives
e L Lefschetz motive: h(P') = 1 @ LL with 1 = h(Spec(k)).
e formal inverse L.~ = Tate motive; notation Q(1)
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Motives Category Mot..(k)
e Objects: (X, p, m) := (X,p) @ L™ = (X, p) ® Q(m)
e Morphisms:
HomMotN(k)((X7 p,m),(Y,q,n)) = qCOHT}n(X, Y)p
shifts the codimension of cycles (Tate twist)

e Chow motives; homological motives; numerical motives
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Jannsen’s semi-simplicity result
Theorem (Jannsen 1991): TFAE

e Mot (k) is a semi-simple abelian category
o Corrd™X(X, X) is a finite-dimensional semi-simple F-algebra, for

each X

e The equivalence relation is numerical: ~=~p,m,
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Known that with ~3;#~um: category of Chow motives is not abelian
What about homological equivalence?

Weil cohomologies H* : #,° — VecGre

e Kiinneth formula: H*(X x Y) = H*(X) ® H*(Y)

e dim H2(P') = 1; Tate twist: V(r) = V @ H3(P")®~"

e trace map (Poincaré duality) tr : H>(X)(d) — F

e cycle map v, : Z"(X)r — H?"(X)(n) (algebraic cycles to
cohomology classes)

Examples: deRham, Betti, /-adic étale

Grothendieck’s idea of motives: universal cohomology theory for
algebraic varieties lying behind all realizations via Weil cohomologies
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Grothendieck’s standard conjectures

¢ (Kinneth) C: The Kiinneth components of the diagonal Ax are
algebraic

e (Hom=Num) D Homological and numerical equivalence coincide
o (Lefschetz) B: the Lefschetz involution x, x is algebraic (Q-coeffs):
x1 x is L9 on &; H'(X)(r) for i < d (inverse for i > d)

L9~ HI(X)(r) — H29=(X)(d — i+ 1)

determined by hyperplane sections

e (Hodge) | The quadratic form defined by the Hodge involution xy is
positive definite on algebraic cycles with homological equivalence

We will focus later on C and D (inchar 0 B =-all; B+ | = D)
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Motivic Galois groups
More structure than abelian category: Tannakian category Reps(G)
fin dim lin reps of an affine group scheme G

e [-linear, abelian, tensor category (symmetric monoidal)
R:ECXEC—C
e functorial isomorphisms:

axyz: X2(Y®2) 3 (XeY)eZ

CX,Y:X®YE> Y ® X with CX,YOCY,X:1X®Y
Ix X155 X, re:19X>X

e Rigid: duality VV : € — €% withe : X ® XV — 1 and
n:1—=X"®X

e®1x

X X1 ™" xoxVoX VP i1ox~X

composition is identity
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e categorical trace (Euler characteristic)
tr(f) = eocxvgx o (1xv ® f) om; dim X = tr(1x)

e Tannakian: as above (and with End(1) = F) and fiber functor

w: %€ — Vect(K)

K = extension of F; w exact faithful tensor functor; neutral Tannakian
ifK=F

e equivalence ¢ ~ Repg(G), affine group scheme

G = Gal(?) = Aut®(w)

e Deligne’s characterization (char 0): Tannakian iff tr(1x)
non-negative for all X
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Tannakian categories and standard conjectures
In the case of Mot..,,,(k), when Tannakian?
e problem: tr(1x) = x(X) Euler characteristic can be negative

e Mot!, (k) category Mot..,,, (k) with modified commutativity
constraint cx,y by the Koszul sign rule
(corrects for signs in the Euler characteristic)

e (Jannsen) if standard conjecture C (Kiinneth) holds then
Mot!, (k) is Tannakian

~num

e If conjecture D also holds then H* fiber functor
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Motives and Noncommutative motives

e Motives (pure): smooth projective algebraic varieties X
cohomology theories Hyr, Hpetti, Hetales - - -
universal cohomology theory: motives = realizations

e NC Motives (pure): smooth proper dg-categories .o/
homological invariants: K-theory, Hochschild and cyclic cohomology
universal homological invariant: NC motives

