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Thm 1: Schur finiteness  HH : NChowg(k) — 2,(F)
F-linear symmetric monoidal functor (Hochschild homology)

(NChowr (k) /Ker(HH))? — Z4(F)

faithful F-linear symmetric monoidal
P¢(7) = full triang subcat of compact objects in Z(7) = Z(F)
identified with fin-dim Z-graded F-vector spaces: Shur finite

general fact: L : 1 — %> F-linear symmetric monoidal functor:
X € €1 Schur finite = L(X) € %> Schur finite; L faithful then also
converse: L(X) € %, Schur finite = X € %} Schur finite

conclusion: (NChowr(k)/Ker(HH))! is Schur finite

also Ker(HH) C .4 with F-linear symmetric monoidal functor
(NChowr(k)/Ker(HH))* — (NChowg(k)/.#)% = NNumg (k)
= NNumg(k) Schur finite = super-Tannakian
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Thm 2: periodic cyclic homology
mixed complex (M, b, B) with b> = B> = Bb + bB = 0,
deg(b) = 1 = —deg(B): periodized

T e T e T W

neven nodd neven

periodic cyclic homology (the derived cat of Z/2Z-graded complexes
HP : dgcat — 9727(k)
induces F-linear symmetric monoidal functor
HP.,. : NChowg (k) — sVect(F)

or to sVect(k) if k field ext of F
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Note the issue here:

e mixed complex functor symmetric monoidal but 2-periodization not
(infinite product don’t commute with ®)

e lax symmetric monoidal with 97,57 (k) ~ SVect(k) (not fin dim)

e HP : dgcat — SVect(k) additive invariant: through Hmog(k)

e NChowg (k) = (Hmoo(k)sf’)’,i: (sp = gen by smooth proper dgcats)
e periodic cyclic hom finite dimensional for smooth proper dgcats + a
result of Emmanouil

= lax symmetric monoidal HP,. : Hmoo (k)% — sVect(k) is
symmetric monoidal
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standard conjecture Cyg (Klnneth type)

e Cne(7): Kuinneth projections
7t HP.(o/) — HP, (/) — HP.()

et B (o E Y
are algebraic: 77, = HP.(n,) image of correspondences

e then from Keller + Hochschild-Konstant-Rosenberg have

HP.(73,(2)) = HP.(Z(2)) = HP.(Z) = @ peven;odaHia(Z)

e hence C*(Z) = Cno(2%

L+
pert(Z£)) With Ty (7

perf )

Chow(k) — Chow(k)/_sg(1) <+ NChow(k

image of E}E under

classical: (using deRham as Weil cohomology) C(Z) for Z
correspondence, the Kiinneth projections 75 : Hjg(Z) — Hjp(Z)
are algebraic, 75 = H}z(x%), with 7% correspondences

sign conjecture: C*(Z): Kiinneth projectors 7} = > % 72" are

algebraic, 73 = Hg(7+) (hence 75 also)
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Thm 3: Tannakian category first steps

e have F-linear symmetric monoidal and also full and essentially
surjective functor: NChowg(k)/Ker(HP.) — NChowg(k)/ AV

e assuming Cnc(</): have E@ o) = €° 1;; o e;if X trivial in
NChowr(k)/-/ intersection numbers (X", 7, ) vanishes
(1 is ®-ideal)

e intersection number is categorical trace of X" o
(M.M., G.Tabuada, 1105.2950)

= Tr(HP.(X" o i, ) = Tr(HP (X)") = 0

+
C20)

trace all n-compositions vanish = nilpotent AP, (X)
e conclude: nilpotent ideal as kernel of

