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The classical theory of pure motives (Grothendieck)
• Vk category of smooth projective varieties over a field k ;
morphisms of varieties

• (Pure) Motives over k : linearization and idempotent completion
(+ inverting the Lefschetz motive)

• Correspondences: Corr∼,F (X ,Y ): F -linear combinations of
algebraic cycles Z ⊂ X × Y of codimension = dim X

• composition of correspondences:

Corr(X ,Y )× Corr(Y ,Z )→ Corr(X ,Z )

(πX ,Z )∗(π
∗
X ,Y (α) • π∗Y ,Z (β))

intersection product in X × Y × Z
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• Equivalence relations on cycles: rational, homological, numerical

- α ∼rat 0 if ∃ β correspondence in X × P1 with α = β(0)− β(∞)
(moving lemma; Chow groups; Chow motives)
- α ∼hom 0: vanishing under a chosen Weil cohomology functor H∗

- α ∼num 0: trivial intersection number with every other cycle

The category of motives has different properties depending on the
choice of the equivalence relation on correspondences
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Effective motives Category Moteff
∼,F (k):

• Objects: (X , p) smooth projective variety X and idempotent p2 = p
in Corr∼,F (X ,X)
• Morphisms:

HomMoteff
∼,F (k)

((X , p), (Y , q)) = qCorr∼,F (X ,Y )p

• tensor structure (X , p)⊗ (Y , q) = (X × Y , p × q)
• notation h(X) for motive (X , id)

Tate motives
• L Lefschetz motive: h(P1) = 1⊕ L with 1 = h(Spec(k)).
• formal inverse L−1 = Tate motive; notation Q(1)

Matilde Marcolli and Goncalo Tabuada Noncommutative motives and their applications



Motives Category Mot∼(k)

• Objects: (X , p,m) := (X , p)⊗ L−m = (X , p)⊗Q(m)

• Morphisms:

HomMot∼(k)((X , p,m), (Y , q, n)) = qCorrm−n
∼,F (X ,Y )p

shifts the codimension of cycles (Tate twist)

• Chow motives; homological motives; numerical motives
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Jannsen’s semi-simplicity result

Theorem (Jannsen 1991): TFAE

•Mot∼,F (k) is a semi-simple abelian category

• Corrdim X
∼,F (X ,X) is a finite-dimensional semi-simple F -algebra, for

each X

• The equivalence relation is numerical: ∼=∼num
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Known that with ∼rat 6=∼num: category of Chow motives is not abelian
What about homological equivalence?

Weil cohomologies H∗ : V op
k → VecGrF

• Künneth formula: H∗(X × Y ) = H∗(X)⊗ H∗(Y )
• dim H2(P1) = 1; Tate twist: V (r) = V ⊗ H2(P1)⊗−r

• trace map (Poincaré duality) tr : H2d (X)(d)→ F
• cycle map γn : Z n(X)F → H2n(X)(n) (algebraic cycles to
cohomology classes)

Examples: deRham, Betti, `-adic étale

Grothendieck’s idea of motives: universal cohomology theory for
algebraic varieties lying behind all realizations via Weil cohomologies

Matilde Marcolli and Goncalo Tabuada Noncommutative motives and their applications



Grothendieck’s standard conjectures

• (Künneth) C: The Künneth components of the diagonal ∆X are
algebraic

• (Hom=Num) D Homological and numerical equivalence coincide

• (Lefschetz) B: the Lefschetz involution ?L,X is algebraic (Q-coeffs):
?L,X is Ld−i on ⊕i,r H i(X)(r) for i ≤ d (inverse for i > d)

Ld−i : H i(X)(r)→ H2d−i(X)(d − i + r)

determined by hyperplane sections

• (Hodge) I The quadratic form defined by the Hodge involution ?H is
positive definite on algebraic cycles with homological equivalence

We will focus later on C and D (in char 0 B ⇒ all; B + I ⇒ D)
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Motivic Galois groups
More structure than abelian category: Tannakian category RepF (G)
fin dim lin reps of an affine group scheme G

• F -linear, abelian, tensor category (symmetric monoidal)
⊗ : C × C → C
• functorial isomorphisms:

αX ,Y ,Z : X ⊗ (Y ⊗ Z )
'→ (X ⊗ Y )⊗ Z

cX ,Y : X ⊗ Y '→ Y ⊗ X with cX ,Y ◦ cY ,X = 1X⊗Y

`X : X ⊗ 1 '→ X , rX : 1⊗ X '→ X

• Rigid: duality ∨ : C → C op with ε : X ⊗ X∨ → 1 and
η : 1→ X∨ ⊗ X

X ' X ⊗ 1
1X⊗η→ X ⊗ X∨ ⊗ X

ε⊗1X→ 1⊗ X ' X

composition is identity
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• categorical trace (Euler characteristic)
tr(f ) = ε ◦ cX∨⊗X ◦ (1X∨ ⊗ f ) ◦ η; dim X = tr(1X )

• Tannakian: as above (and with End(1) = F ) and fiber functor
ω : C → Vect(K )
K = extension of F ; ω exact faithful tensor functor; neutral Tannakian
if K = F
• equivalence C ' RepF (G), affine group scheme
G = Gal(C ) = Aut⊗(ω)

• Deligne’s characterization (char 0): Tannakian iff tr(1X )
non-negative for all X
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Tannakian categories and standard conjectures

In the case of Mot∼num (k), when Tannakian?