Matilde Marcolli and Goncalo Tabuada Noncommutative motives and their applications



dg-categories

<f category whose morphism sets .o/ (x, y) are complexes of
k-modules (k = base ring or field) with composition satisfying
Leibniz rule

d(fog) =dfog+ (—1)%9fo dg

dgcat = category of (small) dg-categories with dg-functors
(preserving dg-structure)
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From varieties to dg-categories
d
X = 2,34(X)

dg-category of perfect complexes

HP gives derived category Dpert(X) of perfect complexes of
O'x-modules

saturated dg-categories (Kontsevich)

e smooth dgcat: perfect as a bimodule over itself

e proper dgcat: if the complexes <7 (x, y) are perfect
e saturated = smooth + proper

smooth projective variety X = smooth proper dgcat .@gg,,(x)

(but also smooth proper dgcat not from smooth proj varieties)
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derived Morita equivalences

e o/ %P same objects and morphisms <7 ®(x, y) = </ (y, x); right dg
a7 -module: dg-functor &7 P — €y4(k) (dg-cat of complexes of
k-modules); € (<) cat of «7-modules; Z(.</) (derived cat of .«7)
localization of €’ (.</') w/ resp to quasi-isom

e functor F : &/ — A is derived Morita equivalence iff induced
functor 2(A) — 2(<7) (restriction of scalars) is an equivalence of
triangulated categories

e cohomological invariants (K-theory, Hochschild and cyclic
cohomologies) are derived Morita invariant: send derived Morita
equivalences to isomorphisms
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symmetric monoidal category Hmo

e homotopy category: dg-categories up to derived Morita
equivalences

e ® extends from k-algebras to dg-categories

e can be derived with respect to derived Morita equivalences (gives
symmetric monoidal structure on Hmo)

e saturated dg-categories = dualizable objects in Hmo
(Cisinski—Tabuada)

e Euler characteristic of dualizable object: x(</) = HH(</)
Hochschild homology complex (Cisinski—Tabuada)
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Further refinement: Hmog

e all cohomological invariants listed are “additive invariants":
E :dgcat - A, E(«) @ E(A) = E(|M|)

where A additive category and |M| dg-category
Obj(|M|) = Obj(<) U Obj(#) morphisms <7 (x, y), B(x, y),
X(x,y) with X a /-2 bimodule

e Hmo,: objects dg-categories, morphisms Kyrep(<7, ) with
rep(/, B) C D(/P @ £) full triang subcat of <7/~ bimodules X
with X(a, —) € Zperr(#); composition = (derived) tensor product of
bimodules

e (Tabuada) %, : dgcat — Hmog, id on objects, sends dg-functor to
class in Grothendieck group of associated bimodule
(Zx characterized by a universal property)

e all additive invariants factor through Hmo
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noncommutative Chow motives (Kontsevich) NChowr(k)
e Hmoo.r = the F-linearization of additive category Hmoy
° Hmog;F = idempotent completion of Hmog.F

e NChowr(k) = idempotent complete full subcategory gen by
saturated dg-categories

NChowr(k):
@ Objects: (<7, e) smooth proper dg-categories (and idempotents)

@ Morphisms Ky(«7°P @} %)F (correspondences)
@ Composition: induced by derived tensor product of bimodules
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relation to commutative Chow motives (Tabuada):

Chowq(k)/—gq(1) = NChowg(k)

commutative motives embed as noncommutative motives after
moding out by the Tate motives

orbit category Chowg(k)/_gq(1)

(¢, ®,1) additive, F — linear, rigid symmetric monoidal;
0 € Obj(%) ®-invertible object:
orbit category ¢’/ _s¢ same objects and morphisms

Homg, _ (X, Y) = @jezHomg(X, Y © 0%
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Numerical noncommutative motives
M.M., G.Tabuada, Noncommutative motives, numerical equivalence,
and semi-simplicity, arXiv:1105.2950

(o7, e) and (4, €') objects in NChowg(k) and correspondences
X=eo[y aX]od, Y=¢o[) bYloe
i i

Xi and Y; bimodules
= intersection number:
(X, Y) =Y [HH(; Xi @ V)] € Ko(K)F
i

with [HH(7; X; ®', Y})] class in Ko (k)£ of Hochschild homology
complex of < with coefficients in the «/—<7 bimodule X; ®H§§ \i
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numerically trivial: X if (X, Y) = 0forall Y
e ®-ideal .4 in the category NChowfg (k)
e ./ largest ®-ideal strictly contained in NChow (k)

numerical motives: NNumg (k)

NNumpg(k) = NChowpg(k)/ AN

abelian semisimple (M.M., G.Tabuada, arXiv:1105.2950)
e NNump(k) is abelian semisimple
analog of Jannsen’s result for commutative numerical pure motives
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What about Tannakian structures and motivic Galois groups?