EndNChowF(k)/Ker(W*)(%a e) —» EndNChOWF(k)/JV(JZ{7 e)

e then functor (NChow (k) /Ker(HP,))? — NNumg(k) full
conservative essentially surjective: (quotient by .4 full and ess surj;
idempotents can be lifted along surj F-linear homom with nilpotent
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Tannakian category: modification of tensor structure

e H: % — sVect(K) symmetric monoidal F-linear (K ext of F)
faithful, Ktinneth projectors 73 = H(z¥) for 7r3; € Endg(N) for all
N € % then modify symmetry isomorphism

CI1;I1,N2 = CNy,N, © (eN1 & eNZ) with ey = ZEJ,\? _ /d[\[

e get F-linear symmetric monoidal functor

¢t & sVect(K) — Vect(K)

o if P: % — 9, F-linear symmetric monoidal (essentially) surjective,
then P : €T — 21 (use image of ey to modify 2 compatibly)

e apply to functors AP, : (NChow(k)/Ker(HP.))? — sVect(K) and
(NChowr(k)/Ker(HP,))! — NNumg(k)

= obtain NNumTF(k) satisfying Deligne’s intrinsic characterization for
Tannakian: with N lift to (NChowr(k)/Ker(HP.))*! have

rk(N) = tk(HP, (N)) = dim(HP, (N)) + dim(AP, (N)) > 0
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Thm 4: Noncommutative homological motives

HP,. : NChowg(k) — sVect(K)

m* TIPD TIPD
Ko(/)F = Homnchow, (k) (K, @) = Homgyeey(k) (HP«(K), HP.())
kernel gives homological equivalence Ky(.<7)r mod ~pom

e Dyc (<) standard conjecture:
KO(JZ{)F/ ~hom=— KO(M)F/ ~num
e on Chowr(k)/_gq(1) induces homological equivalence with sHyg
(de Rham even/odd) = Z5,,(2)F — Ko(Zeer(Z))F/ ~hom
e classical cycles Z*

gom(Z)F ~ 20 m(Z)F; for numerical
Zum(Z)F = Ko(gpgrf(z))/‘_/ ~num; then get

D(Z) = DNC(@ggn‘(Z))
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Thm 5: assume Cyc and Dy then
HP., : NNum'-(k) — Vect(F)

exact faithful ®-functor: fiber functor = neutral Tannakian category
NNum (k)

Thm 6: Motivic Galois groups
e Galois group of neutral Tannakian category Gal(NNumI_-(k)) want
to compare with commutative case Gal(NumTF(k))

e super-Galois group of super-Tannakian category sGal(NNumpg(k))
compare with commutative motives case sGal(Numpg(k))

e related question: what are truly noncommutative motives?
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Tate triples (Deligne—Milne)

e For A=ZorZ/2Z and B = G, or p12, Tannakian cat ¢ with
A-grading: A-grading on objects with (X ® Y)? = @a—pi o XP @ YC;
homom w : B — Aut®(idy) (weight); central hom B — Aut®(w)

e Tate triple (¢, w, T): Z-graded Tannakian & with weight w,
invertible object T (Tate object) weight —2

e Tate triple = central homom w : G, — Gal(%) and homom
t:Gal(¢) - Gpwithtow = —2.

e H= Ker(t: Gal(¢') — Gp,) defines Tannakian category
~ Rep(H). It is the “quotient Tannakian category" (Milne) of inclusion
of subcategory gen by Tate object into ¥
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Galois group and orbit category
o 7 = (%¢,w,T) Tate triple, ¥ C € gen by T, pseudo-ab envelope
(€] _s7)" of orbit cat €'/ _ g is neutral Tannakian with

Gal((¢/_w1)") ~ Ker(t : Gal(€) — G,)

¢ Quotient Tannakian categories with resp to a fiber functor (Milne):
wp : ¥ — Vect(F) then € /wy pseudo-ab envelope of €’ with same
objects as ¢ and morphisms Home (X, Y) = wo(Hom, (X, Y)H)
with X" largest subobject where H acts trivially

e fiber functor wp : X — colim,Homy (B7__,1(r), X) € Vect(F)
=get¢ =€/ ot
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super-Tannakian case: super Tate triples
e Need a super-Tannakian version of Tate triples

e super Tate triple: .77 = (€, w,z*, 71) with € = neutral
super-Tannakian; w : 4 — sVect(F) super-fiber functor; idempotent
endos: w(ry) = mt Kinneth proj.; neutral Tate triple