• problem: tr(1X ) = χ(X) Euler characteristic can be negative

•Mot†∼num
(k) category Mot∼num (k) with modified commutativity

constraint cX ,Y by the Koszul sign rule
(corrects for signs in the Euler characteristic)

• (Jannsen) if standard conjecture C (Künneth) holds then
Mot†∼num

(k) is Tannakian

• If conjecture D also holds then H∗ fiber functor
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Motives and Noncommutative motives

• Motives (pure): smooth projective algebraic varieties X
cohomology theories HdR , HBetti , Hetale, . . .
universal cohomology theory: motives⇒ realizations

• NC Motives (pure): smooth proper dg-categories A
homological invariants: K -theory, Hochschild and cyclic cohomology
universal homological invariant: NC motives
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dg-categories

A category whose morphism sets A (x , y) are complexes of
k -modules (k = base ring or field) with composition satisfying
Leibniz rule

d(f ◦ g) = df ◦ g + (−1)deg(f )f ◦ dg

dgcat = category of (small) dg-categories with dg-functors

(preserving dg-structure)
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From varieties to dg-categories

X ⇒ Ddg
perf (X)

dg-category of perfect complexes

H0 gives derived category Dperf (X) of perfect complexes of
OX -modules

saturated dg-categories (Kontsevich)
• smooth dgcat: perfect as a bimodule over itself
• proper dgcat: if the complexes A (x , y) are perfect
• saturated = smooth + proper

smooth projective variety X ⇒ smooth proper dgcat Ddg
perf (X)

(but also smooth proper dgcat not from smooth proj varieties)
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derived Morita equivalences

• A op same objects and morphisms A op(x , y) = A (y , x); right dg
A -module: dg-functor A op → Cdg(k) (dg-cat of complexes of
k -modules); C (A ) cat of A -modules; D(A ) (derived cat of A )
localization of C (A ) w/ resp to quasi-isom

• functor F : A → B is derived Morita equivalence iff induced
functor D(B)→ D(A ) (restriction of scalars) is an equivalence of
triangulated categories

• cohomological invariants (K -theory, Hochschild and cyclic
cohomologies) are derived Morita invariant: send derived Morita
equivalences to isomorphisms
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symmetric monoidal category Hmo

• homotopy category: dg-categories up to derived Morita
equivalences

• ⊗ extends from k -algebras to dg-categories

• can be derived with respect to derived Morita equivalences (gives
symmetric monoidal structure on Hmo)

• saturated dg-categories = dualizable objects in Hmo
(Cisinski–Tabuada)

• Euler characteristic of dualizable object: χ(A ) = HH(A )
Hochschild homology complex (Cisinski–Tabuada)

Matilde Marcolli and Goncalo Tabuada Noncommutative motives and their applications



Further refinement: Hmo0

• all cohomological invariants listed are “additive invariants":

E : dgcat→ A, E(A )⊕ E(B) = E(|M|)

where A additive category and |M| dg-category
Obj(|M|) = Obj(A ) ∪ Obj(B) morphisms A (x , y), B(x , y),
X(x , y) with X a A –B bimodule

• Hmo0: objects dg-categories, morphisms K0rep(A ,B) with
rep(A ,B) ⊂ D(A op ⊗L B) full triang subcat of A –B bimodules X
with X(a,−) ∈ Dperf (B); composition = (derived) tensor product of
bimodules

• (Tabuada) UA : dgcat→ Hmo0, id on objects, sends dg-functor to
class in Grothendieck group of associated bimodule
(UA characterized by a universal property)

• all additive invariants factor through Hmo0
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noncommutative Chow motives (Kontsevich) NChowF (k)

• Hmo0;F = the F -linearization of additive category Hmo0

• Hmo\0;F = idempotent completion of Hmo0;F

• NChowF (k) = idempotent complete full subcategory gen by
saturated dg-categories

NChowF (k):

Objects: (A , e) smooth proper dg-categories (and idempotents)

Morphisms K0(A op ⊗L
k B)F (correspondences)

Composition: induced by derived tensor product of bimodules
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relation to commutative Chow motives (Tabuada):

ChowQ(k)/−⊗Q(1) ↪→ NChowQ(k)

commutative motives embed as noncommutative motives after
moding out by the Tate motives

orbit category ChowQ(k)/−⊗Q(1)

(C ,⊗, 1) additive, F − linear , rigid symmetric monoidal;
O ∈ Obj(C ) ⊗-invertible object:
orbit category C /−⊗O same objects and morphisms

HomC /−⊗O
(X ,Y ) = ⊕j∈ZHomC (X ,Y ⊗ O⊗j)
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Numerical noncommutative motives
M.M., G.Tabuada, Noncommutative motives, numerical equivalence,
and semi-simplicity, arXiv:1105.2950