For commutative motives this involves standard conjectures (C =
Kinneth and D = homological and numerical equivalence)

Questions:

is NNumpg(k) (neutral) super-Tannakian?
is there a good analog of the standard conjecture C (Kinneth)?
does this make the category Tannakian?

is there a good analog of standard conjecture D (numerical =
homological)?

@ does this neutralize the Tannakian category?

@ relation between motivic Galois groups for commutative and
noncommutative motives?
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Tannakian categories (%, ®,1)
F-linear, abelian, rigid symmetric monoidal with End(1) = F

e Tannakian: 3 K-valued fiber functor, K field ext of F: exact faithful
®-functor w : € — Vect(K); neutral if K = F

w = equivalence ¢ ~ Repg(Gal(%)) affine group scheme (Galois
group)  Gal(%) = Aut®(w)

e intrinsic characterization (Deligne): F char zero, € Tannakian iff
Tr(idx) non-negative integer for each object X
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super-Tannakian categories (%, ®,1)

F-linear, abelian, rigid symmetric monoidal with End(1) = F
sVect(K) super-vector spaces Z/27Z-graded

e super-Tannakian: 3 K-valued super fiber functor, K field ext of F:
exact faithful ®-functor w : ¢ — sVect(K); neutral if K = F

w = equivalence € ~ Repg(sGal(%), €) super-reps of affine
super-group-scheme (super-Galois group)
sGal(%¢) = Aut®(w) € = parity automorphism

e intrinsic characterization (Deligne) F char zero, ¥ super-Tannakian
iff Shur finite (if F alg closed then neutral super-Tannakian iff Schur
finite)

e Schur finite: symm grp S, idempotent ¢\ € Q[S;] for partition A of
n (irreps of S,), Schur functors Sy : € — ¢, Sx(X) = e\ (X®")

¢ = Schur finite iff all objects X annihilated by some Schur functor
S\(X)=0
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Main results

M.M., G.Tabuada, Noncommutative numerical motives, Tannakian
structures, and motivic Galois groups, arXiv:1110.2438

assume either: (i) Ko(k) = Z, F is k-algebra; (i) k and F both field
extensions of a field K

e Thm 1: NNumg£(k) is super-Tannakian; if F alg closed also neutral

e Thm 2: standard conjecture Cnc(/): the Klinneth projectors
7t HP.(o) — AP (/) = HP.()

are algebraic: 7, = HP. () with 5, correspondences. If k field
ext of F char 0, sign conjecture implies

cH(Z) = Cne(254(2))

i.e. on commutative motives more likely to hold than sign conjecture
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e Thm 3: k and F char 0, one extension of other: if Cyc holds then
change of symmetry isomorphism in tensor structure gives category
NNumTF(k) Tannakian

e Thm 4: standard conjecture Dyc (< ):
KO(%)F/ ~hom— KO(EQ{)F/ ~num
homological defined by periodic cyclic homology: kernel of
HP _ P
Ko(#)F = Homnchow (k) (ks &) —> Homgyecy k) (HP«(K), HP..(</))

when k field ext of F char 0: D(Z) = DNC(@SE#(Z))
i.e. for commutative motives more likely to hold than D conjecture
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e Thm 5: F ext of k char 0: if Cnc and Dyc hold then NNumj_-(k) is a
neutral Tannakian category with periodic cyclic homology as fiber
functor

e Thm 6: k char 0: if C, D and Cnc, Dnc hold then
sGal(NNumy (k) — Ker(t : sGal(Numg(k)) — Gpy)

Gal(NNum] (k) — Ker(t : Gal(Num/ (k)) — G ,)

where t induced by inclusion of Tate motives in the category of
(commutative) numerical motives

(using periodic cyclic homology and de Rham cohomology)
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