Tt = (€T, w, T) with €1 modified symmetry constraint from ¢
using

e assuming C and D: a super Tate triple for (comm) num motives

(Num(k), SHyg, 75, (Numf (k), w, Q(1)))
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super-Tannakian case: orbit category

o YT = (€,w,n*, T1) super Tate triple; .# C % full neutral
super-Tannakian subcat gen by T

e Assume: 7 (T) = 0; for K = Ker(t : Gal(¢") — G,) of Tate
triple 77, if € : u2 — Hinduced Z /27 grading from t o w = —2; then
(H, €) super-affine group scheme is Ker of sGal(%¢) — sGal(¥') and
Rep(H, €) = Repk(H).

e Conclusion: pseudoabelian envelope of '/ _g 1 is neutral
super-Tannakian and seq of exact ®-functors . C € — (¢/_o7)"
gives

sGal((¢/_s7)") = Ker(t : sGal(€) — Gp)

e have also (67/_o7)? ~ (€/_o7)"" ~ Repk(H, €) ~ Reps(H)
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Then for Galois groups:

e then surjective Gal(NNum,T((k)) — Gal((Num,T((k)/_@)@m)”) from
embedding of subcategory and
Gal((Num}(k)/_go@1))f) = Ker(t : Num,(k) — Gpm)

e for super-Tannakian: surjective (from subcategory)
sGal(NNumy (k)) — sGal((Numg(k)/_gq@))") and
sGal((Numk(k)/_@)Qm)u) ~ Ker(t : sGal(Numg(k)) - Gp)

e What is kernel? Ker = “truly noncommutative motives"
Gal(NNum;r((k)) — Ker(t : Num;r((k) — Gm)

sGal(NNumy(k)) — Ker(t : sGal(Num(k)) - Gp)

what do they look line? examples? general properties?
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Using NC motives to study commutative motives
Example: full exceptional collections and motivic decompositions

Examples of motivic decompositions:
e Projective spaces: h(P") =1 oL@ ---aL"
e Quadrics (k alg closed char 0):

(O 1oL -@Le" d odd
(Qqg)o =~ 1oL® - - oL L2@/2) g even.

e Fano 3-folds:
h(X)g ~1@h' (X)oL® @ (h'(J)oL)® (L¥?)** e i (X) e L%?,

h'(X) and h°(X) Picard and Albanese motives, b = ba(X) = bs(X)
J abelian variety (isogenous to intermediate Jacobian if k = C)
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Full exceptional collections in the derived category 2°(X)

A collection of objects {Eq, ..., Ep} in a F-linear triangulated
category ¢ is exceptional if RHom(E;, E;) = F for all i and
RHom(E;, Ej) = 0 for all i > j; itis full if € is minimal triangulated
subcategory containing it.

Examples of full exceptional collections:
e Projective spaces (Beilinson): (&(—n), ..., (0))
e Quadrics (Kapranov):

(Z(=d), O(—d +1),...,0(-1),0) if dis odd
(X4(—=d),X_(—d),0(-d+1),...,0(—1),0) if diseven,

> 1 (and X)) spinor bundles
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e Toric varieties (Kawamata)

e Homogeneous space (Kuznetsov-Polishchuk)
Conjecture (KP): k alg cl char 0, parabolic subgroup P C G of
semisimple alg group then 2°(G/P) has full exceptional collection

e Fano 3-folds with vanishing odd cohomology (Ciolli)
e Moduli spaces of rational curves ]o,n (Manin—Smirnov)