(A , e) and (B, e′) objects in NChowF (k) and correspondences

X = e ◦ [
∑

i

aiXi ] ◦ e′, Y = e′ ◦ [
∑

j

bjYj ] ◦ e

Xi and Yj bimodules

⇒ intersection number:

〈X ,Y 〉 =
∑

ij

[HH(A ; Xi ⊗L
B Yj)] ∈ K0(k)F

with [HH(A ; Xi ⊗L
B Yj)] class in K0(k)F of Hochschild homology

complex of A with coefficients in the A –A bimodule Xi ⊗L
B Yj
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numerically trivial: X if 〈X ,Y 〉 = 0 for all Y

• ⊗-ideal N in the category NChowF (k)

•N largest ⊗-ideal strictly contained in NChowF (k)

numerical motives: NNumF (k)

NNumF (k) = NChowF (k)/N

abelian semisimple (M.M., G.Tabuada, arXiv:1105.2950)

• NNumF (k) is abelian semisimple

analog of Jannsen’s result for commutative numerical pure motives
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What about Tannakian structures and motivic Galois groups?

For commutative motives this involves standard conjectures (C =
Künneth and D = homological and numerical equivalence)

Questions:

is NNumF (k) (neutral) super-Tannakian?

is there a good analog of the standard conjecture C (Künneth)?

does this make the category Tannakian?

is there a good analog of standard conjecture D (numerical =
homological)?

does this neutralize the Tannakian category?

relation between motivic Galois groups for commutative and
noncommutative motives?
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Tannakian categories (C ,⊗, 1)

F -linear, abelian, rigid symmetric monoidal with End(1) = F

• Tannakian: ∃ K -valued fiber functor, K field ext of F : exact faithful
⊗-functor ω : C → Vect(K ); neutral if K = F

ω⇒ equivalence C ' RepF (Gal(C )) affine group scheme (Galois
group) Gal(C ) = Aut⊗(ω)

• intrinsic characterization (Deligne): F char zero, C Tannakian iff
Tr(idX ) non-negative integer for each object X
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super-Tannakian categories (C ,⊗, 1)

F -linear, abelian, rigid symmetric monoidal with End(1) = F

sVect(K ) super-vector spaces Z/2Z-graded

• super-Tannakian: ∃ K -valued super fiber functor, K field ext of F :
exact faithful ⊗-functor ω : C → sVect(K ); neutral if K = F

ω⇒ equivalence C ' RepF (sGal(C ), ε) super-reps of affine
super-group-scheme (super-Galois group)
sGal(C ) = Aut⊗(ω) ε = parity automorphism

• intrinsic characterization (Deligne) F char zero, C super-Tannakian
iff Shur finite (if F alg closed then neutral super-Tannakian iff Schur
finite)

• Schur finite: symm grp Sn, idempotent cλ ∈ Q[Sn] for partition λ of
n (irreps of Sn), Schur functors Sλ : C → C , Sλ(X) = cλ(X⊗n)
C = Schur finite iff all objects X annihilated by some Schur functor
Sλ(X) = 0
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Main results

M.M., G.Tabuada, Noncommutative numerical motives, Tannakian
structures, and motivic Galois groups, arXiv:1110.2438

assume either: (i) K0(k) = Z, F is k -algebra; (ii) k and F both field
extensions of a field K

• Thm 1: NNumF (k) is super-Tannakian; if F alg closed also neutral

• Thm 2: standard conjecture CNC(A ): the Künneth projectors

π±A : HP∗(A ) � HP±∗ (A ) ↪→ HP∗(A )

are algebraic: π±A = HP∗(π
±
A ) with π±A correspondences. If k field

ext of F char 0, sign conjecture implies

C+(Z )⇒ CNC(Ddg
perf (Z ))

i.e. on commutative motives more likely to hold than sign conjecture
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• Thm 3: k and F char 0, one extension of other: if CNC holds then
change of symmetry isomorphism in tensor structure gives category
NNum†F (k) Tannakian

• Thm 4: standard conjecture DNC(A ):

K0(A )F/ ∼hom= K0(A )F/ ∼num

homological defined by periodic cyclic homology: kernel of

K0(A )F = HomNChowF (k)(k ,A )
HP∗−→ HomsVect(K )(HP∗(k),HP∗(A ))

when k field ext of F char 0: D(Z )⇒ DNC(Ddg
perf (Z ))

i.e. for commutative motives more likely to hold than D conjecture
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• Thm 5: F ext of k char 0: if CNC and DNC hold then NNum†F (k) is a
neutral Tannakian category with periodic cyclic homology as fiber
functor

• Thm 6: k char 0: if C, D and CNC , DNC hold then

sGal(NNumk (k) � Ker(t : sGal(Numk (k)) � Gm)

Gal(NNum†k (k) � Ker(t : Gal(Num†k (k)) � Gm)

where t induced by inclusion of Tate motives in the category of
(commutative) numerical motives

(using periodic cyclic homology and de Rham cohomology)
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