Note: all these cases also have motivic decompositions

Reason: exceptional collections and motivic decompositions are
related through the relation between commutative and NC motives
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Thm 7: Full exceptional collections and motivic decompositions
if 2°(X) has a full exceptional collection, then h(X)g has a motivic
decomposition
h(X)g =LY @--- @ L
forsome /1,..., 4 >0
Note: works also for Deligne—Mumford stacks
* 25,(X) unique dg enhancement: (Ej)qg =~ Zg, (k)
e Look at corresponding elements in NChowg (k) under universal
localizing invariant % : dgcat (k) — NChowg(k)

LU (Dag(K) = U (Dge(X))

from inclusions of dg categories (Ej)qq — .@gg(X)
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using (Tabuada “Higher K-theory via universal invariants"): given split
short exact sequence of pre-triangulated dg categories

0 B 4 € 0

mapped by universal localizing invariant % (—) to a distinguished
split triangle so % (#B) & % (¢) = % ()
Applied to

A = (Ej,--- Em)ag, B = (Ei)ag, € = (Eix1,---,Em)ag
gives

U(25,(K)) ® U ((Eisr, -, Em)ag) = % ((Ei,.. ., Em)ag)

recursively get result using 25,(X) = (Ei, ..., Em)ag
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A consequence: Hodge—Tate cohomology
Thm 8: If a smooth complex projective variety V has a full
exceptional collection then it is Hodge—Tate (Hodge numbers

h>3(V) = 0 for p # q)
Reason: motivic decomposition

Dubrovin conjecture: V smooth projective complex
(i) Quantum cohomology of V is (generically) semi-simple if and only
if V is Hodge-Tate and 2°( V) has a full exceptional collection.

(i) Stokes matrix of structure connection of quantum cohomology =
Gram matrix of exceptional collection

X Ko(V) x Ko(V) = Z, > (—1)"dimExt"(F1, Z2)
nezZ

First observation: Hodge-Tate hypothesis not necessary
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Quantum cohomology and motives
Question: is QH* motivic? (Manin, ECM 2000)

e V smooth complex projective variety; Moduli space .#,(V, 3) of
stable maps (f: C — V., Xy,..., X, [C] = B € Ho(V)); map to 4
to marked curve (C, x1, ..., X,); map to V" evaluation

e Behrend—Manin: Gromov-Witten invariants of genus zero give a
correspondence in the category DMChowg(k)/ _zq(1)

¢*(JV,B,H) C '%_O,H x V"

image of virtual fundamental class (Behrend—Fantechi) of .#,(V, 3)

e cycles v C V" pulled back to . , x V™; intersect with ¢.(Jy 5 );
push forward to .#o p; project onto IL"—2 component of motivic
decomposition of .# , = Gromov-Witten invariants of genus zero

s <’7>0,B,nLn73
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e Gromov-Witten invariants are used to deform the intersection
product in the ring structure of cohomology: quantum corrections
through generating function (potential)

d(x) = %(Za XaVa)®
Xay *+Xap

+ ZB7£0 e<ﬁ’2deQ(Wb):2 Xb7b> qﬁ Zdeg(’yai);EZ <'Yan e 731 >0,f775 n| 4

e Frobenius manifold structure on H*(V, C): associative
multiplication

0a00p = Z Aabcam Aape = 020p0:P
c

(associativity WDVV nonlinear differential equations for ®)

e Quantum cohomology QH*( V) with new multiplication;
semisimple: there is a basis in which the tensor A is diagonal.
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Question: Can NC motives say more about Dubrovin conjecture?
Currently work in progress! (with Yuri Manin and Goncalo Tabuada)
Main ingredients:

e a motivic approach to Gromov-Witten invariants and Quantum
Cohology (Behrend—Manin)

e recasting the GW correspondence of Behrend—Manin as a
correspondence in NChow

e write its coefficients on a basis given by the exceptional collection
e constraints on the coefficients, from the exceptional collection

Hopefully, will report on progress later in the term!
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